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Abstract 8 

An experimental-numerical approach is applied to determine the strain localization and 9 

ductile fracture of high-strength dual-phase and martensitic steel sheet materials. To this end, 10 

four different quasi-static material tests were performed for each material, introducing stress 11 

states ranging from simple shear to equi-biaxial tension. The tests were analysed numerically 12 

with the nonlinear finite element method to estimate the failure strain as a function of stress 13 

state. The effect of spatial discretization on the estimated failure strain was investigated. 14 

While the global response is hardly affected by the spatial discretization, the effect on the 15 

failure strain is large for tests experiencing necking instability. The result is that the estimated 16 

failure strain in the different tests scales differently with spatial discretization. Localization 17 

analysis was performed using the imperfection band approach, and applied to estimate onset 18 

of failure of the two steel sheet materials under tensile loading. The results indicate that a 19 

conservative failure criterion for ductile materials may be established from localization 20 

analysis, provided strain localization occurs prior to ductile fracture.     21 

Keywords: Ductile fracture; Stress triaxiality; Lode parameter; Finite element method, Strain localization 22 

1 Introduction 23 

The physical mechanism leading to ductile fracture in polycrystalline materials is nucleation 24 

and growth of microvoids [1, 2]. When the microvoids reach a certain volume fraction, they 25 
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induce plastic flow localization before the material is torn apart. Tekoğlu et al. [3] 26 

investigated the competition between plastic flow localization occurring either as shear 27 

banding due to material softening or as internal necking and void coalescence in the ligament 28 

between the microvoids. Onset of strain localization due to either of the two aforementioned 29 

mechanisms is influenced by the stress state. A commonly used parameter to describe the 30 

hydrostatic stress state is the stress triaxiality, , which is the ratio of the hydrostatic stress 31 

and the von Mises equivalent stress. Increased stress triaxiality increases the rate of void 32 

growth and so decreases the material’s ductility, e.g. [4-7]. Recent findings from macro-scale 33 

experiments [8-11] and unit cell models [12-14] show that the deviatoric stress state also 34 

influences the ductility at low levels of stress triaxiality. The deviatoric stress state can be 35 

described by the Lode parameter,  [15], which expresses the position of the second 36 

principal stress in relation to the major and minor principal stresses. For thin sheets in plane 37 

stress conditions, the stress triaxiality is bounded, 2 / 3 2 / 3 , and there is a relation 38 

between  and  [16]. Since structural components intended to absorb energy in accidental 39 

loading conditions for instance in cars and ships often are built up by sheets or plates, failure 40 

under plane-stress conditions is important and the influence of the plane stress state on the 41 

material’s ductility should be well understood for enhancement of future design.  42 

The most commonly used macroscopic measure to describe ductility is the equivalent plastic 43 

strain at onset of plastic flow localization or material failure, fp . For strain fields with high 44 

gradients, strain values depend strongly on the size of the region over which they are derived. 45 

In the late 19th century, Barba [17] encountered this phenomenon in uniaxial tensile tests 46 

experiencing diffuse necking and estimated the engineering failure strain by dividing the 47 

elongation into a uniform part which is independent of the gauge length and a non-uniform 48 

part which depends on the gauge length  and needs to be calibrated for a specific material. 49 

According to Barba’s law, the engineering failure strain, fe ,  in a uniaxial tension test is 50 

expressed as [17]  51 

 0

0
f u

A
e e

L
  (1) 52 

where 0A  is the initial cross section area, 0L  is the initial gauge length, ue  is the uniform 53 

engineering strain and  is a calibration constant. Modified versions of Barba’s law where 54 
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the equivalent plastic strain at failure, fp , is taken as a function of the element size have been 55 

applied in numerical simulations involving ductile fracture in large structures [18-20].  56 

Traditionally the ductility of a material at various stress states is established through an 57 

experimental-numerical approach where the strain and stress histories from the critical 58 

location in the test specimen are found from Finite Element (FE) simulations, e.g. [7, 8, 21-59 

26]. Optical measurements, using for instance Digital Image Correlation (DIC), could be 60 

applied for this purpose, but DIC measurements are limited to provide information about the 61 

kinematic fields on the surface of the specimen. On the contrary, FE simulations provide 62 

kinematic as well as kinetic fields in all parts of the specimen. FE models also have more 63 

flexibility regarding spatial discretization compared to DIC measurements, but depend on an 64 

appropriate and well-calibrated constitutive model. In general, smaller DIC elements are more 65 

prone to image noise than larger elements, while larger DIC elements are less capable of 66 

describing displacement fields with high gradients [27]. In FE simulations the lower limit of 67 

the element size is only governed by practical aspects concerning the computational time, 68 

while the upper limit follows the same restrictions as in the DIC analysis. As pointed out 69 

previously, e.g. [10, 28], a converged solution of the global response curves (e.g. the force-70 

displacement curve) does not imply a converged solution of the local deformation in the 71 

region of plastic flow localization. 72 

Ductile failure in metals is the final stage of a series of complex phenomena and is often 73 

preceded by strain localization in form of a shear band. By assuming that failure occurs 74 

shortly after the onset of localization, it is therefore possible to evaluate the ductility of a 75 

material by using a criterion for strain localization. Several criteria of this type have been 76 

proposed in the literature, some of them tailored to plane-stress states, such as the Marciniak-77 

Kuczynski approach [29], while others, such as the imperfection analysis proposed by Rice 78 

[30] and later used in several other studies, e.g. [31-35], allows for analysis of 3D stress 79 

states.  80 

In the present study, the failure strain as a function of stress state is determined for two types 81 

of advanced high-strength steel sheet materials using an experimental-numerical approach 82 

comprising four different material tests. The effect of spatial discretization in the FE 83 

simulations on the estimated failure strain is investigated by increasing the polynomial order 84 

of the elements positioned in the most severely deformed regions. This means that the failure 85 

strain and stress state are averaged over the same material volume in all cases, but the 86 
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interpolation of the displacements inside this volume varies. Localization analyses are applied 87 

to estimate failure under tensile loading and the results are compared with the failure strains 88 

obtained by means of the experimental-numerical approach.   89 

2 Experimental programme 90 

In this study, the stress-strain behaviour and ductile failure of dual-phase Docol 600DL and 91 

martensitic Docol 1400M steel sheet materials were investigated. The Docol 600 DL sheet 92 

had 1.8 mm thickness, while the thickness of the Docol 1400M sheet was 1.0 mm. Docol 93 

600DL is a low-strength, high-hardening material, where the ferrite gives good formability 94 

and the martensite provides increased strength. Docol 1400M is a high-strength steel where 95 

very fast water quenching from the austenitic temperature range produces the high strength. 96 

Uniaxial tensile tests carried out on tensile specimens cut out at 0°, 45° and 90° to the rolling 97 

direction were presented in [36]. Both materials were found to be nearly isotropic.  98 

All tests were carried out at room temperature under quasi-static loading conditions. The 99 

uniaxial tension and in-plane simple shear tests were presented in [36] and used to calibrate 100 

constitutive models. These tests are described here with more emphasis on ductility. The four 101 

selected tests provide a wide range of stress states before onset of fracture. Some of these tests 102 

exhibit nearly proportional loading and others non-proportional loading due to diffuse and/or 103 

local necking.  104 

2.1 Optical measurements  105 

All the tests were recorded by digital cameras. One camera was used for 2D measurements 106 

and two cameras for 3D measurements of the displacement field on the surface of the 107 

specimens. The cameras were of the type Prosilica GC2450 equipped with 50 mm Nikon 108 

lenses. Before testing a combination of black and white paint was spray-painted on the side of 109 

the specimen facing the camera(s), thus obtaining a high-contrast speckle pattern which 110 

improved the optical measurements. The displacement fields and the associated strain fields 111 

on the surface of the specimen were extracted from the images by applying an in-house finite 112 

element based DIC software which employs initially square bilinear Q4 elements [27]. As an 113 

experimental measure of the material’s ductility in the different tests, the strain magnitude 114 

field was calculated. The strain magnitude (or effective strain) at a given point is here defined 115 

as 116 
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where ln ( )i i , 1, 2i , are the logarithmic in-plane principal strains, where 2
i  are the 118 

eigenvalues of the right Cauchy-Green deformation tensor. The through-thickness principal 119 

strain is estimated as 3 1 2( )  based on plastic incompressibility and by neglecting 120 

elastic deformations. 121 

2.2 Uniaxial tension tests 122 

The nominal geometry of the uniaxial tension (UT) test specimen is given in Fig. 1(a). Three 123 

parallel tests were carried out under displacement control in a hydraulic Zwick/Roell tensile 124 

testing machine with a capacity of 30 kN. The loading rate was 4 mm/min, thus providing a 125 

strain rate before necking of 3 11.0 10  s . The tests were performed with tension along the 126 

rolling direction of the sheet. The force was measured by a load cell in the hydraulic actuator, 127 

while displacements were collected by a virtual extensometer based on DIC with initial length 128 

0 60 mmL , see Fig. 2(a). The engineering stress, s , and engineering strain, e , were 129 

calculated as 0/s F A  and 0 0( ) /e L L L , where F is the force measured by the load cell, 130 

0A  is the measured initial cross-section area of the specimen, and L  is the extensometer 131 

gauge length. Fig. 3(a) and (e) show the engineering stress-strain curves for Docol 600DL and 132 

Docol 1400M, respectively. 133 

The tests were recorded at a frequency of 2 images per second, and the strains were calculated 134 

from the displacement field using an initial nodal spacing of 1.2 mm. The strain magnitude 135 

field in the last image before fracture, f
e , of one of the duplicates is shown in Fig. 4(a) and 136 

(e) for Docol 600DL and Docol 1400M, respectively. As can be seen, the main deformation 137 

mode before fracture is diffuse necking in the test on Docol 600DL, while the specimen made 138 

of Docol 1400M fractures along a local neck. The maximum strain magnitude is ~0.7 for 139 

Docol 600DL and ~0.4 for Docol 1400M. 140 

2.3 Plane-strain tension tests 141 

The plane-strain tension (PST) tests were conducted in an Instron 5900 hydraulic tensile 142 

testing machine. The hydraulic actuator had a loading rate of 0.9 mm/min which gave an 143 

initial strain rate in the gauge area of 3 11.0 10  s . The nominal geometry of the PST 144 

specimen is illustrated in Fig. 1(b). The specimens were cut out with the longitudinal axis in 145 

the rolling direction of the sheet. A virtual extensometer with an initial length of 18.5 mm was 146 
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applied to collect the displacements, see Fig. 2(b), while the force was measured by the load 147 

cell of the hydraulic testing machine, using a synchronized logging with frequency 2 Hz. To 148 

account for variations in the initial cross-section, a normalized force was calculated as 0/F A , 149 

where F is the measured force in the load cell and 0A  is the measured initial cross-section of 150 

the specimen.  151 

The normalized force versus displacement curves from the three parallel tests of the two 152 

materials are given in Fig. 3(b) and (f). Two of the tests on the 1400M material displayed 153 

larger displacement at failure than the third. From the camera recordings, it was observed that 154 

this was due to a minor misalignment in the two tests, which again led to a slightly different 155 

stress-state during deformation and larger ductility. Fig. 4(b) and (f) display the strain 156 

magnitude field in the last image before onset of fracture in a selected test for Docol 600DL 157 

and the test without misalignment for Docol 1400M. The initial distance between the nodes in 158 

the DIC meshes was 1.0 mm. The resulting strain magnitude before fracture was ~0.5 and 159 

~0.2 for the dual-phase and martensitic steels, respectively. 160 

2.4 In-plane simple shear tests 161 

The in-plane simple shear (ISS) tests were conducted under displacement control in the same 162 

Zwick/Roell tensile test machine used for the UT tests. The applied loading rate was 0.3 163 

mm/min which gave an initial strain rate of 3 11.0 10  s . The specimens were cut so that the 164 

longitudinal axis corresponds to the rolling direction of the sheet. Fig. 1(c) presents the 165 

geometry of the ISS specimen. A virtual extensometer measured the displacement near the 166 

gauge area, see Fig. 2(c), while the force was measured by the load cell in the hydraulic 167 

testing machine. The normalized force versus displacement curves from the three parallel tests 168 

are given in Fig. 3(c) and (g), where the normalized force 0/F A  is the ratio between the 169 

measured force F  and the initial gauge area 0A  of the shear test specimen.  170 

The camera was recording the tests at a framing rate of 1 Hz, and the initial nodal spacing in 171 

the DIC grid was 0.5 mm. The strain magnitude field in the last image before onset of fracture 172 

was ~1.0 for Docol 600DL and ~0.60 for Docol 1400M, as shown in Fig. 4(c) and (g). 173 

Evidently the gauge zone has rotated before failure and the strain localizes in a thin band 174 

inclined with respect to the loading direction. 175 
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2.5 Nakajima tests 176 

The Nakajima test set-up [37] was applied with specimens designed to obtain equi-biaxial 177 

tension. Four parallel Nakajima (NK) tests were carried out in a Zwick/Roell BUP 600 test 178 

machine under displacement control with a punch velocity of 0.3 mm/s. The specimen 179 

geometry is presented in Fig. 1(d), while Fig. 1(e) shows the specimen clamped between the 180 

die and the blank holder and loaded by the punch. The clamping force can be altered, and the 181 

appropriate value may vary for different materials and sheet thicknesses. In this study, the 182 

clamping force was set to 360 kN in the tests on Docol 600DL and 200 kN in the test on 183 

Docol 1400M. To ensure failure close to the centre of the specimen, the punch was lubricated 184 

with grease before a 0.1 mm thick layer of Teflon was placed between the punch and the 185 

specimen. The force and displacement of the punch were recorded by the testing machine. 186 

Fig. 3(d) and (h) give the force-displacement curves obtained from the tests.  187 

To capture the out-of-plane deformation, two cameras were used to record images of the 188 

experiments at a framing rate of 2 Hz. A grid with an initial nodal spacing of 1.3 mm was 189 

applied in recording the displacement fields and deriving the strain fields on the surface of the 190 

specimen. As shown in Fig. 4(d) and (h), the strain magnitude is ~1.0 for the dual-phase steel 191 

and ~0.50 for the martensitic steel just before fracture. 192 

3 Modelling and simulation 193 

Modelling and simulation of the experimental tests were carried out with the nonlinear 194 

explicit finite element programme IMPETUS AFEA [38].  195 

3.1 Constitutive model 196 

Constitutive models of the steel sheet materials were calibrated in [36], adopting the high-197 

exponent Hershey yield function [39] with associated plastic flow and isotropic hardening. 198 

The dynamic yield function is given by 199 

 , 0ff p pσ 0p   (3)200 

 
1

1
2

m m m m
eq I II II III I IIIσ   (4)201 
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where I II III  are the ordered principal stresses, m  is an exponent controlling the 203 

shape of the yield surface, pp  is the equivalent plastic strain-rate which is power conjugate 204 

with the equivalent stress, eq σ , and p pdtpdt   is the equivalent plastic strain. Further, 205 

f  is the flow stress, 0  is the initial yield stress, iQ  and iC  ( 1, 2,3)i  are parameters 206 

governing the work hardening, whereas c  and 0p0p  are parameters controlling the rate 207 

sensitivity. The identified model parameters are given in Table 1. In order to eliminate the 208 

need of a geometrical trigger in the FE model to capture the correct position of the diffuse 209 

neck in the simulations of the uniaxial tension tests, the reference strain rates, 0p0p , in Table 1 210 

are somewhat larger than those reported in [36].    211 

3.2 Finite element models 212 

Solid elements were used to discretize the test specimens in the finite element (FE) models. 213 

Fig. 5 shows the meshes of the four specimens. The FE models utilized symmetry planes in 214 

order to reduce the computational time. All applied symmetry planes are indicated in Fig. 5, 215 

except for the ones in the through-thickness direction utilized in the UT, PST and ISS models. 216 

The UT, PST and NK models were given a refined mesh in the region subjected to the largest 217 

deformations, see Fig. 5(a), (b) and (e). In all models, the region subjected to the largest 218 

deformation was discretized by hexahedral elements with an in-plane size of 0.25 mm and 6 219 

elements in the thickness direction, i.e., an initial element height of 0.30 mm for the dual-220 

phase sheet and 0.17 mm for the martensitic sheet. In order to investigate the effect of spatial 221 

discretization on the ductility assessments while retaining the same gauge volume, 222 

simulations were run with elements possessing linear, quadratic and cubic shape functions in 223 

the fine-mesh regions. By applying p-refinement, the element configuration was the same in 224 

the three runs of each test. All three element types follow a Gauss-Legendre quadrature. The 225 

linear elements have selectively reduced integration, while the quadratic and cubic elements 226 

are fully integrated. The linear element has 32 8  nodes, the quadratic element has 33 27  227 

nodes and the cubic element has 34 64  nodes.  228 

Since IMPETUS AFEA follows an explicit time integration scheme, uniform mass scaling 229 

was applied to increase the critical time step in the simulations. The amount of mass scaling 230 

was independent of polynomial order, and the initial stable time step in the simulations of the 231 

martensitic steel sheet, crt , was 45.0 10 , 44.0 10  and 43.5 10  s  for elements with linear, 232 

quadratic and cubic shape functions respectively, while crt  in the simulations of the dual-233 
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phase steel sheet was approximately two times larger than these values. It was checked in all 234 

simulations that the kinetic energy was negligible compared with the internal energy, thus 235 

ensuring a quasi-static loading process.  236 

In the simulations of the uniaxial tension and plane-strain tension tests, the loading was a 237 

prescribed velocity applied to rigid body (RB) parts positioned an appropriate distance from 238 

the gauge region, see Fig. 5(a) and (b). The prescribed velocity was ramped up over the first 239 

15 s of the simulation using a smooth transition function. In the simulations of the in-plane 240 

simple shear test, prescribed displacements collected from DIC measurements obtained in one 241 

experimental duplicate were applied as local boundary conditions on nodes close to the gauge 242 

region. Here the same in-plane loading was applied through the thickness of the FE model. 243 

This method ensured correct rotation of the gauge region. In the simulations of the Nakajima 244 

tests, a Coulomb friction model with a tangential friction coefficient of 0.01 was applied in 245 

the punch-specimen interface. The draw-bead was not included in the model as it was found 246 

that constraining the outermost nodes of the specimen from in-plane movement and 247 

specifying a tangential friction coefficient of 0.4 for the specimen-blank holder and specimen-248 

die interfaces gave appropriate boundary conditions. The upper part of the die and the lower 249 

part of the blank holder were constrained to avoid translational displacement. Loading was 250 

applied by ramping up the punch velocity to 0.3 mm/s over the first 15 s by use of a smooth 251 

transition function. 252 

3.3 Localization analysis 253 

We consider a homogeneously deformed body in which a thin planar band with a small 254 

imperfection is present. The stress and strain rates as well as the constitutive relations inside 255 

this band are allowed to be different from those outside the band, but equilibrium across the 256 

band is enforced. The equations for continuing equilibrium are expressed as [30]  257 

 0 0  bn P n PP n P0b   (6)258 

where 0n  is the normal to the band expressed in the reference configuration and PP  is the rate 259 

of the nominal stress tensor. The subscript b denotes a quantity inside the band. Compatibility 260 

implies that the velocity field can only vary along the normal direction of the planar band and 261 

thus  262 

  bL L q nq n   (7)263 
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where bL  and L  are the velocity gradient tensors respectively inside and outside the band, n  264 

is the normal of the band in the current configuration, and qq  is a vector that represents the 265 

rate of the deformation non-uniformity. Assuming rate-independent plasticity and adopting an 266 

updated Lagrangian formulation, where the reference configuration is taken to coincide 267 

momentarily with the current configuration, the rate constitutive equations may be expressed 268 

in the form 269 

 : and :t t
b b bP C L P C Lt td bP C C L: and :dt : andd :: andand   (8)270 

where tC  and t
bC  are the continuum tangent operators outside and inside the band, 271 

respectively (see [30-32] for details).  272 

Loss of ellipticity, or strain localization, occurs when the acoustic tensor t t
bA n n C n  273 

becomes singular [30], viz. 274 

 det  0t
bn C n   (9)275 

For material undergoing associated plastic flow, this condition is not met unless strain 276 

softening is present in the constitutive response of the material or in the imperfection band for 277 

this particular case. Strain softening in ductile metals is often linked to damage evolution 278 

and/or thermal softening. In this study, the Gurson model [40] for porous plasticity is adopted 279 

to model the material behaviour inside the band, thus to describe strain softening due to void 280 

growth and eventually loss of ellipticity inside the band. The Gurson model is an appealing 281 

approach to include strain softening into a constitutive model due to its limited number of 282 

parameters.  283 

The yield function of the Gurson model is defined as [40, 41] 284 

 
2

2
1 2 32

3 :   2 cosh  1  0
2M M

f q q q
σ σ I   (10)285 

where eq σ  is the equivalent stress, M  is the flow stress of the matrix,  is the 286 

porosity and I  is the second-order identity tensor. The material parameters of the Gurson 287 

model are taken from Tvergaard [41]: 1 1.5q , 2 1.0q  and 3 2.25q . The work hardening 288 

of the matrix material is described by Eq. (5), using the parameters in Table 1, but the rate-289 

sensitivity is neglected in the localization analysis. This will result in more conservative 290 

results for the strain at localization. Since the Hershey yield function is adopted for the steel 291 

sheet materials, a heuristic modification of the Gurson model is implemented. The von Mises 292 
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equivalent stress used in the original Gurson model is replaced with the Hershey equivalent 293 

stress as defined by Eq. (4). Steglich et al. [42] employed a similar type of heuristic 294 

modification of the Gurson model using the high-exponent Bron-Besson yield function for 295 

anisotropic materials.  296 

When using the Gurson model to describe strain softening, the porosity  requires an initial 297 

value 0  as well as an evolution rule. In the literature, the void evolution rule is usually 298 

decomposed as follows 299 

    g n sg n s g nn     (11)300 

where gg  is the void growth linked to the volumetric plastic strain rate, as obtained from the 301 

associated flow rule, nn  is related to the nucleation of voids, and ss  corresponds to the 302 

shearing of voids. While the growth and nucleation of voids are well-established phenomena 303 

[43], the shearing of voids has been proposed quite recently [34] and is still under discussion 304 

[44, 45]. Shearing of voids is assumed to be an important feature to describe ductile failure 305 

under low stress triaxiality (typically close to pure shear). Several studies in the literature have 306 

applied the Gurson model to dual-phase steels [46, 47] and the initial void content 0  is 307 

usually small (between 0 and 51 10 ). Void nucleation in dual-phase steels can be linked to 308 

debonding between the ferrite and martensite [48]. To limit the complexity of the strain-309 

softening model of this study, it was chosen to exclude void nucleation and void shearing—310 

and thus only to include void growth. The implication is that failure under low triaxiality 311 

cannot be predicted. The initial porosity 0  is considered here as an initial imperfection. 312 

Hence, the physical relevance of  becomes less clear. To some extent, this simplification 313 

can be related to the initial imperfection of the Marciniak-Kuczynski analysis [29].  314 

The localization analyses are carried out using the velocity gradient L  extracted from the 315 

finite element simulations in the elements where failure is assumed to occur. Based on these 316 

data, the stress state outside the band was re-computed assuming rate-independent plasticity 317 

by a stand-alone FORTRAN code. The same solver was used to enforce equilibrium for the 318 

imperfection band, to determine its local stress state and to estimate loss of ellipticity. Due to 319 

the numerical aspects of the localization analysis, loss of ellipticity is assumed to occur when 320 

the determinant of the acoustic tensor becomes negative. A schematic illustration of the 321 

procedure is given in Fig. 6. The band orientation in the reference configuration is given by its 322 

unit normal vector 323 
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0

0 0 0

0 0

cos
 cos sin

sin sin
n   (12) 324 

where 0 20,  and 0 0,2  are the polar and azimuthal angles of a spherical 325 

coordinate system with 1 2 3, ,X X X  axes aligned with the rolling direction (RD), in-plane 326 

transverse direction (TD) and normal direction (ND) of the sheet material, respectively. To 327 

find the minimum ductility, several bands are spread in the 0 0,  space and the one 328 

producing the lowest strain at localization is chosen as the critical one. This operation is 329 

repeated iteratively, narrowing down the range of angles at each iteration. This leads to a sub-330 

degree accuracy on the orientation of the critical band and a converged localization strain to 331 

within 41 10 . 332 

By extracting the velocity gradient L  from the numerical simulations at 1000 equi-distant 333 

points of time instead of each time step, the size of the strain increments in the localization 334 

analysis varied. To limit the effect of this time discretisation, a sub-stepping scheme was used 335 

in which the norm of the strain increment in the sub-steps was set to 51 10  and thus good  336 

accuracy of the stress update algorithm and the localization analysis was ensured [49]. 337 

4 Results and discussion 338 

The experimental-numerical approach adopted in the present study follows a much used 339 

methodology, e.g. [8, 22], where the global response curve from the test is compared with the 340 

corresponding response curve in the simulation to establish the time at onset of fracture in the 341 

simulation, ft . Fig. 3 shows the global response curves from the experiments up to fracture 342 

together with the corresponding results from the numerical simulations. For each of the tests, 343 

the response curves in the simulations with the three element types are plotted up to the same 344 

time instant defined by ft . This time instant was chosen to minimize the difference between 345 

the average experimental and numerical force and displacement at failure. Note that for the 346 

PST simulation of the 1400M material, ft  is defined from the test assumed to be closest to a 347 

plane-strain tension stress-state. The inserts show the final part of the response curves from 348 

simulations and experiments. As can be seen, the strains (or the displacements) at ft  in the 349 

simulations with different element types are very similar for all tests, which was expected 350 
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since loading was applied under displacement control. On the other hand, the difference in the 351 

stresses (or the forces) between the linear and cubic element simulations is ~5% for the UT 352 

simulations and the PST simulation for Docol 1400M, while the PST simulation for Docol 353 

600DL and the ISS simulations display a difference of ~2%. The simulated global response of 354 

the NK tests is independent of the discretization. This shows that the global response curves 355 

converge more rapidly in the ISS and NK simulations than in the UT and PST simulations, 356 

which are dominated by diffuse and/or local necking before onset of fracture. However, all 357 

the linear element simulations may be considered to give a solution that is close to 358 

convergence in terms of the global response. 359 

For each simulation, the element in the FE model with the position corresponding to the 360 

location of fracture initiation in the experiment was identified. The positions of the critical 361 

element are marked by arrows in Fig. 7. Only the in-plane location of fracture initiation was 362 

determined from the experiments. In the FE models, the element in the through-thickness 363 

direction experiencing the largest equivalent plastic strain was chosen as the critical element. 364 

In the UT and PST simulations, this element was located in the centre of the specimen, while 365 

in the ISS and NK simulations it was located on the surface of the specimen, although the 366 

through-thickness gradient in the equivalent plastic strain was small in the ISS and NK 367 

specimens, see Fig. 7.  368 

The evolutions of the stress tensor and the equivalent plastic strain with time were collected 369 

from each integration point in the critical element. From the collected history of the stress 370 

tensor, the histories of the stress triaxiality, ( )i t , and the Lode parameter, ( )i t , were 371 

calculated for each integration point as 372 

 , , ,

,

( ) ( ) ( )
( )

3 ( )
I i II i III i

i
VM i

t t t
t

t
  (13) 373 

 , , ,

, ,

2 ( ) ( ) ( )
( )

( ) ( )
II i I i III i

i
I i III i

t t t
t

t t
  (14) 374 

where VM  is the von Mises equivalent stress. In Eqs. (13) and (14), the subscript i  denotes 375 

the integration point number. For the linear elements the total number of integration points is 376 

8ipn , while for the quadratic and cubic elements ipn  equals 27 and 64, respectively. In 377 

order to evaluate the effect of p-refinement on the material volume represented by the critical 378 
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elements, the average values of the equivalent plastic strain, ( )p t , stress triaxiality ( )t  and 379 

Lode parameter ( )t  for each critical element were calculated as 380 

 
1 1 1

1 1 1( ) ( ),    ( ) ( ),    ( ) ( )
ip ip ipn n n

i i i i i i
i i i

p t V p t t V t t V t
V V V

  (15) 381 

where 1
ipn

i iV V  is the element volume and iV  is the volume represented by integration point 382 

i . It is noted that p-refinement leads to higher DOF density, which is equivalent to refining 383 

the spatial discretization. Thus the effect of p-refinement is in the following referred to as the 384 

effect of spatial discretization.  385 

Fig. 8 shows the equivalent plastic strain as a function of stress triaxiality and Lode parameter 386 

up to onset of fracture, defined by ( )f fp t p . Table 2 compiles the failure strains fp  387 

together with the average values of the stress triaxiality, avg , and the Lode parameter, avg , 388 

which are defined as 389 

 
0 0

1 1,       
f fp p

avg avg
f f

dp dp
p p

  (16) 390 

The average values of stress triaxiality and Lode parameter are plotted in Fig. 9 together with 391 

the plane stress locus to illustrate how the tests are distributed in stress space. It is noted that 392 

the different element types lead to somewhat different values of the average stress state 393 

parameters. As shown in Fig. 8 and Table 2, the dual-phase steel displays a more ductile 394 

behaviour than the martensitic steel, which is coherent with the experimental results presented 395 

in Fig. 4. Further Fig. 8 shows that the simulations of the NK tests display a more 396 

proportional load history than the simulations of the other tests. The simulations of the ISS 397 

tests of the dual-phase steel start in compression and moves into tension, while for the 398 

martensitic steel the ISS simulations are in tension during the whole simulation. The 399 

discrepancy in stress-state history between the ISS simulations of the two materials is mainly 400 

related to the difference in the positions of the critical elements, see Fig. 7(c) and (g). It is 401 

noted that the quadratic and cubic elements are more prone to volumetric locking than the 402 

linear element which applies reduced integration. The kink in the p -  curve and the 403 

relatively low fp  value for the UT simulation with cubic elements seen in Fig. 8 (b) may 404 

stem from volumetric locking effects. 405 
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For both materials, the ISS simulations only display a small variation in fp  for the different 406 

element types, while in the NK simulations the variation in fp  with spatial discretization is 407 

negligible. The largest dependence on spatial discretization is found in the UT and PST 408 

simulations, where the specimens experience necking instability. In these instances, the ratio 409 

between the failure strains obtained in simulations with cubic and linear elements is ~1.25 and 410 

~1.5 for the dual-phase and martensitic steels, respectively. Clearly a positive correlation is 411 

present between the convergence rates of the global response curves and the local strain 412 

values. Note that the failure strain in the linear, quadratic and cubic element simulations is 413 

based on the average failure strain within the element following Eq. (15), and that a larger 414 

difference is present between the maximum failure strains found within the elements with 415 

different p-order.  416 

Fig. 7 shows contour plots of the equivalent plastic strain before estimated onset of fracture in 417 

the simulations with cubic elements. The strains are more localized in the martensitic steel 418 

than in the dual-phase steel, which was also seen experimentally, cf. Fig. 4. As can be 419 

observed from Fig. 7(a) and (e), the UT specimens display high gradients in the strain fields 420 

along the thickness, width and longitudinal directions around the critical element, while Fig. 421 

7(b) and (f) show that the PST specimens display high strain gradients in the thickness and 422 

longitudinal directions in the vicinity of the critical element. For the ISS specimens in Fig. 423 

7(c) and (g), the critical element experiences high strain gradients only in the in-plane 424 

transverse direction, while the critical element in the NK specimens is not subjected to high 425 

gradients in the strain fields, as shown in Fig. 7(d) and (h). The equivalent plastic strain in the 426 

critical elements of the ISS specimens is not sensitive to spatial discretization despite having 427 

high strain gradients along one axis, thus the mesh dependence of the failure strain fp  seems 428 

to be linked to the necking instability observed in the UT and PST tests or the presence of 429 

high multi-axial strain gradients. This implies that scaling a failure strain based on spatial 430 

discretization or gauge length alone, as in some versions of Barba’s law, does not necessarily 431 

lead to accurate fracture initiation predictions, since material points exposed to necking 432 

instability are more sensitive to length scale effects. 433 

The localization analysis was carried out by post-processing results from the FE simulations 434 

with cubic elements, as these are assumed to provide the most accurate results. As seen in Fig. 435 

8(b), the simulation of the uniaxial tension tests of the Docol 1400M exhibits some kind of 436 

volumetric locking towards the end of the deformation process. The effect of this volumetric 437 
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locking was a drop in the stress triaxiality which may affect the strain localization. This was 438 

checked by carrying out localization analysis based on the data extracted from the simulation 439 

of the uniaxial tensile test for Docol 1400M with quadratic elements. No large differences 440 

were observed, and therefore, all the results presented below are based on simulations with 441 

cubic elements. The failure strains, or localization strains, given below are defined as the 442 

equivalent plastic strains computed outside the band at loss of ellipticity. Since neither void 443 

nucleation nor void shearing was included in the Gurson model used for the material in the 444 

imperfection band, it was not possible to conduct the localization analysis for the in-plane 445 

simple shear tests due to the low stress triaxiality.  446 

A parametric study was carried out to find an appropriate size of the initial imperfection 0 , 447 

which gives the best overall agreement with the experimental results. It was tentatively 448 

assumed in these simulations that material failure in the experiments was caused by strain 449 

localization. For Docol 600DL an initial imperfection of 0.0027 was found, while for Docol 450 

1400M 0  was estimated to 0.002. Note that the initial imperfection was identified using the 451 

results of finite element simulation and is most-likely mesh dependent. 452 

The resulting failure strains are shown in Fig. 10(a) for Docol 600DL and in Fig. 10 (b) for 453 

Docol 1400M, labelled by strain control, i.e., with the velocity gradient collected from the FE 454 

simulations. The corresponding failure predictions are represented by red triangles in the 455 

force-displacement curves in Fig. 3. While there are marked differences between the predicted 456 

localization strains and the failure strains obtained by the experimental-numerical method in 457 

Fig. 10, the displacement at failure in the tests in Fig. 3 is predicted with reasonable accuracy. 458 

The accuracy is particularly good for Docol 600DL, while for Docol 1400M the result is non-459 

conservative for the NK tests. In plane-strain tension, the localization analysis gives 460 

somewhat conservative prediction for both Docol 600DL and Docol 1400M. With regards to 461 

the NK tests for Docol 1400M, ductile failure could take place before strain localization [3] 462 

and therefore the proposed approach would overestimate the ductility of the material. Another 463 

possible explanation could be that the low work-hardening of Docol 1400DL makes the NK 464 

tests more sensitive to small imperfections on the surface of the specimens. As the finite 465 

element models are built assuming a perfect surface geometry, the ductility would then be 466 

overestimated. 467 

The through-thickness inclination of the critical band for the two different steel grades and the 468 

three different material tests are given in Table 3. At localization, the azimuth angle  is 469 
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equal to 90° for the UT and PST tests, while it is indeterminate for the NK test as the in-plane 470 

principal stresses are equal. It was concluded by Rudnicki and Rice [50] that localization 471 

under ordinary conditions takes place within a planar band with normal in the plane defined 472 

by the major and minor principal stress directions for isotropic materials. Both for the UT and 473 

PST tests, the 2X  axis coincides with the intermediate principal stress direction in the critical 474 

element towards localization. Note that after necking the stress state is not uniaxial in the 475 

critical location of the UT test specimen, see also Fig. 8.  The polar angle  is ~45° for all 476 

cases, i.e., the localization occurs in a planar band with normal lying in the 1 3X X  plane and 477 

making an angle of about 45° with the 1X  axis (RD).  478 

While material tests usually produce non-proportional loadings locally, it is not unusual to 479 

average the stress state parameters, cf. Eqn. (16). By running localization analyses with a 480 

prescribed constant stress state outside the band, it is possible to evaluate the effect of having 481 

a proportional load path on the failure strain. This is carried out using the same approach as in 482 

Nahshon and Hutchinson [34]. The average stress triaxiality and Lode parameter listed in 483 

Table 2 are then applied outside the bands and the material is strained until loss of ellipticity 484 

occurs. To get the same accuracy as in the previous section the strain increments are 485 

controlled to be equal to 51 10 . Fig. 10 shows the results of averaging the stress state 486 

outside the band on the strain at localization (labelled stress control). While the stress-state 487 

averaging has minor influence for the PST tests and the NK tests, it has a strong impact on the 488 

predicted localization strain in the UT tests. This effect might be explained by the stress state 489 

evolution shown in Fig. 8. In the UT tests, the local stress state is drifting towards plane strain 490 

tension. By enforcing a constant stress state outside the band further away from 0 , 491 

localization is delayed and the ductility is therefore increased. For the PST and NK tests, the 492 

averaged stress state is close to the actual one in the last stage before failure. As a result, the 493 

failure strain obtained under proportional loading is very similar to that obtained under the 494 

non-proportional load path.  495 

Fig. 11 shows some details from the localization analyses performed for the Docol 600DL 496 

under strain control. Results from the critical bands and the material both outside and inside 497 

these bands are shown in the figure. Similar results were found for Docol 1400M. Fig. 11(a) 498 

illustrates the stress-strain behaviour (in terms of the von Mises equivalent stress), while Fig. 499 

11(b) shows the evolution of the hydrostatic stress. The material inside the band has an initial 500 

work-hardening rate similar to the material outside due to the low value of the initial damage, 501 
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but damage growth eventually lowers the work-hardening inside the band. Strain localization 502 

occurs when the work-hardening rate is negative for the UT and NK tests, while it is equal to 503 

zero for the PST test. The hydrostatic stress also shows different evolutions inside and outside 504 

the band. The band exhibits a larger pressure in the case of the UT and PST tests, while a 505 

lower pressure is observed for the NK test. 506 

The evolutions of the equivalent plastic strain inside the critical band as a function of the 507 

Lode parameter and the stress triaxiality are shown in Fig. 11(c) and (d), respectively. The 508 

band follows the load path imposed by the outside material until the stress state drifts away 509 

and loss of ellipticity occurs. While the stress states inside the band at localization do not 510 

follow any specific trends in terms of stress triaxiality, the Lode parameter at localization is 511 

always close to zero (implying a generalized shear stress state) independently of the stress 512 

state outside the band. Since shear banding occurs more readily under generalized shear stress 513 

states, the band tries to reach this region of the stress space. This observation also supports the 514 

strong differences observed for the proportional and non-proportional loading of the UT test 515 

(cf. Fig. 10). In the strain-controlled analysis of the UT test, the stress state outside the band is 516 

already moving towards a generalized shear stress state, which promotes localization inside 517 

the band. Whereas in the stress-controlled loading, the Lode parameter is constant outside the 518 

band and consequently the band has to undergo more deformation to reach a generalized shear 519 

stress state. Thus, the apparent ductility of the material is larger when a proportional loading 520 

is applied. 521 

Assuming that the localization analyses are able to represent the ductile failure mechanism, it 522 

is interesting to evaluate the shape of the failure locus of Docol 600DL. Fig. 12(a) shows the 523 

equivalent plastic strain obtained outside the band at localization under proportional loading 524 

and plane-stress conditions with stress triaxiality ranging from 0.45 to 0.66. The resulting 525 

failure locus shows the typical trends observed in ductile failure of metals with a plane-strain 526 

tension valley marked by a reduction of the ductility towards plane-strain tension and an 527 

increased ductility towards uniaxial and equi-biaxial tension, see e.g. [51]. A strong 528 

dissymmetry in terms of the Lode parameter is also present even if the constitutive model 529 

adopted for the material inside and outside the band has a symmetric dependency of this 530 

parameter. Similar observations were made by Dunand and Mohr [14] and Fourmeau et al. 531 

[52]. In terms of local stress states, Fig. 12(b) shows the evolution of the stress triaxiality and 532 

Lode parameter inside the band in red compared to the plane stress locus and stress states 533 

outside the band in black. As observed in Fig. 11(c) and (d), the stress state inside the band is 534 
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always drifting away from the one imposed by the outside material towards generalized shear 535 

stress states. Strong deviations are also present in terms of stress triaxiality, and at localization 536 

the stress state is close to plane-strain tension, which is a generalized shear stress state.  537 

Conclusions 538 

An experimental programme was conducted on dual-phase and martensitic steel sheet 539 

materials comprising four material tests with stress states ranging from simple shear to equi-540 

biaxial tension. The failure strain of the steel sheet materials was estimated using an 541 

experimental-numerical approach and the sensitivity of the ductility on the spatial 542 

discretization in the various tests was studied. It is found that the dual-phase steel displays a 543 

more ductile behaviour than the martensitic steel, and the strains are more localized in the test 544 

specimens made of the martensitic steel. Further, the estimated failure strain in the uniaxial 545 

tension and plane-strain tension tests is significantly influenced by the spatial discretization, 546 

which is in contrast to what was observed in the in-plane simple shear and equi-biaxial 547 

tension tests. The dependence of the estimated failure strain on spatial discretization, or length 548 

scale, is not related to high strain gradients alone. Also the shear specimens experience high 549 

gradients in the strain field, but only along the in-plane transverse direction and in this case 550 

the mesh dependence is minor. However, a strong dependence of the spatial discretization 551 

seems to be related to the presence of necking instabilities or high multi-axial strain gradients 552 

which occur in the uniaxial tension and plane-strain tension tests. The different mesh 553 

sensitivity of the estimated failure strain in the various tests implies that a simple scaling of 554 

the failure locus, e.g. according to a version of Barba’s law, may lead to significant 555 

inaccuracies in simulation of fracture initiation. Applying an imperfection band approach in 556 

combination with the Gurson model, localization analysis was used to estimate the strain at 557 

localization in the uniaxial tension, plane-strain tension and Nakajima tests. The obtained 558 

results were promising and indicate that localization analysis may be used to establish a 559 

conservative failure criterion for ductile materials, provided strain localization occurs prior to 560 

ductile fracture. The analyses show that the stress state inside the band tends to move towards 561 

generalized shear before onset of localization.  562 
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Tables and figures 701 

Table 1 Constitutive model parameters for the two materials.  702 
Material 

0  [MPa] 1 [MPa]Q 1C  2  [MPa]Q 2C  3  [MPa]Q 3C  
1

0  [s ]p 1
0 [s ]1p c m 

600DL 317 201 38.4 348 5.00 6000 1.00∙10-2 3.0∙10-3 9.0∙10-3 6.0 

1400M 1200 254 774 97.0 135 200 6.00 1.0∙10-1 4.0∙10-3 6.0 

 703 

Table 2 Failure strain, fp , average stress triaxiality, avg , and average Lode parameter, avg , 704 

obtained with the experimental-numerical approach. 705 
 706 
Material Variable p-order UT PST ISS NK 

 

 

Docol 

600DL 

fp  1-linear 0.772 0.645 0.982 0.994 

2-quadratic 0.853 0.733 0.989 0.997 

3-cubic 0.995 0.773 0.996 0.999 

avg  1-linear 0.403 0.574 0.025 0.661 

2-quadratic 0.426 0.600 0.052 0.665 

3-cubic 0.468 0.610 0.042 0.665 

avg  1-linear -0.814 -0.186 -0.061 0.938 

2-quadratic -0.765 -0.155 -0.036 0.938 

3-cubic -0.683 -0.144 -0.110 0.937 

 

 

Docol 

1400M 

fp  1-linear 0.619 0.266 0.750 0.594 

2-quadratic 0.809 0.391 0.792 0.592 

3-cubic 0.854 0.427 0.763 0.592 

avg  1-linear 0.473 0.597 0.094 0.664 

2-quadratic 0.523 0.635 0.118 0.663 

3-cubic 0.516 0.647 0.129 0.662 

avg  1-linear -0.686 -0.084 -0.232 0.998 

2-quadratic -0.622 -0.051 -0.291 0.998 

3-cubic -0.593 -0.046 -0.310 0.998 
  707 
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Table 3 Through-thickness inclination (or polar angle ) of planer band at localization. 708 

Specimen Docol 600DL Docol 1400M 

UT 44.00° 45.04° 

PST 44.31° 44.56° 

NK 43.85° 44.35° 

 709 
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 710 

Fig. 1 Nominal specimen geometry: (a) uniaxial tension test, (b) plane-strain tension test, (c) 711 
in-plane simple shear test and (d) equi-biaxial Nakajima test. Details of the Nakajima 712 
set-up are shown in (e).  713 

 714 
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 715 

Fig. 2 Position of virtual extensometer in (a) uniaxial tension test, (b) plane-strain tension 716 
test and (c) in-plane simple shear test. 717 

  718 
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 756 
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 758 
 759 
Fig. 3 Global response curves from experiments and FE simulations of (a)-(d) Docol 600DL 760 

and (e)-(h) Docol 1400M: (a),(e) engineering stress-strain curves in uniaxial tension; 761 
(b),(f) normalized force versus displacement curves in plane-strain tension; (c),(g) 762 
normalized force versus displacement curves in in-plane simple shear; (d),(h) force-763 
displacement curves from Nakajima tests in equi-biaxial tension.  764 

 765 
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 766 
 767 
Fig. 4 Strain magnitude field from the last image before onset of fracture in selected 768 

duplicates of the experimental tests. 769 
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 770 

Fig. 5 Finite element meshes of (a) uniaxial tension test, (b) plane-strain tension test, (c) in-771 
plane simple shear test and (d-e) Nakajima test in equi-biaxial tension. In-plane 772 
symmetry is marked for the uniaxial tension, plane-strain tension and Nakajima 773 
specimens.  774 
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 775 

Fig. 6  Illustration of localization analysis: position of the critical element in simulation of 776 

the uniaxial tensile test (left); orientation of imperfection band with respect to the rolling 777 

direction ( 1X ), in-plane transverse direction ( 2X ), and normal direction ( 3X ) of the sheet.  778 
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 779 

Fig. 7 Equivalent plastic strain fields before onset of fracture in cubic element simulations of 780 
(a-d) Docol 600DL and (e-h) Docol 1400M: (a),(e) uniaxial tension test; (b),(f) plane-781 
strain tension test; (c),(g) in-plane simple shear test; (d),(h) equi-biaxial Nakajima test. 782 
The positions of the critical elements, i.e., the positions in the FE models 783 
corresponding to the experimental point of fracture initiation, are marked by arrows. 784 
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 785 

Fig. 8 Stress and strain histories collected from critical elements in simulations of the 786 
material tests: (a),(b) equivalent plastic strain versus stress triaxiality; (c),(d) 787 
equivalent plastic strain versus Lode parameter. The curves are generated from 788 
simulations with linear, quadratic and cubic shape functions.   789 
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 790 
Fig. 9 Simulated average values of stress triaxiality and Lode parameter in tests compared 791 

with plane stress locus: (a) Docol 600DL and (b) Docol 1400M. Red, blue and black 792 
markers present results from simulations with linear, quadratic and cubic elements, 793 
respectively.  794 
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       795 

 796 

Fig. 10  Failure strain from hybrid experimental-numerical approach and failure strain 797 

estimated with the localization analysis: (a) Docol 600DL and (b) Docol 1400M. Strain 798 

control means that the localization analysis was performed using the strain history from the 799 

FE simulation, thus giving non-proportional loading, while stress control means that the 800 

average values of the stress triaxiality and Lode parameter were imposed to ensure 801 

proportional loading.   802 

  803 
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 804 

Fig. 11  Details from the band analysis of the UT, PST and NK simulations for Docol 600DL: 805 

(a) von Mises equivalent stress vs. equivalent plastic strain, (b) hydrostatic stress vs. 806 

equivalent plastic strain,  (c) equivalent plastic strain vs. Lode parameter and (d) equivalent 807 

plastic strain vs. stress triaxiality. All quantities are presented for the material outside and 808 

inside the critical band.   809 

  810 
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 811 

 812 

Fig. 12  (a) Plane-stress fracture locus for Docol 600DL based on quantities outside the band, 813 

and (b) stress triaxiality vs. Lode parameter inside and outside the critical band. 814 

 815 


