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PREFACE

This book contains all manuscripts approved by the reviewers and the organizing committee of the
12th International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and
Process Industries. The conference was hosted by SINTEF in Trondheim in May/June 2017 and is also
known as CFD2017 for short. The conference series was initiated by CSIRO and Phil Schwarz in 1997.
So far the conference has been alternating between CSIRO in Melbourne and SINTEF in Trondheim.
The conferences focuses on the application of CFD in the oil and gas industries, metal production,
mineral processing, power generation, chemicals and other process industries. In addition pragmatic
modelling concepts and bio-mechanical applications have become an important part of the
conference. The papers in this book demonstrate the current progress in applied CFD.

The conference papers undergo a review process involving two experts. Only papers accepted by the
reviewers are included in the proceedings. 108 contributions were presented at the conference
together with six keynote presentations. A majority of these contributions are presented by their
manuscript in this collection (a few were granted to present without an accompanying manuscript).

The organizing committee would like to thank everyone who has helped with review of manuscripts,
all those who helped to promote the conference and all authors who have submitted scientific
contributions. We are also grateful for the support from the conference sponsors: ANSYS, SFI Metal
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ABSTRACT

Simulation of multiphase flows is generally treated by
various classes of Eulerian methods, Lagrangian
methods, and various combinations of these. In the
SIMCOFLOW initiative, we have set out to develop a
framework for simulation of multi-material flows, using
a Eulerian description. A fundamental part is the
application of Cartesian grids with cut cells, and with a
staggered representation of the grid for velocities and
scalars. The model equations are derived based on formal
volume and ensemble averaging  (Quintard and
Whitaker, 1995), (Gray and Lee, 1977) and (Cushman,
1982). Solid walls or moving solid materials are treated
in the same manner as any flowing material (fluid,
deforming material). The interface is characterized by a
level set or by a 3D surface. In grid cells that are cut by a
large-scale interface, the stress acting at the cut surface
can be computed based on the level set or volume
fractions. The exchange of mass, energy, and momentum
between continuous fluids (note: walls are also
considered a continuous fluid) can be estimated using
wall functions in the case of coarse grids. The methods
applied to the flow in a general geometry are closely
related to the FAVOR method (Hirt and Sicilian, 1985)
and the LS-STAG method (Cheny and Botella, 2010).

In this paper, we discuss the derivation of the equations
and the numerical solution strategy needed to handle such
complex physics within the framework of finite volume
methods.

We further discuss briefly the ongoing developments
such as adaptive gridding and the computational
framework.

The results of this work will end up as open source
software.

Keywords: Multi-material flows, Cartesian cut-cells,
staggered grid, volume averaging, dispersed fields, large
scale interface

NOMENCLATURE

Greek Symbols
a  volume fraction

p  interface specific volume fraction (m)

o density (kg/m®)

o intrinsic density of phase / (kg/m?)

p* extensive phase density (kg/m®), p*' =a*'p,
Z» multiphase compressibility factor

T viscous stress tensor (Pa)

Latin Symbols

A interfacial area vector (m?)

A matrix, defined by Egs. (55) and (56)
DU defined by equation (64)

Z& index set for cell faces of grid cell i
g gravity vector (m/s?)

K" interface friction coefficient between velocity fields

m,;n and k;[
LSI Large Scale Interface
n  normal vector to interface

p  pressure at end of time step (Pa)

S generic source term

At time step (s)

p'  pressure correction, p' = p — p° (Pa)

T  temperature (K)

T temperature correction, 7'= T — 7° (K)

u®" field velocity of phase k, dispersed into phase / (m/s)
u"  defined by equation (53)

Superscripts

0  previous time step
k;l  field k, submerged into phase /

Subscripts

i multi-index for grid cells, e.g., i = (i,/,k)
k  generic index for grid cell faces

w  wall index

Other symbols

< > volume averaged

INTRODUCTION

In Computational Fluid Dynamics (CFD), a number of
different technical and scientific elements must play



Figure 1: Oil boom operated in calm sea.

together to create powerful methods that reliably can
simulate real world behaviour. Multiphase and multi-
material flows are of the most complex flows, and here
the development of models with predictive power is
generally lagging behind single phase flow models. An
exception in the multiphase domain is free surface flows,
which has shown some impressive developments over
the last decade.

In an attempt to answer to challenges in multiphase pipe
flow, we developed the LedaFlow Q3D model (Laux et
al., 2007). In this model, multiple coexisting continuous
and disperse phases can be represented. However, the
code was tailored for pipe flows and could not readily be
extended to complex geometries. The Research Council
of Norway has now supported further development of
these concepts through the SIMCOFLOW project. The
target for this development is to simulate the flow of air,
oil, and water in an operated oil boom (see Figure 1),
interacting dynamically with wind, waves and sea
current. Here we have set out to develop an open source
CFD code that can handle any moving interface problem,
using Cartesian grids with local grid refinement. The
discretization of the governing equations is made on
staggered grids, where the velocity component cells are
centred at the faces of the scalar (primary) cell faces. A
Cartesian Cut-Cell approach is applied to represent the
immersed boundaries (Cheny and Botella, 2010; Hirt and
Sicilian, 1985). The justification for working with this
particular concept is a) relative ease of implementing new
physical models using finite volumes on a regular mesh,
b) exploit more accurate interpolation of fluxes, also due
to grid regularity, c) easy automation of grid generation
for any geometries using the cut-cell concept, and
d) staggered mesh provides a tighter pressure-velocity
coupling than what can be obtained using co-located
grids. Previously it was unsuccessfully attempted to
implement the CDP (Compressible Disperse Phase)
method (Johansen and Laux, 1995) using a co-located
mesh. Based on that experience, dealing with granular
flows, it turned out that a staggered arrangement ensured
positive pressures for all solid fractions, while the co-
located approach generated from time to time negative
pressures that killed the simulations.

In this paper, we present a theoretical and numerical
framework for this development. To limit the scope of
this paper, we only discuss discretization on regular
Cartesian meshes. However, work is in progress for
establishing a dynamic mesh structure, based on a graded
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octree representation (i.e., a 2:1 balance so that
neighbouring cells are at most one level apart in the tree).
The aim is to apply dynamic grid refinement in regions
of interest, such as close to walls and to fluid-fluid
interfaces. Using local grid refinement in Cartesian
meshes introduces the additional complexity of hanging
nodes, i.e., a grid cell may have two (2D) or four (3D)
neighbouring cells in either coordinate direction, or it
may be a connected to a neighbour through only half
(2D) or a quarter (3D) of the neighbour's cell face. Due
to space limitations, these additional discretization
complexities and the actual procedure for dynamic
refinement are not discussed here. We will focus on the
model formulations that can allow such complex
simulations.

MODEL DESCRIPTION

Cut-cell approach based on formal volume
averaging

In order to handle the complex multiphase flows referred
to above, we need a mathematical and numerical
framework that can handle both complex wall geometries
and fluid-fluid interfaces. An attempt to do so is
represented by the FAVOR method (Hirt and Sicilian,
1985). However, in our case we want to extend the
method to handle multiphase flows with any number of
dispersed fields and continuous phases, as well as
moving or stationary solids.

For the sake of simplicity, in the first part of this paper
we go through some fundamental concepts looking only
at single phase flow, extending the method to multiphase
flow in the latter part. The extension to generic
multiphase flows is quite straightforward. The only new
issue that will enter is that the moving fluids and fields
are coupled through mass, momentum, and energy
transfer. Stiffness due to these interactions can be
handled locally in each cell using a fractional step
approach, which is a very desirable feature for enabling
good parallel performance of the simulation code.

Scalar transport

In order to familiarize ourselves with cut-cell related
issues we start by investigating the evolution of enthalpy
in a cut-cell domain. We investigate the conservation of
enthalpy # where only conduction, convection, and
simple energy sources S; are allowed to change the
enthalpy field.

It is assumed that the relation between enthalpy and
temperature is known. Currently we assume that # = C,T.
Using the generic formalism ((Quintard and Whitaker,
1995), (Gray and Lee, 1977) and (Cushman, 1982)), a
very simplified conservation of enthalpy that is sufficient
to demonstrate the concepts can be expressed as,

%Ip},th = —J.pfhuf-nde
v, S,
[ p(u, u,)m, a5 M
A,
~[q-n,as—[q-n,as+[p,s,av
s, 4, v,

where Vyis a fluid volume, Sy is the part of the volume
surface interfacing a neighbouring fluid volume, and 4.,
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Figure 2 Cartesian cut cell domain with solid walls
(blue) and enthalpy in cell (iy) is Aij.

is the part of the volume surface interfacing a
neighbouring solids region, see Figure 3.

The first term on the right hand side of Eq. (1) express
the convection of enthalpy across cell faces, and the
second term is the mass transfer between wall and fluid.
RHS terms three and four express thermal conduction
across the fluid cell boundary and into the solid wall,
respectively. The last term is a general volumetric heat
source.

The discrete enthalpy equations on a Cartesian grid cell i
with fluid volume Vy= a;i AVi becomes,

Ala,ph)
MAV. = —kZT(Pfh“f ‘n, a‘,AA)k

At !
-2 (q-n_, “r’AA)k

ke 4

-2 (q'“.f‘AA)w +,[pfSth

we/; v,

2

where A(ayprh)i is the update of enthalpy over a time
step, .7 is the index set for the faces of cell i, and /4 is
the set of walls embedded in cell i. Note that we use a
short-hand notation where the index of all variables
inside parentheses is indicated on the parentheses itself.
In Eq. (2), the wall mass transfer term is absorbed into
the generic source term. It is assumed that the velocity
field is mass conserving. We will now discuss the
implications of Eq. (2) when it comes to handling of the
cut-cells.

Firstly, the transient term in Eq. (2) allows for a change
in geometry, i.e., the solid fraction s = 1 — ¢ is changing
between time steps.

For the convective term, i.e., the first term on the right
hand side of Eq. (2), it becomes important that we have
good estimates of the fluid fraction (ex at cell
boundaries. At the cell-face between cells i = (i,j) and
(i,j+1), the cell-face solid fraction in Figure 2 is clearly
equal to one. If we compute the cell-face fraction by
simple averaging, we have a situation where energy will
flow between the two cells by conduction through the
fluid phase. This is not acceptable. To avoid this problem,
we have to introduce the following rules for cell interface
fractions:

Rule I
A cell which is fully loaded by one phase will have that
all the cell-face fractions of that phase is 1.
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Figure 3 Control volume cut by solid. ForceF ,
acting on the fluid from the wall.

Rule 1T

A cell which have one, or more, but not all of the cell-
faces dictated by Rule I will have a special method
available to compute cell fractions for the remaining cell
faces.

The values of the density pr and enthalpy /4, at the cell-
face that are needed to calculate the convective flux,

Ficoms = (p/hf u,-n, “fAA)k >

k,conv

3)

are interpolated from neighbouring values using any
preferred interpolation method. We note that the flux
Fx conv 1s to be understood as the time averaged flux over
the time step.

Wall treatment:

The wall flux is the generic transfer of heat between the
fluid in the cell and the wall. The flux is generally treated
as,

T, -T.

L =—AVT:n, A4, =—1$AAW 4

w,n

F = (q ’n/AA) =
Equation (4) can be replaced by wall functions in the case
of turbulent flows.

Here A is the thermal conductivity, A4w is the actual area
(Rule III) of the wall cutting through the cell, and &, is
the distance between the wall and the mass centre of the
cell (Rule IV).

Rule ITI

The heat transfer area AdAw of a cell cut by a wall is
computed by a specific method (not detailed here).

Rule IV

The distance between a wall and the cell centre inside the
fluid part of the cell is computed by a specific method.
The first version of the method is based on computation
of the mass centre in the fluid part of the cell and
computation of the normal distance ow, between this
point and the cell-face.

The fluid conduction flux can be treated in a similar
manner as for the convective fluxes. An example for the
x-direction flux at the positive x-cell-face is,

¢ Ty =Ty
()
The computations and application of the cell interface
fractions oy are identical for conduction and convection.
However, we note that due to Rule IV, the location point

EX

k,cond =

(.1, a,0M) =—(a,842)
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Figure 4 Staggered grid layout in 2D

for the temperature and enthalpy is moved from the cell
centre to a new position (red circle in Figure 2). The
movement of the point will impact the conductive fluxes
across the neighbouring cell faces. It is therefore
suggested that the offset of points in the cut cells are
accounted for in the conductive flux calculations.

Rule V

The offset of cell centre points for a fluid in a cut cell is
used to correct the diffusive exchange fluxes with
neighbouring fluid cells.

Mass equations

According to the formalism (Cushman, 1982; Gray and
Lee, 1977; Quintard and Whitaker, 1995) the transport
equation for fluid mass is

ij-pde:—J.pfuf ‘n,dS - J-pf(uf —u,)-nﬂwdS , (6)
ot v N Ay

Referring again to Figure 3 for definition of Vy Sy, and
A,. Integrating pr (x) over the fluid volume ¥V we find
the intrinsic average of the density. The fluid mass per
volume in a grid cell may then be defined as

/3 =app= (1 — O )pf > (7
where ar and ¢, are the fluid and solids fraction (solid
wall fraction) respectively, and pr= p(p,T) is the intrinsic
density of the fluid phase.

For a grid cell with volume AVi, we may write the discrete
mass equation as

a_f;iAVi +2 (puymAd) =—p (u,~u,)n, A, (8)
ke

0
Note that the term on the right hand side of Eq. (8) may
represent both a flow (mass source) coming through the
wall, or any combination with an interface moving with
velocity u,.

If the solid (walls, external domain) is stationary the mass
equation will simplify to,

> (pu, -mad) =S,

ke 7

a—'ljiAVi + ©)

0

where Si is a generic source term in cell i. In Figure 4,
we see a typical staggered grid layout in 2D that is used
to construct the discretization.

Momentum equations

The momentum equation over a fluid volume ¥, may be
formulated as,
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6 —
Gt,J:pUdV = J{png

(10)

+.[(—pl+T)~n/.dS+ f(—P1+T)’“/.wdS
A,

Sy

—.fpuu~n/.dS—Ipu(u—ul)-n/’u,dS
a,

S/
For the volume integrals at the top line of Eq. (10), we
have for grid cell i, where Vy= aiAVi, that

0 op,u, .
— | pudV =——LAV, and dV = pgAV,, 11
aty[p LAY, ;pg pEAV, (11)

where the values g, and wi on the right hand sides are
volume averaged magnitudes over V, and g, is defined as
in Eq. (7).

For the stress terms, we have that

J(—pl+r)-nde:k;?[(—pl-rr)nafAA]k (12)
and for wall stresses,
J-(—pI+‘|:)-n/’wdS)=(—pI+‘r)w~nf'wAAw (13)
A,
The advection term becomes
J-puu~n/dS: Z(puwnafAA)k (14)
Sy

ke

Note that all variables on the right-hand sides of
Egs. (12) — (14) are face-averaged values, so that no
approximations have been made yet.

To arrive at a discretization of Eq.(10), several

interesting observations can be made.

i) The surface averages of pressure in the stress
terms (12) and (13) can be approximated closely by
the volume averages.

ii) For the stress term in Eq. (12), some cell faces may
have zero fluid fraction (ezx = 0). The contribution
from these cell faces will disappear for the pressure
and the shear stress.

iii) The wall effect is reintroduced by the stress term in
Eq. (13). The stress contribution will have to be
computed based on the surrounding discrete velocity
values and volume fractions. In addition, the pressure
contribution here involves only the pressure
internally in the fluid in the cell, not a pressure behind
the interface. As a consequence of ii) and iii) there
will be no fluid pressure (and no need for it) in a cell
which is fully solid.

iv) The transfer term

J.pu(u—u,)~n,‘wdS
An

will only have values for the case where mass is
entering or leaving through the wall face. In the case
of an inert wall surface, moving through space, we
will have zero contribution from this term. This
applies to typical fluid-structure interaction cases.

Treatment of wall boundary conditions

In Figure 3 we see the wall shear force F, acting on the

fluid in the volume V. The shear force acts in the
direction of the fluid velocity, tangential to the wall. The
wall may have any velocity u,,. First we need the relative
velocity between the fluid and the wall, tangential to the



wall. The relative velocity vector Au between the fluid
and the wall is,

Au=u-—u, (15)
so that the relative velocity normal to the wall is,
Au,=[(u-u,)-n]n (16)

where n is the unit vector normal to the wall. The relative
velocity tangential to the wall is then,

Au, =Au—Au, =Au—[Au-n]n (17)
The unit normal vector for the relative flow, parallel to

the wall in now,
Au, Au—[Au-n]n

n = =

" |Au,| |Au—[Au~n]n|
The force acting on the fluid at a wall will be in the
direction of n, and can be given as,
ﬁw' = _|Tw Awnt

(18)

(19)

The wall force decomposed into each Cartesian
coordinate direction can now be written as,

F:¢*,,r == Tw Awnt : ex
Fw,y == Tw Awnt ' ey (20)
F‘w‘z == Tw Awnt : ez

In the case of no flow, a tangential vector is easily
computed from the cross product of any of base vectors
which are not parallel with the normal vector.

For the stability of a numerical implementation without
having to excessively limit the time step size, it is critical
to linearize the wall stress in velocity for use in an
implicit scheme for the viscous terms. This is done in the
following (example for Cartesian x-direction). The wall
stress is Taylor-expanded in the required direction, here
x-direction,

~
|Tw | ~ z-w

0 &M 0 N
+[5|Aut|aAu,,xJ (A, —Auy,) (2D

We use the wall function concept, stating that,
|Au, ()| =uu (v, (22)

where u. is the friction velocity, u* the velocity
normalized by the friction velocity, and y* the normalized
wall distance. Eq. (22) is equivalent to,

- o[ 0]
’ u'(y")

(23)

T,
Using (23) in (21) we have that,

0
2l A
oy {ﬁ IAL:X } (8w, ~Awy)  (24)

We may now write the viscous stress, linearized in the
fluid and wall velocities in the x-direction, as
T,

0
0 _ 2 Aum Autox
|Aut '

[Au,
2|TW| Auf,x ’
i |Au,| |Au (.~ (25)
—_—

~
~

T

W

7'-w

|Tw | ~ z-w

T4
Ve

=7,+ l(”x _uw,x)
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Figure 5 Control volume ¥, containing field k, cut
by solid (or fluid-fluid interface), and by dispersed
fields m.

The x-direction force can in turn be written as
)A4 (26)
Test: Flow parallel to wall. n,= 1, n,x= 1, u,,= 0.0 m/s:

Fw,x = _TAnt,xAAw - Znt,x (ux - uw,x w

0
2
7| ==, g Tw u, (27)
—— ‘Au,‘ ’
T4
X
The resulting force is:
2|z |°
F,. =||e —=25u, |Ad, (28)
’ ‘Au,‘

This result is as expected. Note that due to the properties

0
of Eq. (23), the linearization factor becomes 2[7.] and
|Au,|O
0
not f»l 1
|Au,|0

MULTIPHASE FLOW EQUATIONS

We now introduce multiple phases and the fields used to
represent them (Laux et al., 2007). We use notation o/
to tell that this is the volume fraction of a field with index
k that is submerged in a phase /. The continuous field for
phase / is denoted as o/ The field velocity is u*, and
accordingly the continuous phase velocity is ',

In order to support the functionality that only some fields
are active in various parts of the solution domain, we may
apply a field indicator Y*/, where

. |1 iffield k in phase / exists
T= , (29
0 if field & in phase / is non-existing

For convenience, in the computer code we may attach
string tables to the indices, where the entries in the table
could be, e.g., ["gas","oil","water","sand","wall 1"].
The pair (k;]) = (1;2) would then refer to dispersed gas in
the oil phase. In this notation, k =/ represents the case
where the field is the continuous phase. IL.e., in our
example, all fields carried by the continuous water phase
are represented by o3, continuous water is o3, gas
bubbles in water is o', and sand particles in water is o3
Since sand cannot be a continuous phase, we will have
that Y**=0, and accordingly a** do not exist. In this
example, we have only one wall type, represented by wall
fraction o®>, and where Y** =1and Y***=0.



Note also that the total number of fields in our system is
given by

v
N phases. Nohases

Neoas = z z Y

I=1 k=1

(30)

Special interface notation

For interfaces, we will use a special notation which
handle the precise situation. We use the following
notation, exemplified by the interfacial area:

A

k;me;m

Here the area is represented at the interface between field
k submerged into phase m (k;m) and the continuous field
(m;m). For dispersed fields, we may use the shortcut

= 4., without loss of generality. However, for

ksmTm;m
continuous fields, having an interface between (k;k) and
# Ak;m .

since 4

(m;m) we have to apply A4, A

kT mim

Multiphase mass equations

To arrive at the formal transport equation for mass we, as
for single phase above, use the formalism provided in
((Quintard and Whitaker, 1995), (Gray and Lee, 1977)
and (Cushman, 1982)). The transport equation for the
mass of a field &, submerged in continuous phase m, can
then be formulated as,

%ﬂ[m p":de = _g[ plr;muk;m . nk;mdS

_(1 - 5km ) I pk;m (uk;m - u[,k;me:m ) ’ nk;me;mdS (3 1)

Aenmim

mim’

k is dispersed in m

L
m;m
02

J=l4

m;m .
p (u _ul,m;mTj;m) nm;mTj;mdS

Jim

j is dispersed in m

Here the summation over j includes all dispersed fields
present in the control volume. The Kronecker delta

{0 ifk=m

O = .

1 ifk=m

is introduced to select the correct form of the equations
for continuous phases and non-continuous phases. The
first term on the right-hand side of Eq. (31) accounts for
mass leaving or entering the control volume. The two
other terms correspond to mass transfer terms and will be
non-zero only if the fluid velocity is different from the
interface velocity.

In general, all walls are treated as a phase or field which
is stationary or moving. In this way, there is no difference
in the treatment of fluid-fluid, fluid-solid, or solid-solid
interfaces. This will allow for any dynamics of the
"solids".

Areas, volumes, and vectors are handled as discussed in
the single-phase section and as explained in Figure 5,
which sketches a typical multiphase situation. In Figure
5, the field marked as "wall" could be any continuous
field, represented by a volume fraction &% and a
velocity u®*. The dispersed field denoted m could be a
collection of different fields.

The mass transfer terms in Eq. (31) involves sub-grid
velocities, and will typically be modelled by source terms
that will be specific to different mechanisms for mass
transfer. For the discussion in this paper, we introduce a

(32)
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generic volumetric source term S%” to represent these
models for net mass transfer into field (k;m).

When we now integrate over the fluid volume V5™ we
find the intrinsic average of the density. Using o as
field fraction of the control volume, the field mass per
volume in the complete control volume is

lbk;m
Here, p*"(p,T) is the intrinsic density of the field phase,
or rather of the phase labelled £ since the fields represent
subsets of all mass there is of a phase, where the
thermodynamic properties, such as density, belongs to
the phase.

The mass equation for the field (k;m) on a Cartesian grid
cell with index i can now be written as,

ksm _kim

:ap

P Ny 3 (55wt m Ad) = SEAY, (33)
at ' ke 74 K l l

where P/ is mass per volume in the cell, the values of
p and u-n in the parenthesis under the sum are average

values over the cell faces, and n is the outward unit
normal at the cell face.

Volume constraint

For multiphase flows, we get an algebraic constraint for
volume that has to be fulfilled. It is stating that the sum
of the volume occupied by all fields must equal the total
available volume. I.e., the volume fractions have to fulfil
the condition,

Nypases Nopases

> Ykratt =1

m=1 k=1
Note that we have used the field indicator (29) to exclude
fields that are not present in the model. At this stage we
note that we in Eq. (34) have a total of Nphases different
phases and types of walls, where these may have different
appearances, but they are each represented by a field.

(34)

Multiphase momentum equations

Dispersed fields and single continuous fields in a grid cell

By following the suggestions above we arrive at the
following momentum equation for a field k;/. The field
k;! may be a continuous field containing other dispersed
fields or a dispersed field submerged into a continuous
filed. At this point we do not consider multiple
continuous fields with-in a single grid cell. In addition,
the considered flow is laminar. Turbulence may later be
introduced by one more layer of ensemble averaging of
the model equations.



gt(aklpklukl)_'_vh( kit A/(W_Hluuk/))
—ak’p“g+a"’V-(—(p’;’>’l+<r“’>")

+(175M)Kk;1 {(u“ 7uk:/)+ a : }

a

k is dispersed in /

Lo . o™ 35
+5k1/Z:I:KN {(uu_uu)_ a’ } (35)
J is dispersed in /
7(1 §Al ﬁ _[ pk[ M( Y ul‘k;lT/;l)-nlt;/T/;ldS

At

k is dispersed in /

k/AVZ J‘ pzz 11( Ll

/14//11

U, it ) ’ n/;/T/;/dS

J is dispersed in /

Here we again have used the Kronecker delta oy to
distinguish between dispersed and continuous fields. AV

is the size of the control volume in which the areas A

and 4 are defined. The LHS terms represent transient

Lt
variation, stresses due to sub-cell mixing and convection.
The RHS terms are external forces (gravity), fluid
pressure and viscous stress, the two next groups of terms
contain hydrodynamic drag and dispersion due to sub-
volume mixing, and the last two groups of terms are
momentum exchange due to mass transfer.

Extension to multiple continuous fields within a grid cell

Based on the generic averaging theorems ((Quintard and
Whitaker, 1995), (Gray and Lee, 1977) and (Cushman,
1982)), the momentum equation for a continuous field is
written as

Jp”u”dV Ipllng_’_J

pld st

z J' _pl:lI +T1;1)

All dispersed 4
fields k;lin ;1

P+t n'ds

ds

RN

KMl

_ z J' (_pl:lI + 1_1;[ ) . nm_mm_[dS (36)
All continuous fields m;m, 4, , ,

interacting with 1;1 it

LSI _ wall

_J'plz B . nllds

kil kil ksl .
- Z J. pu (ll “1,/(;1?1;1) nl;/Tk;zdS
All other fields 4

inside volume %1%

All terms in Eq. (36) except one has been introduced
through Eq. (35). The new term is marked with LS wall
and represents the force acting at the large scale interface
between two continuous fields. Shear and normal stresses
at solid walls or LSIs are handled by this term, as these
are stresses and pressures resolved on the scale of the
control volume AV.

For now disregarding the interfacial pressure difference
due to curvature, we may drop the pressure contributions
acting inside the grid cell and assume that all phases share
the same pressure. This simplification may lead to
problems in certain cases and will be analysed at a later
stage. At the LSI, as well as at solid walls, the jump
condition for mass flow normal to the interface must
always be fulfilled.
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By application of the method discussed under the section
"Treatment of wall boundary conditions" we may write
the tangential LSI exchange force as

1 (el i
_[ T 'nm;mT/;ldSm;m’r/;l_(T )m:mT/:/ nm;mﬂ;/ASm;mM;z

At

(37

This may further be linearized in the velocities; take for
example the x-velocity component (ref. Eq. (26)), being
expressed as

Fw.x = _TA”zA,xASm;mTz AL x( “Upsrx )ASm;mT[;[ P (38)
which we generalize to
131 -
(T )m;mTl;l ' nm:mTl;IASM;mTl;l - (39)

®m;mT1;1 + (Dm;mﬂ;/ (um;mT/;I - uH)
The coefficients ©, . and @
Egs. (20) - (26). We may further note that for a solid wall,
in Eq. (39) we will use u”" as the wall velocity. If the
interface is moving, we must consider Newton's 3™ law.
For each interface, we have the relation,

a1y are defined by

1l _ m;m .
(T )m;mTl;I .nm;mTI;[ASm:mTl;l 7( )I;ZTm;m nl;le;mASI:ITm;m

Ly _
®m:mTI;1 + (Dm;mTl;l (um;mT[;l —u )_

®1;1Tm;m + q)l;le;m (um;mTl;z - ulnw)
which couples the two continuous fields over the
interface.
As a result of Eq. (40), we obtain the interface velocity:

O,y = O (00w

(40)

m;mTl;I LI m;m l;le;m

m;m 151 ) (4 1)

um;mTl;l =
((DI;ITm;m - (Dm;mTI;I )
And, finally, for the exchange force, we get,

15l —
(T )m;mT/;/ 'nm;mT/;/ASm;mT[;/ -

(DI;le;m®m;mT[;l - (Dm;mTI:IGI;ITm;m
O]

(42)

L1 m;m - (I)m;mTl;[

+ (Dm;mTI;[(D/;ITm;m
(DI;ITm;m _CD

J(um;m B u/;/)

mm ;1

The suggested method is ready for application of wall
functions since the quantities entering into Eq. (38), like
nix, T4, and y are readily computed from wall functions.
As a result, the LSI forces acting on the field 4,7 is given

by,
5kl

All continuous fields m;m,
interacting with I;1

(l///;nm;m + ‘gl;mm;m (“m:m —u” )) , (43)

®l;le;m J

where the coefficients are given by,
-0

®m;m7\1;1

— _ (Dl;le,m
l//l:le;m - ‘//m;mTl;l - q)

m;mTl:l

I;ITm;m - (I)m;mTI:l

'9 _ 19 _ (Dm;mTl;[(DI;/Tm;m
L mm — Ymm T (D —CD
1T m;m m;m ;1

Simplified model equations

(44)

Here we neglect molecular and mechanical mass transfer.
Then the mass conservation equation (33) becomes:

Aksm
% AV+Z pu nAA) =0

t ke. 74

(45)

Similarly, the momentum equation in (35) is written



g(aklpk;luk;l)+v.(akzlpk;luk;luk;l):akzlpk;lg+

v (7<p1.1 >i I +<T1;1 >i)+V .(ak;[pk;ll—mbk;lvuk;l)

Lo Ll oo ki
+(1—5/‘[)Kk1[ {(ul;l _uk:[)+[ V{ N Va% - VL kil v% ]} (46)
t t

jis dispersed in |

mim
+0y (l//I;ITm:m + St (u

Ll
—u ))
All continuous fields m;m,

interacting with 1;1

Here, the last term contains all the large-scale interfaces
(LST) and fluid-solid wall stresses. This will work fine as
long at the interface are located away from cell
boundaries. For LSIs adjacent of coinciding with a cell
boundary (will not be very frequent), the LSI exchange
force will have to be modified. In the normal case, the
exchange force in the Cartesian x-direction may look
like:

(Vs St (0 =0 ))&, = 4, + B, )"~y (47)

The index L is here the cell index. However, if the LSI is
very close to the cell face L-LYM (LYM is neighbour on

y~ side of the cell face) we will have to replace (47) with:
(l//];ITm:m + 'gllem;m (u'";’" - ul:] ))éx = AL + BL(”Z’}”T’\V/II - ui;l) (48)

In this case the computational stencil is slightly changed,
as we have momentum exchange between two different
fluids in two neighbouring computational cells.

We note that here the mixing stress

V-(a"p"T,,"Vu*') is simplified for the discussion

term

purpose.
NUMERICAL DISCRETIZATION

Momentum equations
The momentum equation, disregarding mass transfer
(Eq.(46)), may be reformulated into

%(ﬁk;]uk;1)+ V. (ﬁk;luk;luk;z) _ [)k;,g
(

v (_<p1;1>i I+ <T1;1>i) LV, [/\)k;lrsubk:lvuk;l)
+(1 _ 64»/ )Kk;l (ul;l —u* ) + 5HZL:K,/:1 (uj;l _ ul;l) (49)
Jj=1

2

All continuous fields m;m,
interacting with ;1

m;m Il kil
+5k/ (‘///;[Tm:m + lgl;le;m (u —u )) + S

where the source term, assumed to be treated fully
explicit, is given by:

N kil
Se” «a Sc,

ghl _(1_5 )Kkzl[ Vl[:l Vﬁ Vz[;l VO(“J
= i

ak;l

k is dispersed in /

J is dispersed in /
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The terms of type K5/ (u* —u*') and K/* (w"'—u*') denotes
friction between fields, and where we in the latter case
sum over all fields j, dispersed in k= /.

As long as we can provide sub-models for the large-scale
interface friction we may simulate any fluid-fluid, or
fluid-solid system, allowing both direct simulations and
more coarse-grained simulation possibilities.

The semi-discretized momentum equation for & in / now
reads:

kil 0,k;l
S0kt Ui U

i

At

0 A0l 0kl 0.kl 0,k;1 0 (A(Lk;l
+— ML)y M —(p

6xj_ (,0 ui/ u; ) u; 6xj u/.o”f”)

(51)
p+a0,k:[izjf.;l+£ ﬁk;lrf;iiuik;[
X, U Ox,

J

kil . . .
+ZKm:n (uim,n — uik’l) + SiOVkJ

m;n

The drag force in (51) has been generalized by:

—~k;l

¥R (w —u) = (128, ) K (u? )

+5uiK” (uN - ul;l) (52)
=

+6,

2

All continuous fields m;m,
interacting with 1;1

m;m Il
(‘//[;ITm;m + L9I;[Tm;m (u -u ))

We may note that K ﬁ,:;ln is defined by equations (47) and
(52). For now we have not included the special cases for
the LSI or wall perfectly aligned with the computational
cell face, here represented by Eq. (48).

Similar to how we proceed for single phase flow, we first
do a predictor step where we use explicit operators for all
terms except for diffusion terms, which are solved
implicitly. I.e., we use the momentum equation on the
form,

kil 0kl
nog W T U
P
At
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As external forces, friction, stress and pressure gradient
balance out by large, the explicit friction term is included.

By subtracting (53) from (51) we obtain:
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The crossed-out terms are neglected at this stage of the
algorithm following the reasoning behind the fractional
step approach, i.e., the diffusion terms are completed in
the predictor step, and do not carry over to the corrector
step. This essentially introduces a first order error in
time, however, for most practical purposes it performs
almost as well a second order methods (LeVeque, 2007).
When neglecting the crossed-out term in equation (54)
we find that:

ui/:;l _K’I;I’l A%i.l (Mm;n _uk;l)
" p0k
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Here we assume the summing convention for the terms
involving K . We recognize that Eq.(55) may be

written on matrix form as

Au =b—Ataai (56)
Ox,
where
a= aO,k;I/ﬁO,k;l (57)
and
b= ui*’k:l _K’/;,/” ﬁ?il (uo,m;n _uo,k;/) (58)
So the solution for the velocities may be written as,
-1 a0
u=A"b-ArA"a (59)
0ox,

i

Note that since we have used an explicit operator for the
convective terms, and used the fractional step approach
for diffusion terms, the matrix A only couples terms
within a single grid cell. In a two-phase flow with 4 fields
A is a 4x4 matrix, in three-phase flows we have a 9x9
matrix. If we had carried over the implicit diffusion
operator from the predictor step, or used an implicit
scheme for convection, the matrix A would also need to
couple to the neighbouring cells, which we want to avoid.
Le., in the present approach, except for the diffusion
operators of the predictor, there is no need for solving
global matrices, which is a large benefit in terms of
potential for achieving good parallel performance of the
simulation code.

The main reason why we do not treat all terms explicitly,
and dispose of the coupling matrix A altogether is that
the terms coupling the field velocities within a cell can be
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quite stiff. Linearizing and coupling through the matrix
A has been seen to be sufficient for stability.

Obtaining a pressure equation

To derive an equation for pressure, we use the volume
constraint given in Eq. (34), which we may restate in

terms of field masses p* and densities o as
Nohases Nphases fm ﬁik;m _
Z 2"
Note that Eq. (60) is also valid for single phase Nphases=1,
where it will express that the density transported by the
mass equation must equal the density determined by the
equation of state.
The same is true for multiphase. Eq. (60) states that the
cell masses must satisfy the thermodynamic relations so
that the cell volume is exactly filled. Conceptually, in the
corrector step of the algorithm we want to find a pressure
that projects the solution onto the volume conserving
manifold.
We start out by substituting for the masses from the
solution of the mass equation (33). The mass equation
can be reformulated as,
nkom (Akm)0 A Akm )\ kom km
o —(pi ) G ke)?((p ) u nAA)k+Az‘Si (61)
where masses are explicit and velocities implicit in the
convection term. We want to use an explicit scheme for
masses to keep numerical diffusion low, but we need the
implicit velocities since they will be adjusted by the
pressure, allowing for a volume consistent solution.

(60)

Now defining,
u"=A"b and u=u-u" (62)
we may rewrite Eq. (59) as,
w=—ana (63)
Ox,
which we on component form write as,
(ufm) =-DU* @ (64)

Ox;
where DU is the element in the vector preceding the
pressure gradient in Eq. (63) that correspond to the
velocity /™" . For the velocities normal to the cell faces
in Eq. (61), we may then write

u"” n= (u""” )* -n—DU*"Vp'-n. (65)

Further, defining a predicted field mass as,

(a") = (o)

e T

we may write the mass equation (61) as
A kim Ak;m * At Ak,m 0 m '
A =(pfm) +— ((pk’ ) (DU*"Vp'-n) AA) (67)
AVl ke 74 k
Substituting Eq. (67) into the volume constraint, we get
the pressure equation
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where we recognize the right-hand side of the equation
as the volume error in the predicted masses. We have not
discussed the details of the discretization of the gradient
of the pressure correction, but essentially, the left hand
side of Eq.(68) will be a weighed discrete Laplace
operator for the pressure correction.

Note that for constant densities, Eq. (68) is a linear
equation for pressure, i.e., after solving the equation we
will get a velocity field and masses that exactly satisfies
the volume constraint.

However, generally the density will be a function of
pressure. lL.e., taking the thermodynamics into account
makes Eq. (68) non-linear, and we may need to iterate on
the pressure equation to satisfy the volume constraint to
some specified tolerance. To improve convergence, we
linearize the equation in pressure, essentially getting a
Newton iteration for pressure. Experience shows that
this iteration indeed exhibit quadratic convergence. Note
also that we iterate only on the pressure equation, only

updating density, velocities, and masses ( o ) between

each iteration.
Linearizing the pressure equation in pressure, we get,
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where y, is the multiphase compressibility factor,
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e e ol opt
Z,= ma 70
SR (70)

Finally, we may note that since the updated velocities are
always inserted into Eq.(61), mass will always be
conserved. The error we may have is a deviation from
the volume constraint. However, since the volume error
is the driving term at right hand side of Eq. (69), and it is
at all time based on the latest estimate of cell masses, the
solution will always relax towards the solution manifold
where the volume constraint is satisfied.

The solution procedure
1) Prediction of extensive densities, by Eq. (66).

2) A first prediction of the phase velocities, Eq. (53).
Here the stress terms are treated implicitly.

3) Establishing the momentum exchange matrix
coefficients, equation (55) and (56), for the final
momentum equation.

4) Computing inverse of the A matrix for each grid cell,
Eq. (56).

5) Establish the coefficients in the relation between
final velocity and pressure update gradient, Eq. (64)

6) By using the pressure correction (update)
equation (69), compute the pressure correction
p=p-p

7) Update pressures.

8) Update all field velocities, Eq. (65).

9) Update extensive phase densities, Eq. (67).

10) Update thermodynamic properties, in particular

densities, based on new pressures (and temperatures
if the energy equation is solved for).
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11) Recalculate the right-hand side of the pressure
equation (69) using new extensive densities and field
densities, i.e., calculate the volume error for the
solution.

12) Ifthe volume error is greater than some tolerance, go
to 6).

13) Advance to next time step

Note that no iterations are needed, except possibly for the
pressure equation to reduce volume error.  Our
preliminary testing indicates, however, that most of the
time no iterations are needed. Further, the iterations
exhibit quadratic convergence, so only one or maybe two
iterations are always sufficient.

DISCUSSION

The method described above has this far only been
implemented and validated for single phase, including
moving walls. In these laminar flow test cases good
results have been obtained, and will be presented in a
separate publication (Dang, S. T. et al., 2017). In the
general case of multiple moving materials we need a
reliable method to compute interface propagation and at
the same time provide the geometric information needed
to handle the flow in the cut cells. The most promising
strategy here seems to be the level-Set-VOF method
(Chakraborty et al., 2013). As probably noted by the
reader, the discretization schemes for convection has not
been discussed in detail. SIMCOFLOW will however be
open to plugging in any scheme which is supported by
the code infrastructure. In the case of an octree grid we
may not allow the use of large grid stencils for
interpolation.

The method proposed herein will not need gridding in the
way we normally do. The entire geometry is placed inside
a cube and a regular Cartesian grid is established based
on a surface geometry file (STL format). Based on this a
level set function is established, describing the initial
geometry.

Adaptive grid refinement is being allowed, using an
octree grid arrangement. However, the code may run with
or without adaptive grids. An important design element
here is that all the moving interfaces will be on the same
grid level during one time step to facilitate high accuracy
and ease of implementation of boundary and interface
phenomena.

The SIMCOFLOW code is being designed for parallel
execution.

The results of this work will be published under a GNU
Open Source licence.

CONCLUSIONS

A method to simulate generic multi material flows in a
Cartesian framework, using a staggered grid
arrangement, is proposed.

The method is using Cartesian cut-cells, where the
volume fractions in grid cells, or the value of the level set
function, describe the positions of the materials inside the
system.

The method is capable of simulating any number of
flowing fluids, containing dispersed fields. Here the
dispersed fields may be entrained from or deposit on the
large scale interfaces.



The proposed method allows to use detailed boundary
conditions, for all fields represented, at the large scale
interfaces.

Introduction of floating objects such as boys and vessels
will be easy to integrate if these are described by a level
set function.
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