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ABSTRACT 

The standard Euler-Euler modelling is based on the 

phase-averaged method and the forces of the bubble are 

the function of gas volume fraction. However, the closure 

models for the forces are developed based on the 

measured bubble trajectory and the assumption that the 

forces act on bubble center. This inconsistency can lead 

to a nonphysical gas concentration in the center or in the 

near wall region of a pipe if the bubble diameter is larger 

than the mesh size. In addition, mesh independent 

solutions may not exist in these cases.  

In the present contribution, particle-center-averaged 

method is used in the average of the parameters for the 

disperse phase and the forces for bubble is changed to act 

on the bubble center. In this approach, the number 

density of the bubble centers is one of the solution 

variables. The gas volume fraction can be calculated 

from the number density by a diffusion-based method, 

which is much easier to implement in the CFD codes 

using the unstructured grids like OpenFOAM. A 

physically motivated model for the wall-contact force is 

introduced to ensure that the bubble centers cannot come 

arbitrarily close to walls. 

The remedy of the issues with the conventional phase-

averaged two-fluid model is demonstrated using a 

simplified two-dimensional test case. Furthermore, a 

comparison is made for pipe flow cases where 

experimental data are available. The results show that the 

particle-center-averaged method can help to decrease the 

over-prediction of the peaks in the gas volume fraction 

profiles and obtain the mesh independent solutions in the 

Euler-Euler modelling.  

Keywords: Particle-center-average, number density, 

bubble dimension, diffusion equation, deformation force 

model, equation of motion.  

NOMENCLATURE 

Greek Symbols 

𝛼 Volume fraction, [-]. 

𝛽 Bubble volume fraction attaching all bubble volume 

to its center, [-]. 

𝜌 Mass density, [kg∙m
-3

].

𝜏 Diffusion time, [s]. 

σ Surface tension coefficient, [N∙m-1]. 

Latin Symbols 

d Bubble diameter, [m]. 

𝒇 Interfacial forces, [N∙m-3]. 

𝒈 Acceleration of gravity, [m∙s-2]. 

J Superficial velocity, [m∙s-1]. 

𝑛 Number density of bubble centers, [m-3]. 

N The number of bubbles in the system, [-]. 

p Pressure, [Pa]. 

r Bubble radial, [m]. 

𝐒 Viscous stress tensor, [N∙m-2]. 

𝐓 Reynold stress tensor, [N∙m-2]. 

t Time, [s]. 

u Velocity, [m∙s-1].

𝑉 Bubble volume, [m3]. 

𝑋 Phase indicator function, [-]. 

Sub/superscripts 

air Air. 

B Bubble. 

c Continuous phase. 

d Disperse phase. 

diff diffusion 

deformation Deformation force. 

i Index i. 

interfacial Interfacial force. 

lift Lift force. 

water Water. 

INTRODUCTION 

Two-phase flows are widely encountered in chemical 

engineering, energy production and conversion, oil and 

gas industries and biotechnology (Lucas et al., 2010). 

However, many flow mechanisms are still unclear due to 

their high complexity. Experimental investigations on the 

two-phase flows are challenging, costly and time-

consuming due to the need to discriminate the two 

phases. In comparison, simulations provide a more 

accessible way to study these flows, but they invariably 

rely on models. Among the simulation methods, the 

Eulerian two-fluid model shows the advantages for the 

simulation of the bubbly flows up to the industrial 

dimensions.  

In the standard Eulerian framework, the fluids are treated 

as the interpenetrating continua using a phase indicator 

function to identify each phase. In this way, the forces 

acting on the bubble are distributed to the entire region 

covered by it. As a consequence, the coherent motion of 

the bubble as a whole is not enforced. As a result, some 

unphysical phenomena appear in the simulation results of 

the standard Euler-Euler modelling. For example, an 

over-prediction of the peak of the gas volume fraction 

can appear in the pipe center if the bubble diameter is 
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larger than the mesh size (Tomiyama et al., 2003). A 

similar phenomenon can occur in the near wall region 

such that the peak of gas volume fraction locates directly 

on the wall (Rzehak et al., 2017). 

A feasible way to recover the inconsistencies in the two-

fluid model is by using the particle-center-averaged 

method to average the parameters of disperse phase. This 

approach has been applied to introduce bubble geometry 

in the simulation of the wall-bounded bubbly flow 

(Moraga et al., 2006). In this method, the delta function 

indicating the location of the bubble center is involved 

explicitly (Biesheuvel et al., 1989, Biesheuvel et al., 

1990, Sangani et al., 1993, Moraga et al., 2006) or 

implicitly (Zhang et al., 1994a, Prosperetti, 1998) in the 

averaging. As a result, the mass and momentum of each 

bubble are assigned to its center. Also the forces act in 

the bubble center. In addition, the number density of the 

bubble centers is the primary variable and the gas volume 

fraction is derived from it.  

The calculation of the gas volume fraction is a key issue 

in the two-fluid modelling based on the particle-center-

averages. The coarse graining methods in the CFD-DEM 

modelling (Khawaja et al., 2012, Peng et al., 2014) and 

the interphase coupling methods of the Euler-Lagrange 

modelling (Kitagawa et al., 2001, Hu et al., 2008) can be 

borrowed to deal with this issue. Among these methods, 

the “small particle approximation” used in Zhang and 

Prosperetti’s research (Zhang et al., 1994a, Prosperetti, 

1998) assigns all the volume of the disperse element to 

the mesh cell containing its center. This is not appropriate 

for the case of interest in the present study where the 

bubble size exceeds the spacing of the numerical mesh. 

Analytical approaches, which compute the volume of the 

overlapped region between the bubble and the Euler 

mesh are easy to implement for the structured meshes but 

difficult to use on the unstructured ones. Moreover, the 

analytical method can cause large fluctuations in the 

distribution of the gas volume fraction when the mesh 

spacing is smaller than the bubble diameter (Sun et al., 

2015b). The convolution method (Kitagawa et al., 2001, 

Xiao et al., 2011) and the diffusion-based method (Sun et 

al., 2015b, Sun et al., 2015a) are two promising 

approaches for the calculation of the gas volume fraction. 

In the convolution method, the gas volume fraction is 

calculated as a weighted average by using a kernel 

function as the weight factor. However, it is complicated 

to deal with the kernel function near the curved 

boundaries or in corners of the domain where boundaries 

meet non-orthogonally and to implement it in a code for 

the unstructured meshes and parallel computation (Sun et 

al., 2015b). In the diffusion-based method, the gas 

volume fraction is the solution of a diffusion equation. 

This method is easy to implement for the cases using the 

structured or unstructured meshes and serial or parallel 

processing. In addition, it gives similar results as the 

convolution method with a Gaussian kernel function by 

selecting a suitable diffusion time (Sun et al., 2015b). 

Hence, it is used for the calculation of the gas volume 

fraction in this study. 

When the particle-center-averaged method is used, the 

averaged momentum equation obtained for the disperse 

phase is slightly different. In the standard Euler-Euler 

modelling, this equation is derived by averaging the local 

instantaneous momentum equation of the disperse phase. 

In contrast, Zhang and Prosperetti et al. (Zhang et al., 

1994a, Zhang et al., 1994b, Prosperetti, 1998) derived 

this equation by averaging the particle equation of 

motion directly. The disperse phase momentum 

equations derived by these two methods have slightly 

different meanings. In the standard Euler-Euler 

modelling, the equation shows the momentum balance of 

the disperse phase material entirely contained inside the 

control volume. The equation derived by Zhang and 

Prosperetti et al. instead displays the momentum balance 

of the disperse phase material, which belongs to the 

particles with their centers located inside the control 

volume. For the gas-liquid bubbly flow, since the mass 

and viscosity of the disperse bubbles are small, the latter 

method is recommended (Zhang et al., 1994a, Zhang et 

al., 1994b, Zhang et al., 1995) to avoid involving the 

constitutive equations of the gas material. Therefore, the 

momentum equation derived by the latter method is used 

for gas phase in present study. 

In this work, the particle-center-averaging is applied to 

the dispersed phase and the phase-averaging is used for 

the continuous phase. The idea of using the different 

averaging approaches for the various phases was 

introduced in the study of two-phase flow before (Zhang 

et al., 1994a, Prosperetti, 1998, Moraga et al., 2006). The 

momentum equation for the disperse phase derived from 

the equation of motion of the bubbles shows explicitly 

that the bubbles respond to pressure and stress of the 

continuous phase. Furthermore, the models for interfacial 

forces are changed to be functions of the number density 

of the bubble centers. In addition, to avoid the bubble 

centers to come arbitrarily close to walls, a wall-contact 

force is introduced. The deformation force model of 

Lucas et al. (Lucas et al., 2007) is adapted for oblate 

ellipsoidal bubbles and used in the simulation.  

In present study, the particle-center-averaged method and 

the deformation force model are implemented in 

OpenFOAM-6. In order to evaluate the Euler-Euler 

modelling based on the particle-center-averages, a simple 

two-dimensional test case is used first and then 

comparisons between predictions and experimental 

measurements are made. The novelty of this research lies 

in combining the particle-center-averaged method with 

the Helmholtz-Zentrum Dresden-Rossendorf baseline 

closure model (Rzehak et al., 2017) for the Euler-Euler 

modelling and determining the gas volume fraction based 

on a diffusion equation. 

TWO-FLUID MODEL FRAMEWORK BASED ON 
PARTICLE-CENTER-AVERAGED METHOD 

This section introduces the theory of the applied Euler-

Euler model. As mentioned before, the phase-average 

and the particle-center-average are used to average the 

continuous and the disperse phases respectively.  The 

difference between this method and the standard Euler-

Euler method employing the phase-average for both 

phases will be explained in detail. Both phases are taken 

as incompressible and a fixed monodisperse bubble size 

is assumed. 
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Continuity equations 

Since the continuous phase uses the phase-average 

method, its continuity equation remains the same as in 

the standard Euler-Euler modelling (Drew et al., 1998, 

Prosperetti, 1998) 

𝜕𝛼𝑐

𝜕𝑡
+ ∇ ∙ 𝛼𝑐𝒖𝑐̅̅ ̅𝑥 = 0. (1) 

In this equation, the volume fraction is defined as 

𝛼𝑐 = ∫ 𝑋𝑐𝑃𝑁𝑑𝐶𝑁

𝐶𝑁
 , (2) 

while the ensemble phase-averaged velocity of the 

continuous phase 𝒖𝑐̅̅ ̅𝑥 is given by 

𝒖𝑐̅̅ ̅𝑥 =
∫ 𝒖𝑐𝑋𝑐𝑃𝑁𝑑𝐶𝑁 

𝐶𝑁

𝛼𝑐

 . (3) 

In these equations, 𝑋𝑐 is the phase-indicator function for

the continuous phase.  𝑃𝑁  is the probability density

function of the set of all possible states of N bubbles, 𝐶𝑁.

Here and the following, the notation with an overbar and 

nearby x is used to indicate ensemble phase-averaged 

variables.  

Employing particle-center-averages, the continuity 

equation for the disperse phase is a transport equation for 

the number density of the bubble centers (Prosperetti, 

1998)   

𝜕𝑛

𝜕𝑡
+ ∇ ∙ (𝑛〈𝒖𝑑〉) = 0. (4) 

The definition of this number density is 

𝑛(𝒙, 𝑡) = ∫ 𝑃(𝒙, 𝒖𝑑 , 𝑡) 𝑑𝒖𝑑 , (5) 

where 𝑃(𝒙, 𝒖𝑑, 𝑡) is the probability of finding a bubble

centered at x with center-of-mass velocity 𝒖𝑑 at time t. It

is related to 𝑃𝑁  as the integral over all bubbles except

one. From the definition, we can see that the number 

density is non-zero only for those control volumes that 

may contain a bubble center. 

In Eq. (4), 〈𝒖𝑑〉 is the particle-center-averaged velocity

of the bubbles. It is defined as 

〈𝒖𝑑〉(𝒙, 𝑡) =
∫ 𝑃(𝒙, 𝒖𝑑, 𝑡)𝒖𝑑 𝑑𝒖𝑑

𝑛(𝒙, 𝑡)
 . (6) 

By using Eq. (4) as the continuity equation, information 

on the bubble centres will be accessible. 

Momentum equations 

For incompressible Newtonian flow, the momentum 

equation for the continuous phase is (Prosperetti, 1998)  

𝜕𝛼𝑐𝜌𝑐𝒖𝑐̅̅ ̅𝑥

𝜕𝑡
+ ∇ ∙ (𝛼𝑐𝜌𝑐𝒖𝑐̅̅ ̅𝑥𝒖𝑐̅̅ ̅𝑥)

= −𝛼𝑐∇𝑝𝑐̅
𝑥 + 𝛼𝑐∇ ∙ 𝑺𝒄

̅̅ ̅𝑥

+ ∇ ∙ 𝛼𝑐𝑻𝑐
̅̅ ̅𝑥

+ 𝒇𝑐
interfacial̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑥

+ 𝛼𝑐𝜌𝑐𝒈 .

(7) 

The momentum equation for the disperse phase is 

(Prosperetti, 1998)  

𝜕(𝛽𝑑𝜌𝑑〈𝒖𝑑〉)

𝜕𝑡
+ 𝛻 ∙ (𝛽𝑑𝜌𝑑〈𝒖𝑑〉 〈𝒖𝑑〉)

= −𝛽𝑑∇𝑝𝑐̅
𝑥 + 𝛽𝑑∇ ∙ 𝑺𝑐

̅̅ ̅𝑥

+ ∇ ∙ (𝛽𝑑〈𝑻𝑑〉) + 𝛽𝑑𝜌𝑑𝒈

+ 〈𝒇𝑑
interfacial〉 ,

(8) 

where 

𝛽𝑑  = 𝑛𝑉𝑑  . (9) 

It is important to note that 𝛽𝑑 is not the disperse phase

volume fraction. The latter is related to the bubble 

number density by a convolution 

𝛼𝑑(𝒙)  = ∭ 𝑛(𝒙𝟎)𝑋𝑑(𝒙𝟎)𝑑𝒙𝟎 , (10) 

where 𝑋𝑑(𝒙𝟎)  is the phase indicator function in the

location of 𝒙 = 𝒙𝟎.

The difference between above momentum equations and 

those in the standard Euler-Euler modelling lies in the 

following aspects. 

1) In the viscous stress term, the parameters related to the

volume fraction (αc and β
d
) are outside of the divergence

operator.

2) The momentum equation of the disperse phase

explicitly shows the response of the bubbles to the

pressure and viscous stress of the continuous phase, since

the equation is derived from the bubble equation of

motion. In this condition, no additional closure model for

the pressure or stress of gas phase is required.

3) The momentum equation of the disperse phase is

related to the bubble number density instead of the gas

volume fraction.

Models for Interfacial forces and turbulence 

The relation of the interfacial forces in Eqs. (7) and (8) is 

𝒇𝑐
interfacial̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑥

 = −〈𝒇𝑑
interfacial〉   . (11) 

The selected correlations for the interfacial forces 

according to the HZDR baseline model (Rzehak et al., 

2017)  are listed in Table 1. In the simulations using the 

standard Euler-Euler modelling in OpenFOAM-6, it was 

found necessary to apply a damping for the lift force 

within the distance of one bubble diameter from the wall 

(see Fig. 1 below). For comparability, this wall-damped 

lift force is used for the particle-center-averaged 

simulations as well throughout this study except where 

specifically noted elsewise. No such damping was 

mentioned in previous simulations with the HZDR 

baseline model using ANSYS CFX.  

Table 1: Selected models for interfacial forces in simulation 

Interfacial force Selected model 

Drag force Ishii et al. (1979) 

(Shear-) lift force Tomiyama et al. (2002) with 

cosine wall damping 

Turbulent dispersion 

force 

Burns et al. (2004) 

Wall (-lift) force Hosokawa et al. (2002) 

Virtual mass force Constant coefficient, 𝐶𝑣𝑚 = 0.5

The interfacial force models in the Euler-Euler 

simulations based on the particle-center-averaged 

method should be expressed as functions of the number 

density of the bubble centers rather the gas volume 
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fraction. This conversion is achieved by the following 

formulation 

𝑓(𝑛) =
𝑛𝑉𝑑

𝛼
𝑓(𝛼), (12) 

where 𝑓(𝑛) and 𝑓(𝛼)  are the interfacial forces as 

functions of the number density of the bubble centers and 

the gas volume fraction, respectively. 

Furthermore, an additional wall-contact force must be 

introduced to avoid the bubble centers coming 

unphysically close to the wall. The deformation force 

model proposed by Lucas et al. (Lucas et al., 2007) is 

changed to be applicable for the bubbles with a more 

general oblate ellipsoidal shape and used in the 

simulation. The model reads 

𝑓deformation

= −2𝜋𝑟𝐵𝜎𝑛 [−
1 

𝑥2

+
1

1 − 𝑥3
(2𝑥√1 − 𝑥3 arctanh √1 − 𝑥3

−
3

2
𝑥 +

3

2
𝑥4

arctanh √1 − 𝑥3

√1 − 𝑥3
)] . 

(13) 

Both laminar and turbulent flows of the continuous phase 

are considered. In the turbulent case, the turbulent 

dispersion force and the k-𝜔  SST turbulent model are 

employed together with the bubble-induced turbulence 

model of Ma et al. (Ma et al., 2017). The flow of the 

disperse phase is assumed to be laminar because the gas 

viscosity and density are much smaller than those of the 

liquid.  

Diffusion-based method for gas volume fraction 
calculation 

In this study, a diffusion-based method (Sun et al., 2015b, 

Sun et al., 2015a) is used to compute the gas volume 

fraction from the number density of the bubble centers. 

In this method, the gas volume fraction is calculated by 

solving a diffusion equation 

𝜕𝛼𝑑

𝜕𝜏
− ∇ ∙ (𝐶𝑑𝑖𝑓𝑓∇𝛼𝑑) = 0 (14) 

with an initial condition 

 𝛼𝑑(𝑥, 𝜏 = 0) = 𝑛(𝑥, 𝜏 = 0)𝑉𝑑 . (15) 

The diffusion coefficient Cdiff  is set to 1m2∙s-1  in this

study. The variable 𝜏 is a pseudo-time, independent of 

physical time and the diffusion time 𝜏 = 𝑇 up to which 

Eq. (13) is integrated determines the size of the diffusion 

domain.  

The appropriate size of the diffusion domain remains an 

open question. Previously, it has been set to be 3 to 6 

times the diameters of disperse element (Deen et al., 

2004, Sun et al., 2015b, Sun et al., 2015a). This size can 

exceed the bubble size since the paths of the bubble 

motions may exhibit oscillations. In this study, an 

optimal diffusion time is determined by comparing the 

theoretical distribution of the gas volume fraction for a 

stream of spherical bubbles and the distribution of the gas 

volume fraction calculated by the diffusion equation.  

The theoretical gas volume fraction distribution for a 

stream of spherical bubbles is (Lubchenko et al., 2018) 

𝛼𝑑(𝑥)  = 𝛼𝑚𝑎𝑥 −
𝛼𝑚𝑎𝑥

𝑟𝐵
2

(𝑥 − 𝑥0)2 (16)

where the peak of the gas volume fraction, 𝛼𝑚𝑎𝑥 , is

related to the frequency of bubble injection.  

The one-dimensional solution of Eq. (14) is (Haberman, 

2012) 

𝛼𝑑(𝑥, 𝜏)  

= ∫ 𝑛𝑉𝑑𝛿(𝑥 − 𝑥0)
+∞

−∞

×
1

√4𝜋𝜏
exp [−

(𝑥 − 𝑥0)2

4𝜏
] 𝑑𝑥0 , 

(17) 

which is seen to be the convolution of the initial 𝛿 –gas 

volume distribution with a Gaussian kernel.  

An optimal diffusion time is determined by minimizing 

the root-mean-square deviation between 𝛼𝑑(𝑥)  and

𝛼𝑑(𝑥, 𝜏) given by Eqs. (16) and (17), respectively. The

Matlab optimization function fminbnd( ) is used for this 

purpose. The resulting optimized diffusion time is 

𝑇 =
𝑑𝐵

2

30𝐶𝑑𝑖𝑓𝑓

 . (18) 

The gas volume fraction calculated using this optimized 

time is expected to have the most similar shape as the 

theoretical distribution (Eq. (16)). 

ILLUSTRATION OF THE EULER-EULER 
MODELLING METHOD BASED ON THE 
PARTICLE-CENTER-AVERAGES 

In this section, the advantages of the Euler-Euler 

simulation based on the particle-center-averaged method 

over the standard Euler-Euler modelling are illustrated by 

a simplified test case. Gas and liquid are taken to be air 

and water from here on and the indices denoting the 

phases are adapted accordingly. 

Geometry and simulation set up 

A two-dimensional test case similar to that used in 

Tomiyama et al (2003) is employed. The domain is a 

rectangle with a size of 0.03 m×0.5 m (see Fig. 1 a)). 

A stream of bubbles is injected from the center of the 

shorter side. The gas volume fraction at inlet for the cases 

simulated by the standard Euler-Euler modelling can be 

seen in Fig. 1 b)). The lateral length covered by the gas 

volume fraction at the inlet shows the dimension of one 

bubble. The inlet liquid velocity is a parabolic profile (see 

Fig. 1 c)) to introduce a shear flow field. The inlet gas 

velocity is uniform with a value of 0.18 m∙s−1. 

For Euler-Euler simulations based on the particle-center-

averages, the inlet number density of the bubble centers 

is non-zero only in the center mesh. Its value is calculated 

to obtain the same inlet gas flow rate as the cases 

simulated by the standard Euler-Euler modelling. For a 

uniform mesh and uniform inlet gas velocity, it is given 

by 
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𝑛 =
1

𝑉𝑑

∑ 𝛼𝑎𝑖𝑟,𝑖

𝑀

𝑖=1

 , (19) 

where M is the number of mesh cells at the inlet and 𝑉𝑑

is the volume of the bubble. 

Mesh sensitivity analysis 

To reveal the numerical problems caused by the 

inconsistencies in the standard Euler-Euler modelling, 

the mesh sensitivity is analyzed in the simulation using 

the standard Euler-Euler modelling and the Euler-Euler 

simulation based on the particle-center-averaged method. 

a) Geometry b) Inlet gas volume distribution c) Inlet liquid velocity distribution

Figure 1: Geometry and inlet settings

a) Standard Euler-Euler modelling     b) Euler-Euler modelling based on particle-center-averages

Figure 2: Mesh sensitivity analysis in laminar flow case at a height y = 0.4 m (Δ : mesh size) 

a) Standard Euler-Euler modelling b) Euler-Euler modelling based on particle-center-average

Figure 3: Mesh sensitivity analysis in turbulent flow case at a height y = 0.4 m (Δ : mesh size)
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In this analysis, the bubble diameter is taken as 10 mm, 

while the coarsest spacing of the numerical grids Δ = 2 

mm. The simulation results at a height y = 0.4 m above

the inlet are shown.

Laminar flow 

The mesh sensitivity analysis of laminar simulation 

results can be seen in Fig. 2. In the results for the standard 

Euler-Euler modelling, the peak of the gas volume 

fraction increases continuously with decreasing mesh 

size (see Fig. 2 a)). Therefore, the mesh independent 

results are not found. This reason for the phenomenon is 

that the lift force is distributed to the cells of the 

numerical mesh covered by the bubble, which drives the 

gas in the mesh cells located at the bubble edge towards 

the bubble center, even though the bubble center does not 

move in the lateral direction. This phenomenon becomes 

more significant when the mesh is refined. 

In comparison, in the results of the Euler-Euler 

simulation based on the particle-center-averaged method, 

the peak of the gas volume fraction does not increase 

upon refining the mesh (see Fig. 2 b)) since the lift force 

acts on the bubble center. As a result, the solution 

obtained with a mesh size of 0.8mm can be regarded as 

mesh independent solution. This means that in the 

laminar flow condition, the particle-center-averaged 

method remedies the numerical deficiency of the 

standard Euler-Euler approach and provides a mesh 

independent solution. 

Turbulent flow 

Upon including the turbulent dispersion force, the mesh 

independent solutions exist in both cases (see Fig. 3) 

since this force smoothes the nonphysical peak of gas 

volume fraction in the standard Euler-Euler modelling. 

The solutions for meshes with 0.6 mm and 0.8 mm can 

be regarded as mesh independent for the standard Euler-

Euler modelling and the particle-center-average based 

Euler-Euler simulations, respectively. However, the 

nonphysical behaviours are still visible in the results of 

the standard Euler-Euler modelling.  

a) Standard Euler-Euler modelling b) Euler-Euler simulation based on particle-center-average

Figure 4: Lateral gas volume fraction distribution in laminar flow case 

a) Standard Euler-Euler modelling b) Euler-Euler simulation based on particle-center-averaging

Figure 5: Lateral gas volume fraction distribution in turbulent flow case
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When the grids are refined from 2 mm to 0.6 mm, the 

peak of the gas volume fraction increases and the lateral 

region covered by the gas decreases significantly (see 

Fig. 3 a)).  

Axial development of gas volume fraction 

In this section, the axial development of the distribution 

of the gas volume fraction in the two-dimensional test 

case is analyzed to show the improvement of the 

predictions obtained by the particle-center-averaged 

method. The mesh size for all the simulation cases in this 

section is 0.6 mm. It should be noted that for the inlet 

conditions as described above, the relative velocity 

between gas and liquid has a value of -

0.02 m∙s−1~0.18m∙s−1. However, the terminal velocity,

which will be approached by the bubble as it rises is 

about 0.23 m∙s-1  according to the correlation of 

Mendelson (Mendelson, 1967). Hence, the relative 

velocity will increase within a certain distance from the 

inlet. 

Laminar flow case 

In the simulations of the laminar flow case by the 

standard Euler-Euler modelling (see Fig. 4 a)), the gas 

moves to the channel center downstream of the inlet. A 

nonphysical peak of the gas volume fraction appears with 

an increasing distance. In addition, the lateral region 

covered by the gas becomes smaller than the bubble 

diameter and its extent decreases further downstream. 

This is nonphysical since the bubble size is expected to 

remain unchanged. As mentioned before, these 

phenomena are caused by the lift force being distributed 

to the bubble volume instead of acting on the bubble 

center.  

In contrast, by using the particle-center-average based 

Euler-Euler modelling, the distribution of gas volume 

fraction remains almost unchanged after a short transient 

next to the inlet (see Fig. 4 b)). Further downstream, the 

lateral region covered by the gas has a size close to the 

bubble diameter. The increase of relative velocity right 

after the inlet causes the decrease of the peak of gas 

volume fraction. In conclusion, the predictions of the 

distributions of the gas volume fraction using the 

particle-center-averages are considered more reasonable. 

Turbulent flow case 

If the turbulent dispersion force is included, the 

nonphysical behaviours in the standard Euler-Euler 

modelling are weakened but remain visible in the results 

(see Fig. 5 a)). The lateral region covered by the gas 

downstream of the inlet is still smaller than the bubble 

diameter. Additionally, the peak of the gas volume 

fraction downstream is higher than that at the inlet. 

However, it should be lower than that at the inlet because 

of the increase of relative velocity with increasing 

distance from the inlet. In comparison, upon using 

simulation based on the particle-center-averages (see Fig. 

5 b)), after a short distance downstream of the inlet, the 

distribution of the gas volume fraction remains almost 

unchanged and the size of the lateral region covered by 

the gas is close to the bubble diameter and remains 

constant. The simulation results of the gas volume 

fraction using the particle-center-averages are more 

physical because the lift force acts only on the bubble 

center. 

In conclusion, the particle-center-averaging can help to 

avoid the overconcentration of gas around the location 

of the bubble center and provide a mesh independent 

solution.     

COMPARISON OF SIMULATION RESULTS AND 
EXPERIMENTAL DATA IN PIPE FLOW 

In order to evaluate the particle-center-averaged method 

in the Euler-Euler modelling, the simulation results of the 

standard Euler-Euler modelling and the Euler-Euler 

simulation based on the particle-center-averages are 

compared with measurement data from the MTLoop 

experiment (Lucas et al., 2005). 

The test section in the MTLoop facility is a vertical pipe. 

Its inner diameter is 51.2 mm. The temperature of air and 

water in the experiment is 30℃ and the pressure is 

atmospheric pressure. The data used for comparison are 

measured at a distance of 3.03 m from the location of the 

gas injection. The ratio between the distance from the 

inlet and the pipe diameter (L/D) is about 59. Therefore, 

fully-developed flow is expected at the measurement 

location. 

The inlet velocities and the volume fractions are uniform 

for disperse and continuous phases in the simulation. 

They are calculated from the superficial air and water 

velocities in the experiment. The parameters of the 

selected cases are listed in Table 2. 

Table 2: Parameters of selected MTLoop cases 

Test No. 𝐽air [m ∙ s−1] 𝐽water [m ∙ s−1] 𝑑𝐵  [mm]

017 0.0040 0.4050 4.865 

019 0.0040 1.0170 4.697 

042 0.0096 1.6110 4.151 

043 0.0096 2.5540 2.918 

047 0.0151 0.1020 7.442 

048 0.0151 0.1610 6.486 

064 0.0235 1.6110 4.661 

The bubble diameters listed in this table are the Sauter 

mean diameters at the height of 3.03 m. In the simulation, 

the radial mesh size is 0.512 mm. It is uniform and finer 

than the bubble diameter.  

First of all, the necessity of damping the lift force near 

wall in the simulations using the standard Euler-Euler 

modelling is illustrated. The radial distribution of the lift 

forces with and without near wall damping are shown in 

Fig. 6. As can be seen, without damping the lift force 

assumes extremely large values near the wall. This is due 

to the fine grid with a spacing smaller than the bubble 

size. 

The effects of damping the lift force near wall on the 

distribution of the gas volume fraction in the cases 

simulated by the standard Euler-Euler modelling can be 

seen in Fig. 7. Without damping the lift, the peaks of the 

gas volume fraction in the simulation results can be much 

higher than the experimental data and locate directly on 

the wall. These peaks should locate at about one bubble 

radius away from the wall in the condition without 
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considering bubble deformations. The reason for this 

unphysical phenomenon is that the lift force is too high 

in near wall region. In comparison, the peak value and 

location simulated by damping the lift force have a better 

agreement with the experimental data. As a consequence, 

the wall-damping lift force is used in the following 

simulations. 

The comparison of the radial distributions of the gas 

volume fraction to those simulated by the particle-center-

averaged Euler-Euler modelling and the standard Euler-

Euler modelling and the experimental data is shown in 

Fig. 8. The over-prediction of the peak of the gas volume 

fraction in the results calculated by the standard Euler-

Euler modelling can be seen in these figures. The extent 

of the over-prediction is more severe for the cases with 

smaller bubble Sauter mean diameters. 

a) MTLoop 042 b) MTLoop 064
Figure 6: Radial distribution of lift force in cases simulated by standard Euler-Euler modelling 

a) MTLoop 042 b) MTLoop 064

Figure 7: Radial distribution of gas volume fraction in cases simulated by standard Euler-Euler modelling 

For case MTLoop 043, the peak value of gas volume 

fraction in the simulation result is about 10 times higher 

as in the experimental data. The over-prediction of the 

peak value for the gas volume fraction can be caused by 

the distributed lift force over the bubble volume in the 

standard Euler-Euler modelling. Furthermore, the reason 

of more significant over-prediction of the peak for 

smaller bubbles where the ratio of bubble diameter and 

mesh size is smaller can be that with the presently applied 

lift force correlation, the smaller bubble in these 

simulation cases experiences a higher lift force. 

In comparison, the particle-center-averaged method 

displays its ability to avoid the over-prediction of the 

peak of the gas volume fraction in the near wall region. 

The peaks of the gas volume fraction simulated by the 

Euler-Euler based on the particle-center-averaged 

method fit the experimental data well in the majority of 

cases. The most notable deviation in these results is that 

the peak location is further away from the wall compared 

to the experimental data and the simulation results of the 

standard Euler-Euler modelling. This may result from 

using wall-lift and wall-contact forces at the same time 

could drive too much gas away from the wall.
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a) MTLoop 017 b) MTLoop 019

c) MTLoop 042 d) MTLoop 043

e) MTLoop 047 f) MTLoop 064

Figure 8: Radial distribution of gas volume fraction at 3.03 m downstream of the inlet with wall-damping lift force 

(E-E: Euler-Euler, PCA: particle-center-average)
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CONCLUSION AND OUTLOOK 

Inconsistencies exist in the standard Euler-Euler 

modelling based on the phase-averages since the forces 

of bubble are the function of gas volume fraction. When 

the bubble size exceeds that of the numerical mesh, the 

distributed lift force in bubble volume can lead to an 

over-prediction of the peak of the gas volume fraction. 

Refining the numerical mesh may lead to the increasing 

over-prediction of the peak value and mesh independent 

solution may not exist. 

The diffusion-based particle-center-averaged method has 

been shown to remedy these inconsistencies. In this 

method, the forces act on the bubble center and the 

bubble dimension is considered in the process of using 

the diffusion-based method to transfer the number 

density of bubble canters into the gas volume fraction. A 

deformation force is employed to prevent the bubble 

centers to come arbitrarily close to the walls. As a result, 

the unphysical over-predictions of the peak value of the 

gas volume fraction near a wall or in the pipe center are 

alleviated or eliminated compared to the results of the 

standard Euler-Euler modelling. Numerically, the benefit 

of using this method is that the mesh-independent 

solutions exist. 

In the Euler-Euler simulations based on the particle-

center-averaged method, the forces acting on the 

continuous phase should still be distributed to the region 

covered by the bubble. Since this work is still in process, 

it has not been shown here. Furthermore, the future work 

should be focused on the research of near wall forces to 

avoid driving too much gas away from the wall. 
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