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1 IntroducƟon

This report summarizes the work done during the first year (2014) of ROP project toward building a modelling
framework for describing mass diffusion in the bulk of materials. This framework has, within this project, the
particular scope of simulating the transport stage of atomic hydrogen in iron or, more specifically, toward the
site where degradation, and therefore Hydrogen Embrittlement (HE) occurs.
This introductory section is therefore devoted to this topic, with focus on the definitions of the the different
material/mechanical contributions to the determination of hydrogen distribution in bulk iron.
Nevertheless, despite the clear application, the model framework is of general validity, i.e. it can be applied and
used to describe mass diffusion for any solvent/solute system, given the correct parameter/inputs.

1.1 Transport of hydrogen in the bulk of materials

Once hydrogen is absorbed into the metal, its distribution is traditionally divided in two main contributions.
The first contribution is the hydrogen at the Normal Interstitial Lattice Sites (NILS), and indicated with CL; the
second contribution is given by hydrogen atoms trapped at the material’s “imperfection” such as dislocations,
grain boundaries, vacancies, inclusions or precipitates. Such contribution is indicated with CT . These two
contributions are locally in equilibrium [12], and the total final hydrogen distribution is obtained by their sum.

1.1.1 Diffusible hydrogen

In the particular case of steel, iron lattice basic structure exists in two forms: body-centered cubic (bcc) ferrite
(Fe-α) and face-centered cubic (fcc) austenite (Fe-γ). The property of the steels, in terms of solubility and
diffusivity, are therefore inferred from the geometrical disposition of the atoms within the lattice structures and
the consequent size of the different interstitial sites. The main “engine” for hydrogen mobility is given by the
concentration gradients which is generated, for instance, due to hydrogen adsorption from external sources.
Fick’s first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions
of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration
gradient (spatial derivative) [5]. In one (spatial) dimension:

Fick’s first law: J = −D

(
∂CL

∂x

)
(1)

where J is the hydrogen flux, CL is the diffusible hydrogen, D is the diffusion coefficient or diffusivity,
which is proportional to the velocity of the diffusing particle, and x is the position. The negative sign arises
because diffusion occurs in the direction opposite to the direction of increasing concentration. It has to be
noted that Fick’s first law, as written in Eq. 1, is consistent only for isotropic medium whose structure and
diffusion properties are the same relatively to all directions. Fick’s first law applies to steady state systems,
where concentration keeps constant. In many cases of diffusion, the concentration within the diffusion volume
however changes with time. With some calculations based on the first Fick’s law and mass balance, Fick’s
second law in the case of 3-dimensional diffusion is obtained:

Fick‘s second law: ∂CL

∂t
= −D∇2CL (2)

where t is time and ∇ is the del operator. In a 3D system with perpendicular coordinates (x, y, z), this is a
Cartesian coordinate system R3, del is defined as:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(3)

where i, j and k are the unit-vectors in the direction of the respective coordinate (the standard basis in R3).
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Eq. 1 and 2 defines just the basic laws to describe hydrogen flux within an unstressed perfect lattice structure.
In reality, the correct way to look at hydrogen diffusion through the steel is not as a straight line trajectory. As
showed by Jiang and Carter [7] through first principle Density Functional Theory (DFT) calculations, H-atom
diffuses through bcc Fe not via a straight trajectory line, but rather jumps from one t-site (t stays for tetrahedral)
to another neighboring t-site by a curve path distorted toward octahedral sites.

Figure 1: Interstitial sites present in a BCC crystal structure [2].

As mentioned before, the small size of hydrogen allows higher solubility and greater mobility than other
elements. However, hydrogen atoms are still larger than the interstitial sites: rH = 0.53 Å, to be compared
with ri = 0.19 Å for o-sites in austenitic steel (the largest among the interstitial sites in steels). This induces
a distortion of the host lattice and the resulting stress and displacement fields interact with other defects. The
“strength” of this type of interaction is quantified by the hydrogen’s partial molar volume, i.e. the unconstrained
volume dilatation of the metal containing one mole of hydrogen. An isochore introduction of hydrogen into a
lattice creates a hydrostatic compression stress [3, 4]. Thereby, the mean hydrostatic stress affects the hydrogen
solubility in the host metal, and hydrostatic stress gradients affect hydrogen diffusion [10]. Therefore, a more
complete description for hydrogen diffusion should consider both for hydrogen concentrations and hydrostatic
stress gradients. Abaqus [1] provides the following mass diffusion equation already embedded with the finite
element code:

∂CL

∂t
= D∇2CL +D

(
VH

R(T − TZ)

)
∇CL∇p+D

(
VH

R(T − TZ)

)
CL∇2p (4)

In conclusion, relation 4 indicates that the energy necessary to introduce a hydrogen atom in the lattice
increases together with the decrease of hydrogen concentration gradients and is decreased by dilatational hydro-
static stress: areas in front of cracks are therefore zones of strong accumulation for diffusible hydrogen.
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1.1.2 Trapping

Hydrogen distribution is determined not only by the concentration gradients and lattice dilatation due to hydro-
static stress as described by 4, but it is recognized that also trapping is a potent mechanism for H segregation
[12], [16], [13]. Traps can be seen as local perturbations of the lattice structure: typical traps are dislocations,
vacancies, grain boundaries, phase boundaries, inclusions and precipitates. Trapping reduces the amount of
mobile hydrogen inferring a decrease of the apparent diffusivity and increasing the local solubility favoring
segregation. The ability of traps to “hold” hydrogen atoms is associated with hydrogen binding energy and
activation energy for hydrogen release (∆ET ) and, based on the values of these terms, trapping sites are usually
categorized as reversible and irreversible traps. Reversible traps concern binding energies usually lower than
60/70 kJ/mol [17] and hydrogen can typically be released by simple tempering. On the contrary, for irrevers-
ible traps normal tempering result uneffective since the energy barrier to be overcome in order for hydrogen
to regain mobility is higher. A typical example of irreversible trap sites is the interface between non-metallic
inclusion or precipitates jump.
Of special interest is hydrogen trapping related to dislocation which has been studied extensively in the last
decades [16],[6],[3], [4], [14]. In a nutshell, dislocations, which in metals are associated with the plastic de-
formation development, can be imagined as moving traps, having therefore a great impact on the total hydrogen
distribution in the material. Kumnick and Johnson [9] firstly calculated the variation of the amount and the
densities of trapping sites in steel at different cold-working levels. Their results are graphically presented (see
Fig. 2) by Sofronis and McMeeking [15], who also proposed the following mathematical fitting:

Log(NT ) = 23.26− 2.33 exp(−5.5ϵp) (5)

where NT is the trap density and ϵp is the equivalent plastic strain: trap densities are independent on temperat-
ure, increase sharply with deformation at low deformation levels and more gradually with further deformation,
reaching saturation at plastic strain greater than 80%.

Figure 2: Relation between number of traps and plastic strain fitted from Kumnick and Johnson experimental
results [15].
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1.1.3 Local Equilibrium

As summarized in the previous sections, two types of hydrogen concentrations can be distinguished: hydrogen
in NILS, indicated by CL and hydrogen in traps, CT . Oriani [12] proposed the principle that for rapid trap filling
kinetics, these two “populations” are locally in equilibrium. Such principle is described by the relation

CT =
K αNT

βNL
CL

1 + K
βNL

CL

(6)

where NT and NL are the available sites for hydrogen in traps and in lattice sites, respectively. NL is calculated
through:

NL =
NA

VM
(7)

where NA is the Avogadro number and VM is the molar volume of iron. α and β are parameters which indicates
the site occupancies for traps and lattice sites, respectively. The parameter α is taken as 1 while β is assigned to
6 under assumption of tetrahedral site occupancy. KT represents the equilibrium constant between lattice and
trap sites:

KT = exp
(
−∆ET

RT

)
(8)

∆ET is the trap binding energy, always negative, and assigned according to the type of traps under consideration
[9]. The inherent meaning of Oriani’s equilibrium principle is that, at local level, the two populations of hydrogen
affect one another: variations of lattice hydrogen modifies the reversibly trapped hydrogen and viceversa. It is
important also to point out that such theory considers exclusively reversible traps.
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2 FEM formulaƟon for mass diffusion

The FEM formulation of hydrogen diffusion here implemented has been derived from by [8] which has been
obtained through Eq. 1. to Eq. 8 . The formulation is revisited here.

2.1 AssumpƟons

The system is modeled by
ĊL + ĊT +∇ · J = 0 (9)

with

J = −DL∇CL −DpCL∇p (10)
CT

NT − CT
=

CL

NL − CL
KT (11)

KT = e−
∆ET
RT (12)

Dp =
DLVH

RT
(13)

2.2 Total form

By multiplying denominator and divisor by CL, (11) can be rewritten as

CT =
KTNTCL

NL + CL (KT − 1)
(14)

Assuming NL and KT not to vary with time

∂CL

∂t
+

∂CT

∂t
=

∂CL

∂t
+

∂CT

∂CL

∂CL

∂t
+

∂CT

∂NT

∂NT

∂t
(15)

=

[
1 +

NTNLKT

(NL + CL (KT − 1))2

]
∂CL

∂t
+

[
KTCL

NL + CL (KT − 1)

]
∂NT

∂t
(16)

so finaly
0 = f

(
CL, ĊL

)
+∇ · J (CL) (17)

with

f
(
CL, ĊL

)
=

(
1 +

NTNLKT

(NL + CL (KT − 1))2

)
ĊL +

KTCLṄT

NL + CL (KT − 1)
(18)

This is a single scalar non-linear differential equation in CL, NT and p. CT has been eliminated using (14).
In the following we will assume NT and p to be known (weak connection to another solution). We further
assume all other coefficients to be known and constant in time and space.

2.3 Weak form

The weak form of the differential equation is obtained by requiring that for any “virtual variation” δCL of the
unknown field CL, equation (17) multiplied by δCL and integrated over V , must be verified

0 =
∫
V δCLf dV +

∫
V δCL∇ · J dV (19)

=
∫
V δCLf dV +

∫
V ∇ ·

(
δCL J

)
dV −

∫
V ∇δCL · J dV (20)

=
∫
V δCLf dV +

∫
S n ·

(
δCL J

)
dS −

∫
V ∇δCL · J dV (21)

0 =
∫
V δCLf dV +

∫
S δCL ϕdS −

∫
V ∇δCL · J dV (22)
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with

ϕ = n · J (23)

where n is the outward pointing normal to S and ϕ is the hydrogen flow out through S .

The integration by parts has allowed to introduce boundary conditions: at any point of S, either ϕ must be
known (non-essential boundary condition) or δCL must be zero (essential boudary condition).

2.4 Incremental form

The incremental form of E = 0 in CL and ĊL is

0 = E +
∂E

∂CL
∆CL +

∂E

∂ĊL

∆ĊL (24)

and hence the incremental form of (22) is (assuming ϕ to be a known boundary condition)

0 =

∫
V
δCLf dV +

∫
S
δCL ϕdS −

∫
V
∇δCL · J dV (25)

+

∫
V
δCL

∂f

∂CL
∆CL dV −

∫
V
∇δCL · ∂J

∂CL
∆CL dV (26)

+

∫
V
δCL

∂f

∂ĊL

∆ĊL dV (27)

or

0 =

∫
V
δCL

[(
1 +

NTNLKT

(NL + CL (KT − 1))2

)
ĊL +

KTCLṄT

NL + CL (KT − 1)

]
dV

+

∫
S
δCL ϕdS

−
∫
V
∇δCL ·

[
−DL∇CL −DpCL∇p

]
dV

+

∫
V
δCL

[
−2 (KT − 1)NTNLKT ĊL

(NL + CL (KT − 1))3
+

KTNLṄT

(NL + CL (KT − 1))2

]
∆CL dV

−
∫
V
∇δCL ·

[
−DL∇−Dp∇p

]
∆CL dV

+

∫
V
δCL

[
1 +

NTNLKT

(NL + CL (KT − 1))2

]
∆ĊL dV (28)

2.5 Discrete form

Shape functions are introduced for the unknown field:

∆CL = SC ·∆CL (29)
∆ĊL = SC ·∆ĊL (30)
δCL = SC · δCL (31)

The gradients of these shape functions will be used:

GC = ∇SC (32)
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Since (28) must hold for any δCL, it must hold for any δCL and we obtain:

0 =

∫
V
SC

[(
1 +

NTNLKT

(NL + CL (KT − 1))2

)
ĊL +

KTCLṄT

NL + CL (KT − 1)

]
dV

+

∫
S
SC ϕdS

−
∫
V
G

T

C ·
[
−DL∇CL −DpCL∇p

]
dV

+

∫
V
SC

[
−2 (KT − 1)NTNLKT ĊL

(NL + CL (KT − 1))3
+

KTNLṄT

(NL + CL (KT − 1))2

]
SC dV ·∆CL

−
∫
V
G

T

C · [−DL]GC dV ·∆CL

−
∫
V
G

T

C ·
[
−Dp∇p

]
SC dV ·∆CL

+

∫
V
SC

[
1 +

NTNLKT

(NL + CL (KT − 1))2

]
SC dV ·∆ĊL (33)

This can be rewritten

K ·∆CL +M ·∆ĊL = F (34)

with

K =

∫
V
SC

[
−2 (KT − 1)NTNLKT ĊL

(NL + CL (KT − 1))3
+

KTNLṄT

(NL + CL (KT − 1))2

]
SC dV

+

∫
V
G

T

C · [DL]GC dV

+

∫
V
G

T

C ·
[
Dp∇p

]
SC dV (35)

M =

∫
V
SC

[
1 +

NTNLKT

(NL + CL (KT − 1))2

]
SC dV (36)

F = −
∫
V
SC

[(
1 +

NTNLKT

(NL + CL (KT − 1))2

)
ĊL +

KTCLṄT

NL + CL (KT − 1)

]
dV

−
∫
S
SC ϕdS

−
∫
V
G

T

C ·
[
DL∇CL +DpCL∇p

]
dV (37)

Note that (37) does not contain second order derivatives if either CL or p, thanks to the sequence weak form-
partial integration-incremental form. The alternative sequence incremental form-weak form-partial integration
yields the same formulation, except for second derivatives in F .

For the special case in which there are no traps (hydrogen is only dissolved in the lattice), it is found by
setting NT = ṄT = 0, or equivalently, KT = 0 in the above expressions.
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3 ImplementaƟon in UMATHT and UMAT

As mentioned in the previous sections, Abaqus’ option for mass transfer analysis cannot be used because it does
not allow to specify the non-linear diffusivity and solubility due to dislocation traps. However, an alternative
way can be found by taking advantage of the similarity between Fourier’s and Fick’s law (i.e. solute concen-
tration can be treated as temperature): the above formulation is implemented in Abaqus by using UMATHT, a
user definable subroutine for heat transfer.
The following table shows the relation between the inputs and outputs to MATHT and the present formulation.

Function Variable Heat Transfer Mass Diffusion

UMATHT U U (θ, t) CL + CT

DUDT ∂U
∂θ

∂(CL+CT )
∂CL

= 1 + NTNLKT

(NL+CL(KT−1))2

DUDG ∂U
∂∇θ

∂(CL+CT )

∂∇CL
= 0

TEMP θ CL

DTEMP ∆θ ∆CL

DTEMDX ∇θ ∇CL

FLUX f
(
θ,∇θ

)
J
(
CL,∇CL

)
= −DL∇CL −DpCL∇p

DFDT ∂f
∂θ

∂J
∂CL

= −Dp∇p

DFDG ∂f

∂∇θ
∂J

∂∇CL
= −DL

UMAT RPL ∆U 0

DDSDDT ∂∆σ
∂θ

∂∆σ
∂CL

DRPLDE ∂∆U
∂ϵ

KTCL
NL+CL(KT−1)

∂NT
∂ϵ

DRPLDT ∂∆U
∂θ

−2(KT−1)NTNLKT

(NL+CL(KT−1))3

Table 1: Correspondence with UMATHT and UMAT

Considering the expressions in Table 1, it is conspicuous that some of the terms found in Section 2.5 are
absent:

−2 (KT − 1)NTNLKT ĊL

(NL + CL (KT − 1))3
+

KTNLṄT

(NL + CL (KT − 1))2

does not appear, so Abaqus can not compute K accurately, which will affect the convergence rate. Following
[11], we can use the fact that U at the end of a step is to be provided by UMATHT to introduce the term

KTCLṄT

NL + CL (KT − 1)
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Thinking of a future extension to coupled analysis (diffusion and continuum nechanics), the absence of a
matrix containing the term

KTCL

NL + CL (KT − 1)

implies a weak connection between the analyses, which may be a source of convergence problem.
Following [11], UMATHT allows an exact and (thought not Newton-optimal) solution of the uncoupled

hydrogen diffusion problem. Moriconi [11] further uses this UMATHT implementation in a coupled diffusion-
mechanical analysis. Apparently, Abaqus limits what mechanical material models can be used in a coupled
analysis, so it was necessary to implement UMAT to provide the relevant material plasticicty model. So the
coupled analysis was implemented without implementing UEL (User defined ELement subroutine). Note that
this does not allow to model a strongly coupled problem (due to the above-mentioned missing term), for that it
seems necessary to implement a complete element (UEL).

3.1 Comparison with Krom et al.

For large KT , one can introduce the approximation KT − 1 ≈ KT . Then it is possible to show that

∂CT

∂CL
=

CT

(
1− CT

NT

)
CL

(38)

∂CT

∂NT
=

CT

NT
(39)

so that the differential equation they solve is the correct one (even though they offer no proof for it in that
publication).

3.2 DerivaƟon of stress gradients and equivalent plasƟc strain

In our solution, the gradient of the pressure in one element is computed as follow:
The pressure at the Gauss points (center) of all neighboring elements is considered and a linear interpolation
of the pressure as a function of position in the deformed mesh is introduced. The slope of this linear relation
is use as a pressure gradient.This is just one of many possible approaches to finding the pressure gradient. All
of them have in common that they are imperfect (computing slopes on numerical data is only apparently easy).
Nevertheless, it is not known which approach Abaqus is used to compute the gradient.

The pressure is given by Abaqus as the third stress invariant for the integration point. The stress invariants
can be read by calling GETVRM() and specify 'SINV' as the value for the parameter VAR.

The plastic strain is given by Abaqus as the seventh plastic strain value for the integration point. The strain
values can be read by calling GETVRM() and specify 'PE' as the value for the parameter VAR.
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4 Units and orders of magnitude

In order to build a model of the most general validity, particular attention needs to be put into the use of the
unit system as well as in the list of the constants. The modelling framework is therefore built buy using con-
stants which will eventually allow the study of mass diffusion of systems which are different than hydrogen/iron.

The unit system used is MPa meaning that the basic units are : mass in [tonne], length in [mm], time in
[s], temperature in [K], pressure in [MPa], energy in [mJ] and so forth. Table 2 summarises the units for the
quantities described in the previous section along with their expected order of magnitude for hydrogen/iron
system.

Symbol Order of magnitude Unit
CL mol ·mm−3

CT mol ·mm−3

NL ≈10−04 mol ·mm−3

NT 0.16603 · 10NT1−NT2·eNT3·ϵp* mol ·mm−3

NT1 −8.74 * mol ·mm−3

NT2 2.33 *
NT3 −5.5*
J mol ·m−2 · s−1

∆ET ≈106 mol−1 ·tonne ·mm2 ·s−2

R 8.314 · 103 mol−1 ·K−1 · tonne ·
mm2 · s−2

T 293. K

∇CL mol ·mm−4

DL ≈10−6 mm2 · s−1

Dp ≈10−9 tonne−1 ·mm3 · s

p
tonne ·mm−1 ·
s−2(MPa)

∇p tonne ·mm−2 · s−2

Table 2: Units and orders of magnitude (*: constants obtained form Sofronis and McMeecking [15] interpolation
of Kumnick and Johnson[9] experimental data)

4.1 ConcentraƟon conversion factors

An important issue is related to different unit systems used for defining concentrations in literature. The most
common are: weight part per million (wppm), atomic part per million (appm), and number of hydrogen atoms
per cubic meter of iron (atH · m−3

Fe). In the model developed here concetration values are defined as mole of
solute per millimeter cube of solvent, which allows for caculations which are totally independent on the particular
solute/solvent systems under study. The need for a sistematic table for conversion between all different systems
arises. The conversion formulas are therefore:

C
[
mol ·mm−3

]
= C [wppm] · ρFe

[
tonne ·mm−3

]
·
(
zH

[
tonne ·mol−1

])−1 (40)

C [appm] = C [wppm] · zFe

[
tonne ·mm−3

]
·
(
zH

[
tonne ·mol−1

])−1 (41)
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C
[
atH ·m−3

Fe

]
= C [wppm] · nA

[
atoms ·mol−1

]
·
(
zH

[
tonne ·mol−1

]
· ρFe

[
tonne ·mm−3

])−1 (42)

C
[
mol ·mm−3

]
= C

[
atH ·m−3

Fe

]
· 10−9

[
m3 ·mm−3

]
·
(
nA

[
atoms ·mol−1

])−1 (43)

C [appm] = C
[
atH ·m−3

Fe

]
· zFe

[
tonne ·mm−3

]
·
(
nA

[
atoms ·mol−1

]
· ρFe

[
tonne ·mm−3

])−1(44)

The constants that are necessary to perform the conversions described above (N.B. the constants defined
below and the consequently calculated conversion factors are relative to hydrogen/iron system) are the following:

VM : Molar V olume : 7.119 · 10−6 m3 ·mol−1 = 7.119 · 103 mm3 ·mol−1 which indicates the volume
occupied by one mole of substance at a given temperature and pressure;

VH : Partial Molar V olume : 2 · 10−6 m3 · mol−1 = 2 · 103 mm3 · mol−1 it is a thermodynamic
quantity which indicates the unconstrained volume dilatation of a metal (iron in this case) due to the
absorption/introdution of one mole of a solute (hydrogen);

zH : Hydrogen MolarMass : 1.008 g ·mol−1 = 1.008 ·10−6tonne ·mol−1 mass of an atom of hydrogen;

zFe : Iron Molar Mass : 55.845 g ·mol−1 = 55.845 · 10−6tonne ·mol−1 mass of an atom of pure iron;

nA : Avogadro Number : 6.023 · 1023 atoms · mol−1 it defines the number of atoms per mole for any
substance;

ρFe : Iron Density : 7.8747 tonne ·m−3 = 7.8747 · 10−9 tonne ·mm−3.

Finally, Table 3 reports conversion factors as calculated by formulas in the group of Eq. (44) (unit of the
value to convert “enters” from the column and the converted results “exit” from the row):

CONC wppm appm atH ·m−3
Fe mol ·mm−3

wppm 1 55.402 4.70 · 1030 7.81 · 10−3

appm 0.01805 1 8.493 · 1028 1.41 · 10−10

atH ·m−3
Fe 2.12 · 10−31 1.17 · 10−29 1 1.66 · 10−33

mol ·mm−3 128 7.092 · 109 6.023 · 1032 1

Table 3: Concetration conversion factors
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5 Usage of the user subrouƟne UMATHT

5.1 Geometry and element connecƟvity

UMATHT reads the geometry (node positions) and element connectivity from a file topology.dat. This file
needs to be generated before the calculation can start. A separate program, ReadTopology has been created to
produce the topology.dat file. This program requires that this information is available in a *.fil file.

Instruct Abaqus to produce a .fil file by inserting adding code like this in the input file:

**
** OUTPUT REQUESTS
**
*Restart, write, frequency=0
**
*Output, History
*Element Output
**
*El File, Position=Integration Point
COORD

**
** FIELD OUTPUT: F-Output-1
**
*Output, field, variable=PRESELECT
*Output, history, frequency=0
*End Step

To produce the *.fil file, run Abaqus with the command datacheck:

abaqus datacheck interactive user="UMATHT.OBJ" job="myjobname" input="myjobname.inp"

The file topology.dat can then be produced by running

abaqus readTopology myjobname

5.2 Input constants

To specify a material that uses the formulation in UMATHT, specify the material like this in the input file of
Abaqus:

*User Material, constants=10, type=THERMAL

It should be followed by two lines containing the a list of 10 parameters; 8 on the first line and 2 on the last line:

1. DL: Mass diffusivity

2. DP : Kappa * Solubility * Diffusivity

3. VM : Volume of available sites for hydrogen in lattice

4. Curve parameter C0 for NT = C010
(C1−C2e

(C3EP ))

5. Curve parameter C1 for NT

6. Curve parameter C2 for NT

7. Curve parameter C3 for NT
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8. EB: Trap binding energy

9. Material temperature in Kelvin (used to calculate KT )

10. R: Universal gas constant (with units consistent with EB and material temperature).

Example:

*USER MATERIAL, constants=10, type=THERMAL
** DL DP VM NT_C0 NT_C1 NT_C2 NT_C3 EB
3.99E-6, 3.4629E-9, 7.116E+3, 0.16603, -8.740, 2.330, -5.5, -28.8E+6
** T R
293.15, 8.3144621E+3

** in front of the line means that the line is commented while *indicates an Abaqus command line with appro-
priate keywords.

PROJECT
ROP: Knowledge basis for Re-
pair cOnƟngency of Pipelines

REPORT NUMBER
A26585

VERSION
1.0

16 of 17



References

[1] ABAQUS. Version 6.11. analysis user’s manual. ABAQUS Inc., 2012.

[2] W.D. Callister and D.G. Rethwisch. Materials science and engineering: an introduction. John Wiley and
Sons New York, 1997.

[3] J.P. Chateau, D. Delafosse, and T. Magnin. Numerical simulations of hydrogen-dislocation interac-
tions in fcc stainless steels.: part i: hydrogen-dislocation interactions in bulk crystals. Acta materialia,
50(6):1507–1522, 2002.

[4] J.P. Chateau, D. Delafosse, and T. Magnin. Numerical simulations of hydrogen–dislocation interactions
in fcc stainless steels.: part ii: hydrogen effects on crack tip plasticity at a stress corrosion crack. Acta
materialia, 50(6):1523–1538, 2002.

[5] J. Crank. The mathematics of diffusion. Oxford University Press, USA, 1979.

[6] D. Delafosse and T. Magnin. Hydrogen induced plasticity in stress corrosion cracking of engineering
systems. Engineering Fracture Mechanics, 68(6):693–729, 2001.

[7] D.E. Jiang and E.A. Carter. Diffusion of interstitial hydrogen into and through bcc fe from first principles.
Physical Review B, 70(6):64102, 2004.

[8] A.H.M. Krom, R.W.J. Koers, and A. Bakker. Hydrogen transport near a blunting crack tip. Journal of the
Mechanics and Physics of Solids, 47(4):971–992, 1999.

[9] A.J. Kumnick and H.H. Johnson. Deep trapping states for hydrogen in deformed iron. Acta Metallurgica,
28(1):33–39, 1980.

[10] J.C.M. Li, R.A. Oriani, and L.S. Darken. The thermodynamics of stressed solids. Zeitschrift fur Physikalis-
che Chemie, 49(3-5):271–290, 1966.

[11] C. Moriconi. Modelisation de la propagation de fissure de fatigue assistee par l’hydrogene gazeux dans le
materiaux metalliques. These de doctorat, Ecole Nationale Superieure de Mecanique et d’Aerotechnique,
2012.

[12] R.A. Oriani. The diffusion and trapping of hydrogen in steel. Acta Metallurgica, 18(1):147–157, 1970.

[13] G.M. Pressouyre. Trap theory of hydrogen embrittlement. Acta Metallurgica, 28(7):895–911, 1980.

[14] I.M. Robertson. The effect of hydrogen on dislocation dynamics. Engineering Fracture Mechanics,
68(6):671–692, 2001.

[15] P. Sofronis and R.M. McMeeking. Numerical analysis of hydrogen transport near a blunting crack tip.
Journal of the Mechanics and Physics of Solids, 37(3):317–350, 1989.

[16] A. West and M. Louthan. Dislocation transport and hydrogen embrittlement. Metallurgical and Materials
Transactions A, 10(11):1675–1682, 1979.

[17] T. Zakroczymski. Adaptation of the electrochemical permeation technique for studying entry, transport
and trapping of hydrogen in metals. Electrochimica Acta, 51(11):2261–2266, 2006.

PROJECT
ROP: Knowledge basis for Re-
pair cOnƟngency of Pipelines

REPORT NUMBER
A26585

VERSION
1.0

17 of 17



Technology for a beƩer society
www.sintef.no


