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Understanding and predicting crystal growth is fundamental to the control of functionality in modern 
materials. Despite investigations for more than one hundred years1–5, it is only recently that the 
molecular intricacies of these processes have been revealed by scanning probe microscopy6–8. To 
organize and understand this large amount of new information, new rules for crystal growth need to be 
developed and tested. However, because of the complexity and variety of different crystal systems, 
attempts to understand crystal growth in detail have so far relied on developing models that are usually 
applicable to only one system9–11. Such models cannot be used to achieve the wide scope of 
understanding that is required to create a unified model across crystal types and crystal structures. 
Here we describe a general approach to understanding and, in theory, predicting the growth of a wide 
range of crystal types, including the incorporation of defect structures, by simultaneous 
molecular-scale simulation of crystal habit and surface topology using a unified kinetic three-
dimensional partition model. This entails dividing the structure into ‘natural tiles’ or Voronoi polyhedra 
that are metastable and, consequently, temporally persistent. As such, these units are then suitable for 
re-construction of the crystal via a Monte Carlo algorithm. We demonstrate our approach by predicting 
the crystal growth of a diverse set of crystal types, including zeolites, metal–organic frameworks, 
calcite, urea and l-cystine. 
 
By understanding crystal growth at the molecular scale it is possible to control crystal habit, crystal size, the 
elimination or incorporation of defects and the development of intergrowth structures. Because crystals are 
used, for example, in technologies including pharmaceuticals and gas storage, as separation materials, in 
optoelectronic devices and as heterogeneous catalysts, such understanding is vital. We can illustrate many of 
the problems that must be addressed in crystal growth by considering zeolites12 as an example, which represent 
a very complex, yet important, crystal type that forms the backbone of the heterogeneous catalysis industry. 
Zeolites are nanoporous materials for which the framework of the material is constructed from a strong, 
covalently bonded network of Si–O and Al–O bonds. The pores of the material are filled with water and cations 
that balance the negative charge on the framework. Crystals of zeolites grow from aqueous solutions at 
temperatures up to about 230 °C and it is well known from nuclear magnetic resonance spectroscopy that the 
solution phase exhibits very complex speciation13–16. This is a seemingly intractable problem in terms of 
defining a simple set of rules that govern the hundreds of different zeolite structures, let alone the thousands of 
related crystal structures such as metal–organic frameworks (MOFs)17–19. However, the course of a 
crystallization is relatively predictable and, therefore, there must be a relatively small number of rules that 
govern the most important aspects of the crystal growth, with subsidiary rules governing deviations. 
 
The starting point in our simplification comes from a general Monte Carlo simulation applied to the growth of 
fats20. In this work it was shown that the principal determinant of crystal growth was the local internal energy 
at the crystal surface in relation to the chemical potential of the phase from which the crystal grows. This is a 
very important simplification because it allows the growth medium—solution, melt, gas and so on—to be 
considered to have only a growth potential, and so the speciation does not need to be considered in detail. 
Although this growth potential will be a result of the speciation, this can be treated as a subsidiary effect to be 
considered subsequently13–16. In the case of multicomponent crystals—such as MOFs or co-crystals for which 
species in solution, for example, linkers and metal centres, cannot interchange— a driving force for each 
component needs to be considered, unless the stoichiometries of the two phases are matched. For zeolites, or 
any system in which the nutrient is interconverting, a single driving force can be considered equivalent to a 



single-component system. The crystal structure then needs to be broken down into ‘units of growth’, a process 
that is normally referred to as ‘coarse-graining the problem’. To deconstruct the problem, we require a 
distinction between ‘unit of growth’ and ‘growth unit’. To identify a growth unit, we need to know the growth 
mechanism, however, a unit of growth is just a suitable division of the structure in terms of metastability. If the 
material of interest is a molecular crystal, then a unit of growth would be a single molecule, because this 
represents a strongly bonded entity that remains intact during crystallization, forming relatively weak bonding 
with neighbours to yield the crystal. Such a unit of growth is probably, in many cases, the actual growth unit for 
the crystal, assuming that the unit does not dimerize in solution. However, for a zeolite, which is a fully 
connected three-dimensional network of covalent bonds, a single-molecule unit of growth is not viable. For our 
analysis, the unit of growth is any structural element that represents a metastable surface structure with small 
enough dimensions to describe all of the intricacies of the crystal formation. As a metastable entity it will be 
persistent in time at the crystal surface during growth and can therefore be considered to determine the overall 
rate of crystal growth. For the simulation of the full three-dimensional growth of a crystal, for example via the 
development of a kinetic Monte Carlo model, only the rate-determining steps are required. We now return to 
the problem of nanoporous zeolites composed of condensed tetrahedral silicate units forming cage-like 
structures. These cages are strongly related to metastable surface entities because the cage wrapping permits 
maximum condensation of the cage11. Consider a cage within the bulk of the zeolite with all tetrahedral silicon 
sites fully condensed (termed Q4 units). When the same cage is located at the surface of the zeolite crystal, most 
of the silicon sites will lose only one bond of condensation, making this structural configuration a minimum in 
energy for a surface moiety. Of the more than 200 zeolite structures, around one quarter consist of Q4 units that 

will lose only one condensation at the surface (Q4 → Q3). The other three quarters have Q4 units that may lose 

two condensations (Q4 → Q2); however, these structures will still be at an energy minimum. Therefore, the 

cages become a suitable unit of growth even though they are not the growth unit. These cages are three-
dimensional space-filling tiles that can be computed in a relatively straightforward manner using algorithms 
such as those implemented in ToposPro21,22 (Fig. 1). Consequently, this establishes a simplified route to coarse-
graining the zeolite problem into energetically minimized, metastable, rate-determining steps that, when 
balanced against a potential energy driving force from the growth medium, permits generation of a general 
kinetic Monte Carlo algorithm for zeolites. We use the so-called ‘natural tiles’ that describe the system of 
minimal cages in a unique and unambiguous way according to a strict algorithm21. In this regard it is very 
different to the diverse systems of secondary building units often chosen by structural chemists according to 
their personal view on how to divide up structures. The units of growth are space-filling and, although the 
crystal is nanoporous, they are considered to fill all space during growth (the voids within cages are filled with 
water and cations). This property is the same for the growth of any crystal, whether nanoporous or not. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 | Demonstration of the tiling and Voronoi-polyhedra 
partitioning methods. a, The chabazite structure (CHA), which is 
composed of two cages (tiles), the double 6-ring (pink) and chabazite 
cage (green). Both of these tiles consist entirely of Q3 tetrahedra and are 
considered as closed cages or tiles. As the crystal grows (middle), the cages 
condense and the Q3 vertices are converted into Q4 vertices (right), thereby 
stabilizing the cage relative to the solution phase. b, The complex UOV 
structure, which consists of 16 tiles (see Extended Data Fig. 3). One of these 
tiles is shown, one that consists of both Q3 and Q2 vertices and is therefore 
considered as an open cage or tile (see Methods for definition of open 
versus closed cages and tiles). Condensation again results in stabilization 
of these tiles relative to the solution phase. c, A tile representation of the 
molecular crystal urea. The left panel shows the initial Voronoi construction 
with 14 urea neighbours surrounding the central molecule. Four of these 
interactions are very weak and can be neglected, leaving the ten interactions 
represented by the black lines in the right panel. Each interaction passes 
through the face of the ten-sided tile. Grey, red and blue represent carbon, 
oxygen and nitrogen atoms, respectively, the yellow represents the central 
urea molecule, and the black edges illustrate the Voronoi polyhedron created 
by these molecular interactions. 



Our approach is extendable to any cage-like structure, regardless of the bonding type, so MOFs with extensive 
coordination bonds are immediately treatable. To extend our approach to other crystals we use the Voronoi 
partitioning procedure to fill the space with polyhedral units, in a manner opposite to that used for the tiling 
method: with Voronoi polyhedra, the objects (atoms or molecules) occupy the centres, whereas with tiles they 
occupy vertices. Molecular crystals, such as aspirin, urea and water, can be categorized as a three-dimensional 
Voronoi partition, in which the molecule sits at the centre of a Voronoi polyhedron and the faces of the 
polyhedron represent the interactions with neighbouring molecules (Fig. 1). Similarly, for ionic crystals, such as 
calcite and zinc oxide, the ions sit at the centres of Voronoi polyhedra with faces representing the interactions 
between cations and anions. In these last two examples, the network of interactions can be considered without 
needing to introduce three-dimensional partitioning; however, it is useful to realize that all crystal systems can 
be treated in the same manner. To summarize, we assume the units of growth to be polyhedral (tiles or Voronoi 
polyhedra depending on nature of the crystal). The Voronoi partition can also be used for structures that have 
no tiling, for example, for polycatenated networks. Having partitioned the crystal space, the problem then is to 
establish the energies of all of the three-dimensional polyhedral units in any configurationand the degree of 
condensation/attachment at the surface of a growing crystal relative to the bulk phase. For complex crystal 
systems there could be thousands of possible types of surface site, although, in principle, only a fraction of these 
will be topologically viable during crystal growth. By interfacing our kinetic Monte Carlo code with the three-
dimensional partitioning approach of ToposPro22, we can compute all of the possible connectivities for any 
partitioning pattern and, consequently, any crystal structure. Then, to a first approximation, the energies of the 
polyhedral units are directly related to the degree of condensation or attachment (see Extended Data Fig. 1 for 
the LTA zeolite system). Secondary energetic effects can be computed at a much higher level of simulation to 
determine subsidiary effects, but most structural features are determined purely by connectivity. Common 
defects, such as screw dislocations, can be incorporated by displacing three-dimensional polyhedral units to 
equivalent sites along the screw core, resulting in perfect crystal re-connection. Growth modifiers can also be 
simulated by poisoning units of growth accordingly (that is, by reducing their probability of growth). This 
approach permits both growth and dissolution at individual surface sites, depending on whether the chemical 
potential of the growth medium is above or below the energy of that surface site. In this manner, by changing 
the driving force systematically within the simulation, the equilibrium morphology is found when the rates of 
growth and dissolution are balanced. Examples for the LTA and FAU zeolite structures are shown in Extended 
Data Figs 1 and 2, respectively, illustrating how both the habit of the crystal and the much more sensitive 
surface topology can be matched with experiment across all crystal faces. This approach enables 
straightforward computation of crystals no matter what degree of complexity exists in the structure; for 
example, the UOV zeolite structure (Fig. 2 and Extended Data Fig. 3), which has a very large unit cell and is 
constructed from 16 tiles in a mixture of open and closed environments, is readily treated in an efficient 
manner. For such a system, even using the same energy penalty for every tile vertex gives both a crystal habit 
and surface topology very similar to that observed experimentally. This computation yields the terrace 
structure, which also includes the nature of the surface termination that, for nanoporous materials, is the 
gateway to the internal porosity. This approach also demonstrates how framework crystals such as NES 
(Extended Data Fig. 4) have great difficulty circumventing large cages that will necessarily represent large 
energy barriers. The resulting crystals are very thin plates and any modification to this morphology would 
require careful attention to the stabilizing of the large cage through templating.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 | Results of simulations run on various framework types. 
a, LTA (zeolite A) consists of three closed cages (tiles), and the 
experimental morphology can be achieved by adjusting the energy of 
these tiles independently relative to solution (see Extended Data Fig. 1 and 
Supplementary Video 1). b, MFI (also known as ZSM-5 or silicalite) is a 
complex structure consisting of 10, all open, tiles. The morphology and 
topology can be simulated very well using different energy penalties for 
large and small tiles. Interrogation of the internal structure of the crystal 
reveals an hourglass structure similar to that observed experimentally 
by optical microscopy. This structure is due to crystallization with 
incomplete condensation of tiles resulting in the silanol groups that are 
known to be present in the ZSM-5 structure (see Extended Data Fig. 5 and 
Supplementary Video 4). c, ETS-10 is a mixed-coordination octahedral 
and tetrahedral nanoporous framework structure that consists of titanate 
rods that are stacked layer by layer in an orthogonal arrangement. Viewed 
down the [001] axis, as is the case here, the rod-based crystal growth 
mechanism is immediately apparent; such a growth mechanism leads to 
the incorporation of defects (see Extended Data Fig. 6 and Supplementary 
Video 5). d, UOV is one of the most complex zeolite structures, with a 
very large unit cell and 16, both open and closed, tiles. Our methodology 
is able to efficiently grow such a complex structure with both surface 
topography and habit matching experimental observations. The surface 
structure (top) is determined from the calculations, as is the nature of 
partially constructed layers (bottom) at intermediate metastable steps 
(see Extended Data Fig. 3 and Supplementary Video 3). e, MOFs can 
be modelled using two differing methods: first, by treating them as 
multicomponent molecular crystals, with metal clusters and organic 
linkers treated as separate molecules (as in MOF-5); and second, by using 
the same treatment as zeolite frameworks (as seen with HKUST-1 in 
Extended Data Fig. 9a–d and Supplementary Video 6). Again the crystal 
habit and surface topography match those observed experimentally with 
different crystallization conditions (further examples are shown for 
MOF-5 in Extended Data Fig. 9e–i). 



The MFI zeolite framework type, also known as ZSM-5—one of the most important industrial catalysts—reveals 
not only the surface structure but also the internal structure of the crystals. Within the bulk of the crystal, tiles 
remain incomplete in other words, they possess dangling silanol groups—consistent with the many internal 
silanols that are well-established to be present in ZSM-5. The interesting discovery is that, because the growth 
mechanisms on different faces of the crystal are necessarily different, the silanols are confined to zones of 
different density within the crystal (Fig. 2 and Extended Data Fig. 5). This finding mimics almost exactly the 
optical birefringence, showing zoning identical to that observed experimentally (Extended Data Fig. 5) and has 
been a source of debate for many years23.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Similarly, in ETS-10, which displays rod growth (Extended Data Fig. 6) rather than layer growth, the 
incompleteness of the rods results in internal defects that congregate in a zone from the (001) facets to the 
centre of the crystal, as observed experimentally by Raman microscopy24. Our kinetic three-dimensional 
partitioning model shows that a straightforward growth mechanism can explain these optical phenomena 
without the need for complex arguments related to twinning of the crystals. Common defect structures, such as 

Figure 3 | Simulations of an ionic crystal (calcite) and a molecular crystal 
(urea). a, b, Simulations of calcite (a) and urea (b), demonstrating the 
universality of our approach to different crystal classes. All simulations are 
shown under equilibrium conditions. a, For calcite, the reaction energy for 
the conversion of solubilized ions to the crystal per coordination to the crystal 
is set at 5 kcal mol−1, 10 kcal mol−1 or 15 kcal mol−1. Calculations show 

that the value lies between 10 kcal mol−1 and 15 kcal mol−1, and the crystal 

habit and surface topography of the two corresponding simulations match 
experiment closely. At 5 kcal mol−1, the terrace edges are much more rounded 

than observed experimentally. The main difference between the simulations 
for 10 kcal mol−1 and 15 kcal mol−1 is the terrace density, which can also be 

used as a distinguishing factor. b, For urea, three different reaction energies 
are used, depending primarily on the strength of interaction in the urea 
crystal (discussed in Methods). The large {110} faces are flat and dominated 
by terraces elongated in the c direction of the crystal (vertical in the image). 
The smaller pseudo-{111} faces are rough and generated in a large part by 
dissolution when the supersaturation is close to equilibrium. 

Figure 4 | Results of incorporating screw dislocations in growing LTA, 
l-cystine and calcite crystals. Screw dislocations may be computed using 
our methodology for any crystal system along any crystal direction. This 
method operates according only to topology and does not account for the 
energy of the crystal at the screw core. Nonetheless, it allows all possible 
topologically permitted structures to be tested for growth morphology; 
energy considerations can be determined separately. a, Simulations of 
LTA structure with (right) and without (left) a screw dislocation running 
along [100] through the crystal, vertically. A lengthening of the crystal 
along the [100] direction is immediately apparent, owing to the greater 
ease for growth at the spiral growth front. This demonstrates how the 
relative growth rates of layer-by-layer growth versus spiral growth can 
be determined. b, Pin-wheel crystal growth formation in the l-cystine 
system caused by the 61 screw axis, with hexagonal terraces consisting 
of six individual l-cystine layers forming a step bunch circumscribed by 
the slow growth directions. Progression of the step bunches and of single 
steps is the result of a complex interplay between attachment at single step 
edges, step bunches and surface sites that can be seen in Supplementary 
Video 7. c, Screw dislocations in calcite. The left panel shows a single screw 
dislocation with screw core along [100]. Such a dislocation emanates on 
two adjacent {104} crystal faces. Calcite is also known to exhibit double 
screw dislocations and the middle panel shows a double Burgers vector 

screw along [− 2/3, 2/3, 1/6], which has the smallest displacement possible 

for such a double screw. The right panel shows the effect of selective 
‘poisoning’ (via the addition of additives) at two-coordinate sites along 
terrace edges (red dots), which produces rounding of terrace features. 



screw dislocations, are able not only to replicate the spiral topology, such as in LTA and CHA (Extended Data 
Figs 1 and 7, respectively), but also indicate the relative growth rates of the screw in relation to the layer 
growth. Complex interleaving of screw formation owing to fast and slow growth directions, such as seen in the 
AEI zeolite system (Extended Data Fig. 8), can be faithfully reproduced. Also, the direction of the screw core can 
be interrogated according to the multiplicity of the spiral growth emanating at the crystal surface, such as in the 
metal–organic HKUST-1 (Extended Data Fig. 9a–d). Indeed, MOFs are as readily treated as zeolites using this 
approach, either as cage (partitioned) structures as in HKUST-1 or as molecular crystals as shown for MOF-5 
(Extended Data Fig. 9e–i). In the latter case, it is necessary also to consider the solvent as an important element 
in the crystal growth, because without it the observed crystal habit and surface topology cannot be replicated. 
MOF-5 is a good example of a multicomponent crystal, demonstrating the power of our approach to this 
important general class of materials. Molecular crystals and ionic crystals (Figs 3 and 4, respectively) are both 
amenable to this treatment and, for calcite, the crystallization energies are in broad agreement with those 
calculated using a combination of interatomic potentials and a continuum solvent model (see Methods). For the 

l-cystine system, it has been shown25,26 that growth on the 〈 001〉 face proceeds predominantly via screw 

dislocations. When this growth mechanism is augmented with the 61 screw axis of the crystal structure and with 
highly anisotropic rates of crystal growth, a complex pin-wheel surface topology is generated. Our simulations, 
which are based on four independent interaction energies, faithfully reproduce all of these growth features and 
reveal the importance of the interplay between different growth modes in the complete crystallization 
mechanism (Fig. 4 and Extended Data Fig. 10). Finally, the addition of growth modifiers is also readily achieved 
(Fig. 4), and was used to examine the targeting of specific growth sites in relation to the effect of these sites on 
the growth topology, yielding similar results to those observed experimentally27. The power of this approach is 
in the general applicability across crystal systems, and it provides a window of understanding that can be 
explored through higher-level calculations on each individual system. 
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