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ABSTRACT
Multiphase multispecies transport is an essential field of study for a
wide range of applications including bubble reactors and CO2 stor-
age in the subsurface. Modelling of these processes is challeng-
ing due to the discontinuity of material properties, making accu-
rate modelling of mass transfer at reactive interface difficult. Maes
and Soulaine (2020) have recently developed a numerical model
based on a single-field formulation for Volume-Of-Fluid simula-
tion of interfacial mass transfer with local volume changes. This
model was validated by comparison with a semi-analytical solution
for the dissolution of a rising bubble of gas in liquid in the creeping
(or spherical) flow regime. However, this model is only first-order
accurate, and will therefore depend strongly on the discretization
scheme used. In this work, we consider two different numerical
schemes for the discretization of species interfacial fluxes. Conver-
gence and accuracy are compared for dissolution of a rising bubble
of gas in liquid at various regimes (spherical, ellipsoidal shape and
dimpled ellipsoidal shaped). The model is then applied to simulate
the dissolution of trapped bubble of CO2 in a cavity.

Keywords: Interface, mass transfer, Volume-Of-Fluid, rising
bubbles, CO2 .

NOMENCLATURE

Greek Symbols
α phase volume fraction [−]
κ interface curvature [m−1]
µ viscosity [Pa.s]
Φ flux [kg/m2s]
ρ Mass density, [kg/m3]
σ interfacial tension [N/m]
τ viscous stress [kg/m.s2]

Latin Symbols
A area [m2]
c concentration [kg/m3]
D molecular diffusivity [m

2
/s]

F advective flux [kg/m2.s]
f interior force [N/m3]
g gravity accelaration [m

2
/s]

H Henry constant [−]
J molecular diffusion flux [k/m2.s]
L reference length [m]
p pressure [Pa]

t time [s]
u velocity [m/s]
U reference velocity [m/s]

Sub/superscripts
Σ fluid/fluid interface
g gas phase.
l liquid phase.

INTRODUCTION

Interface species transfers are present in a wide range of
applications such as bubble column reactors and geological
storage of CO2 in aquifers. Experimental investigations can
provide insights into the physics of these processes (Francois
et al., 2011; Roman et al., 2016, 2019). However, it is often
difficult to investigate a wide range of physical conditions ex-
perimentally, due to time and safety constraints. In addition,
quantities (e.g. concentration, pH, interfacial flux) are diffi-
cult to measure during the course of the experiment. Com-
putational Fluid Dynamics can be an essential tool to com-
plement experiments and perform sensitivity analysis with
physical parameters (Deising et al., 2018; Maes and Geiger,
2018; Soulaine et al., 2018).
Numerical simulation of two-phase flow can be performed
using the algebraic Volume-Of-Fluid method (Ubbink and
Issa, 1999) for which the interface between the two fluids
is captured using an indicator function, which is a phase vol-
ume fraction. This indicator function is transported by nu-
merically solving an advection equation.
Interface transfer can be modelled within the VOF method by
using the single-field approach, developed by (Haroun et al.,
2010) and at the base of the Continuous Species Transfer
(CST) method, later developed by (Marschall et al., 2012).
In the single-field approach, a mixture quantity, obtained by
volume averaging of species concentration, is transported by
solving an algebraic equation (Haroun et al., 2010; Deising
et al., 2016).
The method has recently been extended to include local vol-
ume change in order to simulate gas dissolution in liquid, and
has been applied to simulate the dissolution of a rising gas
bubble in liquid (Maes and Soulaine, 2020). However, this
model is only first-order accurate, and will therefore depend
strongly on the discretization scheme used. In this work, we
consider two different numerical schemes for the discretiza-
tion of species interfacial fluxes, which require an interpo-
lation of the concentration in each phase from the center of
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computational cells to the center of cell faces. In the Gauss
linear scheme, the concentration in each phase is obtained
by linear interpolation. In the phase upwinding scheme, the
concentrations are calculated using upwinding based on the
normal of the interface, so that each concentration is calcu-
lated in its own phase. Convergence and accuracy are com-
pared for dissolution of a rising bubble of gas in liquid at
various regimes (spherical, ellipsoidal shape and dimpled el-
lipsoidal shaped). The model is then applied to simulate the
dissolution of a trapped bubble of CO2 in a cavity.

MODEL DESCRIPTION

The model is described in detail in Maes and Soulaine (2020)
and is summarized here.

The Volume-Of-Fluid Method

In the Volume-Of-Fluid method, the location of the interface
is given by the indicator function α, which is equal to the
volume fraction of one phase (here the liquid phase) in each
grid cell. The density ρ and viscosity µ of the fluid are given
by volume-averaging

ρ = ρlα+ ρg (1− α) , (1)

µ = µlα+ µg (1− α) , (2)

where the subscripts l and g refer to the liquid and gas phase,
respectively. The indicator function obeys

∂α

∂t
+∇ · (αu) +∇ · (α (1− α) ur) =

ṁ

ρl
, (3)

where ṁ is the phase mass transfer rate and where ur =
ul − ug is the relative velocity, often assumed equal to zero.
However, in order to reduce the smearing of the interface
due to numerical diffusion, it is often replaced by a com-
pressive velocity ucomp, normal to the interface and with an
amplitude based on the maximum of the single-field velocity
(Rusche, 2002)

ur ≡ ucomp = nΣ

[
min

(
cα
|φf |
Af

,max
f

(
|φf |
Af

))]
, (4)

where cα is the compression constant (generally between 0
and 4) and φf is the volumetric flux across f . In all our
simulations, we choose cα = 1.0.
The two fluids are assumed to be Newtonian and incompress-
ible. Under isothermal condition and assuming constant in-
terfacial tension, the single-field volume-averaged velocity
field u and pressure p satisfies the single-field Navier-Stokes
equations (Fleckenstein and Bothe, 2015)

∇ · u = ṁ

(
1

ρl
− 1

ρg

)
. (5)

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · τ + ρg + fΣ, (6)

where g is the gravity vector, τ is the viscous stress tensor
and fσ is the surface tension force. The viscous stress tensor
can be expresses as

τ = µ
(
∇u +∇uT

)
. (7)

The Reynolds number is defined as the ratio of inertial to
viscous forces

Re =
ρlLU

µl
, (8)

where L and U are the reference length and velocity in the
domain, and ρ and µ are the density and viscosity of the in-
vading phase. The Reynolds number is used to characterise
different flow regimes, such as laminar flow, where viscous
forces are dominant, and turbulent flow, where inertial forces
are dominant. The surface tension force can be modelled
using the Continuum Surface Force (CSF) formulation intro-
duced by Brackbill et al. (1992)

fΣ = σκ∇α. (9)

where σ is the interfacial tension between the two fluids and
κ the mean interface curvature, which can be computed as

κ = −∇ · nΣ, (10)

where nΣ is the interface normal vector, defined as

nΣ =
∇α
||∇α||

. (11)

The relative importance of viscous forces, gravity and sur-
face tension force is characterised using the Eötvös Eo and
Morton Mo numbers,

Eo =
∆ρgL2

σ
, (12)

Mo =
gµ4

l∆ρ

ρ2
l σ

3
. (13)

In case gravity has no impact, the relative importance of vis-
cous and surface tension forces is characterised using the
capillar number Ca

Ca =
µlU

σ
. (14)

The Continuous Species Transfer Method

In this work, the gas phase is always assumed pure. In ad-
dition, we assume that the gas component dissolves in the
liquid phase with Henry’s constant H and remains diluted.
In this case, the single-field concentration in the domain sat-
isfies an advection-diffusion equation given by the Continu-
ous Species Transfer (CST) formulation (Haroun et al., 2010;
Marschall et al., 2012; Deising et al., 2016)

∂c

∂t
+∇.F +∇.J = 0, (15)

where F is the advective flux and J is the diffusive flux. In or-
der to maintain consistency between advection operators, the
advective flux of the species is also modelled with a compres-
sive velocity, using the normal Compressive CST (C-CST)
formulation (Maes and Soulaine, 2020)

F = cu + α (1− α)
∇c · ∇α
||∇α||2

ucomp. (16)

For the diffusive flux, Maes and Soulaine (2020) showed that
it can be written as

J = −DSF∇c+ Φ, (17)

where

Φ = (1−H)DSF c

α+H (1− α)
∇α. (18)

and DSF is the single-field diffusion coefficient. The debate
regarding the best formulation for the single-field diffusion
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coefficient was initiated in the original work of Haroun et al.
(2010) and pursued in Marschall et al. (2012) and Deising
et al. (2016). Indeed, Haroun et al. (2010) first proposed an
arithmetic mean for the diffusion coefficient

DSF ≡ Da = αDl + (1− α)Dg. (19)

However, Deising et al. (2016) performed a rigorous deriva-
tion of the single-field formulation with an arithmetic coeffi-
cient and show that additional terms arise, resulting from the
discontinuity and curvature effect at the interface. They also
show that Equ. (17) is correct if using a harmonic mean for
the diffusion coefficient

DSF ≡ Dh =
1

α
Dl

+ 1−α
Dg

, (20)

provided the additional assumption that the concentration in
the gas bubble remains approximatively constant. However,
this formulation can not be applied when Dg = 0, for exam-
ple when the gas phase is pure. Instead, Maes and Soulaine
(2020) shows that Equ. (17) is equivalent to the rigorous
single-field formulation based on the arithmetic mean de-
rived by Deising et al. (2016) if using the equilibrium-based
mean diffusion

DSF ≡ De =
αDl +H (1− α)Dg

α+H (1− α)
. (21)

The equilibrium-based mean diffusion has two advantages
compared to the harmonic mean. First, it does not require
the additional assumption that the concentration in the gas
bubble remains approximatively constant, and second, it can
be applied when Dg = 0.
Finally, the phase mass transfer rate at the interface where
0 < α < 1 can be calculated as (Maes and Soulaine, 2020)

ṁ = −D
e∇c−Φ

1− α
· ∇α. (22)

Numerical implementation

The numerical method has been implemented in
GeoChemFoam (https://julienmaes.com/geochemfoam),
our OpenFOAM®-based (OpenCFD, 2016) reactive trans-
port solver. The full solution procedure is presented in
Maes and Soulaine (2020). The standard VOF solver of
OpenFOAM®, so-called interFoam, has been extended for
this purpose into another solver called interTransferFoam.
interFoam solves the system formed by Eq. (5), (3) and
(6) on a collocated Eulerian grid. A pressure equation is
obtained by combining the continuity (Eq. (5)) and momen-
tum (Eq. (6)) equations. The system is then solved with a
predictor-corrector strategy based on the Pressure Implicit
Splitting Operator (PISO) algorithm (Issa et al., 1985).
Three iterations of the PISO loop are used to stabilise the
system. An explicit formulation is used to treat the coupling
between the phase distribution equation (Eq. (3)) and the
pressure equation. This imposes a limit on the time-step size
by introducing a capillary wave time scale described by the
Brackbill conditions (Brackbill et al., 1992).
In interTransferFoam, the concentration equation (Eq. (15))
is solved sequentially before the phase conservation. The
interfacial mass transfer (Eq. (22)) is then computed and
re-injected in the continuity (Eq. (5)) and phase equations
(Eq. (3)). The space discretization of the convection terms
is performed using the second-order vanLeer scheme (van

Leer, 1974). For the compression terms, the interpolation of
αdαc is performed using the interfaceCompression scheme
(OpenCFD, 2016). The diffusion term ∇. (De∇c) is dis-
cretized using the Gauss linear limited corrected scheme,
which is second order and conservative. For the discretiza-
tion of the CST flux, two different schemes are considered,
the Gauss Linear (GL) scheme

ΦGL = De
f (1−H)

cf
αf +H (1− αf )

∇ · α (23)

where De
f ,cf and αf are the molecular diffusion, species

concentration and phase volume fraction at face center ob-
tained by linear interpolation, respectively and the Gauss
Phase Upwinding scheme (GPU)

ΦGPU = ΦU − ΦD (24)

where

ΦUp = De
f

cUp
αUp +H (1− αUp)

· ∇α, (25)

and
ΦDw = HDe

f

cDw
αDw +H (1− αDw)

· ∇α, (26)

and cUp, αUp, cDw and αDw are the species concentration
and phase volume fraction from the upstream and down-
stream cell in the direction of∇ · α.
For the computation of the mass transfer ṁ, we define

ΦD =
De
f∇c−Φ

1− α
(27)

and then we use

ΦD · ∇α = ∇ · (ΦDαDw)− α∇ ·ΦD. (28)

This is only first-order accurate (Maes and Soulaine, 2020),
but all second-order discretization schemes available in
OpenFOAM® have shown strong instabilities. Due to
this, the numerical results will be strongly impacted by
the discretization scheme used for Φ. In this work,
we will compare results obtained with the Gauss Linear
and the Gauss Phase Upwinding schemes. The linear
scheme is available in OpenFOAM® and the phase up-
winding scheme has been implemented in GeoChemFoam
(https://julienmaes.com/geochemfoam).

RESULTS

Rising bubbles

The objective of this section is to compare convergence and
accuracy of the numerical model when using the linear or
the phase upwinding schemes. For this we consider the dis-
solution of a rising single-component gas bubble immersed
in liquid for three different regimes. The fluid roperties are
summarized in Table 1.
For test case 1, a bubble with initial radius R = 2 mm is
immersed in liquid 1 (Table 1) in a computational domain of
dimension 1.2 cm × 2.4 cm × 1.2 cm. Symmetry conditions
are applied to the plane x=0 and z=0, so only a quarter of
the bubble is simulated. The other boundary conditions are
free-flow. The flow properties correspond to an Eötvös num-
ber Eo=3.25 and a Morton number Mo=1.63. For these val-
ues, Clift’s diagram describing the shape regime (Clift et al.,
1978) predicts a spherical shape. Initially, the centre of the
bubble is placed at (0 mm, 3 mm, 0 mm). In order to compare
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Density Dynamic viscosity Diffusivity Interfacial tension (liquid-gas) Henry’s constant
(kg/m3) (Pa.s) (m2/s) (mN/m) (no unit)

Gas 1.2 1.8×10−5 0
Liquid 1 1245 0.46 1.48×10−6 60 5
Liquid 2 1200 0.024 2×10−5 65 5
Liquid 3 1200 0.46 3.83×10−4 65 20

Table 1: Fluid properties for mass transfer for rising of single-component gas bubble

with the semi-analytical solution proposed by Fleckenstein
and Bothe (2015), mass transfer from a rising bubble with no
volume change and while forcing the species concentration
in the bubble, and therefore the density, to remain constant is
simulated until the barycentre of the bubble reaches (0 cm,
1.2 cm, 0 cm). The simulations are then restarted with local
volume change taken into account.
For test case 2, the bubble size and computational domain
remain the same, but the fluid properties are modified (Table
1) so that Eo=3 and Mo=10−5. For these values, Clift’s di-
agram (Clift et al., 1978) predicts an ellispoidal shape. The
bubble is initially at capillary equilibrium in the absence of
gravity and interface mass transfer, with centre placed at (0
cm, 0.3 cm, 0 cm).
For test case 3, the domain considered and the gas bubble are
five time larger (R=10 mm), and the bubble is immersed in
liquid 3 (Table 1). The Eötvös and Morton numbers are 70
and 1.3, respectively. For these values, Clift’s diagram (Clift
et al., 1978) predicts a dimpled ellipsoidal-cap shape. The
bubble is initially at capillary equilibrium in the absence of
gravity and interface mass transfer, with centre placed at (0
cm, 1.5 cm, 0 cm).

Case 1 (t=0.25 s) Case 2 (t=0.12 s) Case 3 (t=0.5 s)

Figure 1: Numerical simulation of the dissolution of a rising bub-
ble in liquid in the spherical regime (case 1), the ellip-
soidal regime (case 2) and the dimpled ellipsoidal-cap
regime (case 3). The colour represents the dimension-
less solute component concentration and the white line
the gas/liquid interface.

For each case, we perform eight simulations with four
different mesh resolutions (75×150×75, 90×180×90,
120×240×120 and 150×300×150) and using the linear and
the phase upwinding scheme. In Fig. 1, the color shows
the dimensionless concentration of gas component in the do-
main, defined as

c∗ =
c

ρg

H

α+H (1− α)
. (29)

at the end of the simulation, while the white line represents
the gas bubble contour. In each case the bubble shape cor-

responds to the one predicted in Clift’s diagram (Clift et al.,
1978).
Fig. 2, 3 and 4 show the evolution of the bubble mass for
each simulation. For the spherical case (Fig. 2), the simu-
lations are also compared with the semi-analytical solution
(Fleckenstein and Bothe, 2015). We observe that the phase
upwinding method always predicts more dissolution than the
linear method. For the spherical bubble, both methods are
first-order accurate, but the phase upwinding method seems
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Figure 2: Evolution of bubble size obtained by semi-analytical so-
lution and numerical simulations with various grid sizes
and numerical schemes for test case 1 (spherical regime).
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Figure 3: Evolution of bubble size obtained by numerical simula-
tions with various grid sizes and numerical schemes for
test case 2 (ellispoidal regime).
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to be further in its convergence toward the semi-analytical
solution. This suggests that the phae upwinding method is
more accurate for all cases, so we will only use this method
in the next example.
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Figure 4: Evolution of bubble size obtained by umerical simula-
tions with various grid sizes and numerical schemes for
test case 3 (dimpled ellispoidal-cap regime)

CO2 trapping

During Carbon Capture and Storage (CCS), clusters of CO2

may remain trapped in the asperities of the solid surface af-
ter the pores are invaded by the water phase (Roman et al.,
2016). In this case, molecular diffusion, interface transfer,
capillary forces and viscous dissipation all play a role in con-
trolling the time-scale at which the CO2 bubbles will dissolve
in the water phase (Maes and Geiger, 2018; Roman et al.,
2019), a process known as solubility trapping.
In this part, we use our simulation framework to investigate
mass transfer and dissolution in a pocket of residual CO2

trapped in a cavity after water injection. The goemetry is a
6mm×1mm×1mm channel, with a 2mm×2mm×1mm cav-
ity inserted in the middle (Fig. 5). Initially, CO2 gas is
trapped in the cavity and the rest is filled with water. The
fluid properties are summarized in Table 2. At t=0, we in-
ject water from the left boundary at two different speeds, 0.1
mL/min and 0.01 mL/min. These flow rates correspond to
Peclet numbers Pe=104 and Pe=10.4, respectively.

1 mm

1 mm

2 mm

CO
2

water

Figure 5: Schematic diagram of the cavity geometry and initial
conditions

Fig. 6 shows a screenshot from the middle plan z=0 at dif-
ferent time for the two injection flow rates. The colour rep-
resents the single-field concentration of CO2 and the white
line the gas/liquid interface. We observe that at Pe=104, the
transport of CO2 in the water is mostly controlled by the ad-
vection, and the concentration of CO2 follows a streamline
around the bottom of the channel. However, for Pe=10.4,
diffusion plays a more important role and the concentration
of CO2 is relatively large at any point dowmstream of the
cavity.
Fig. 7 shows the evolution of the mass of the CO2 bubble
during the simulation for each Peclet number. For Pe=104,
the slope of the curve does not change much and the dis-
solution remains close to linear. This is characteristic of an
advection-dominated process, where the CO2 in the water
phase is flushed out of the domain rapidly and so does not
impact the dissolution significantly. However, for Pe=10.4,
we observe a transition between advection-dominated and
diffusion-dominated regime, as the CO2 accumulated at the
interface by dissolution is not transported sufficiently fast
and slow down the process. We conclude that CFD simu-
lation using the VOF-CST metod can be applied to bring in-
sights into the process of CO2 solubility trapping during CCS
in subsurface reservoir.

t= 1 min

t= 3 min

t= 5 min

Pe=104 Pe=10.4

Figure 6: Numerical simulation of CO2 dissolution in a cavity at
two different Peclet numbers. The colour represents the
single-field concentration of CO2 and the white line the
gas/liquid interface.
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Figure 7: Evolution of the mass of a CO2 bubble trapped in a cav-
ity at two different Peclet number, obtained by numerical
simulation.
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Density Dynamic viscosity Diffusivity Interfacial tension (liquid-gas) Henry’s constant
(kg/m3) (Pa.s) (m2/s) (mN/m) (no unit)

Gas 1.87 0.8×10−5 0
Liquid 1 1000 10−6 1.6×10−9 50 1.25

Table 2: Fluid properties for CO2 dissolution in a cavity

CONCLUSION

In this paper, we used the VOF-CST method to numerically
investigate the dissolution of a rising bubble in water at var-
ious regimes and the dissolution of a CO2 bubble trapped
in a cavity during injection of water in the subsurface. We
compared results obtained with two different numerical dis-
cretizations of the interfacial fluxes for dissolution of a rising
bubble in the spherical, ellipsoidal and dimpled ellipsoidal-
cap regimes, and we concluded that the phase upwinding
scheme was more accurate. We then emploied our simu-
lation framework to investigate mass transfer and dissolu-
tion in a pocket of residual CO2 trapped in a cavity after
water injection at different flow rates and a transition from
advection-dominated regime to diffusion-dominated regime
was observed.
We conclude that our simulation framework can be used
to investigate multiphase multicomponent reactive transport
processes, and bring new insights into engineering applica-
tion such as bubble reactors and CCS. In future work, we will
employ the method to investigate the sensitivity of the pro-
cess with respect to cavity sizes, shapes and number, as well
as investigating the occurence of salt precipitation, a process
known as mineral trapping.
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