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Abstract

We present the Large Time Step (LTS) extension of the Roe scheme and apply it to a standard
two-fluid model. Herein, LTS denotes a class of explicit methods that are not limited by the
CFL (Courant–Friedrichs–Lewy) condition, allowing us to use very large time steps compared
to standard explicit methods. The LTS method was originally developed in the nineteen eighties
(LeVeque, 1985), where the Godunov scheme was extended to the LTS Godunov scheme. In
the present work, the relaxation of the CFL condition is achieved by increasing the domain
of dependence. This might lead to difficulties when it comes to boundary and source terms
treatment. We address and discuss these difficulties and propose different ways to treat them. For
a shock tube test case, where there are neither source terms nor difficulties associated with the
boundaries, the method increases both accuracy and efficiency. For a water faucet test case that
includes a source term, the method increases the efficiency, while the accuracy strongly depends
on the appropriate treatment of boundary conditions and source terms.

Keywords: Large Time Step method, Roe scheme, Two-fluid model, Boundary treatment,
Source term

1. Introduction

In this paper, we are interested in the numerical simulation of one dimensional two-phase
flow. To that end, we use a one dimensional, equal-pressure two-fluid model studied by many
authors [1, 2, 3, 4, 5, 6]. This and other similar models are in widespread use for the simulation
of two-phase flow, and they have been used successfully in many applications by the oil & gas
[7, 8] and nuclear industry [9]. In practical applications one usually has to make a compromise
between accuracy and efficiency. The balance between these requirements is, among other things,
strongly affected by the numerical time integration method, where the main division is made
between explicit and implicit time integration methods. As is well known, explicit methods are
associated with higher accuracy and simpler implementation, but their efficiency and stability are
limited by the CFL (Courant–Friedrichs–Lewy) condition. Implicit methods are not limited by
the CFL condition and may be very efficient, but they are associated with a number of different
difficulties, most important being the excessive diffusion and difficult parallelization. In this
paper we study a class of explicit methods that are not limited by the CFL condition, thereby
allowing us to use time steps much larger than usually associated with explicit methods. Such
methods are knows as the Large Time Step (LTS) methods and they have been first introduced
in the nineteen eighties by LeVeque [10, 11, 12]. Therein, the Godunov scheme was extended
to the LTS Godunov scheme and applied to scalar conservation laws and the Euler equations.
Preprint submitted to Applied Mathematical Modelling April 14, 2017



In his work, LeVeque treats each discontinuity as a wave and allows waves from each Riemann
problem to travel more than one cell during a single time step, allowing for interaction between
the waves. These interactions are assumed to be linear, i.e. the waves are passing through each
other without change in speed or strength [12]. From the way LeVeque’s LTS method is defined,
it uses a Lagrangian point of view by tracking where the characteristics are going. Through the
years, these ideas have been recognized and used by many authors. Here, we address the most
recent contributions, without attempting to provide a complete and comprehensive overview.

Murillo, Morales-Hernández and co-workers [13, 14, 15, 16] applied the LTS Roe scheme
to the one and two dimensional shallow water equations and focused on the treatment of source
terms and boundary conditions. Xu et al. [17] applied the LTS Godunov scheme to the shallow
water equations. Qian and Lee [18] applied the LTS Godunov scheme to the three dimensional
Euler equations by using a dimensional splitting approach. Tang et al. [19] applied the LTS
Godunov scheme to high speed combustion waves. Makwana and Chatterjee [20] applied the
LTS Godunov scheme to the Maxwell’s equations, and Lindqvist and Lund [21] applied the LTS
Roe scheme to two-phase flow and focused on accuracy and computational efficiency. Lindqvist
et al. [22] also studied more theoretical properties of the LTS methods and how they fit into the
TVD setting. Therein, the LTS method of LeVeque is defined in the numerical viscosity and flux
difference splitting framework, a perspective more coinciding with the Eulerian point of view.
It is shown that these formulations are mathematically equivalent to the original formulation by
LeVeque [12].

Herein, we use the LTS method of LeVeque in the form presented by Lindqvist et al. [22]
and apply it to the one dimensional non-conservative two-fluid model. In [22], the relaxation
of the CFL condition is achieved by extending the domain of dependence. This leads to diffi-
culties when it comes to the treatment of boundary conditions and source terms. These issues
are the central topic of this paper. For the homogeneous system, the LTS Roe scheme shows
promising results when applied to test cases where no complex wave interactions occur at the
boundaries, as will be illustrated by the numerical example of the shock tube. However, ”inter-
esting” boundaries and/or source terms require special treatment. In the present paper we will
illustrate difficulties related to the boundary conditions and source terms as separate challenges,
using the classical water faucet test case as an example. First, we will discuss the definition of
the boundary conditions in the LTS Roe scheme. Namely, the presence of source terms may lead
to a distinct pattern of numerical errors being generated in the vicinity of the boundary. We will
show how boundary conditions can be modified to reduce these errors and improve the accuracy
of the solution. Second, the presence of source terms in the LTS Roe scheme may lead to numer-
ical errors being generated elsewhere in the domain as well. We will discuss how these errors are
generated and show that the most simple, straightforward treatment of source terms is not well
suited for the LTS method. To resolve this, we will discretize the source term by formulating a
slight modification to the approach presented by Murillo and Garcı́a-Navarro [23]. The separate
treatment of the difficulties related to the boundary conditions and source terms will be justified
in sections 4 and 5, where we will show that the numerical errors being generated in the vicinity
of the boundary and elsewhere in the domain are caused by distinct but related mechanisms.

This paper is structured as follows: in section 2, we present the two-fluid model we use. In
section 3, we present the numerical method and outline the standard Roe and LTS Roe schemes.
Sections 4 and 5 discuss boundary and source term treatments, respectively, with corresponding
numerical investigations. Section 6 discusses accuracy and computational performance, and
section 7 closes with conclusions.
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2. Mathematical model

We are considering a one dimensional isentropic equal-pressure two-fluid model [1, 2, 3,
4, 5, 6] without energy equation, where we solve separate evolution equations for mass and
momentum of two fluids:

∂t(αgρg) + ∂x(αgρgvg) = 0, (2.1)
∂t(αlρl) + ∂x(αlρlvl) = 0, (2.2)

∂t(αgρgvg) + ∂x(ρgαgv2
g + (p − pi)αg) + αg∂x pi = Qg, (2.3)

∂t(αlρlvl) + ∂x(ρlαlv2
l + (p − pi)αl) + αl∂x pi = Ql, (2.4)

where ρ, α, v,Q are the density, volume fraction, velocity and the source term with corresponding
phase indices g, l for the gas and liquid phase, respectively. The pressure p denotes a common
pressure of both phases, while the pressure pi denotes the pressure at the interface between gas
and liquid.

In this basic model, several physical effects that would be present for a number of engineering
applications have been neglected. For numerical studies, this practice has been followed by many
authors [1, 2, 3, 4, 5, 6] and a thorough discussion of its justification can be found in the book of
Städtke [24].

In this respect, we would like to emphasize that a number of practical applications would
require viscous terms [25], i.e. terms involving second-order spatial derivatives, to be naturally
incorporated into our framework. Such terms would typically render the model parabolic, and
would be physically important for problems involving for instance thermal conduction or wax de-
position. As demonstrated in [22], our numerical Large Time Step framework naturally includes
numerical diffusion. This was exploited by Solberg [26] who proposed a concrete extension of
the LTS framework to systems containing viscous terms.

2.1. Quasilinear form
The Eqs. (2.1)–(2.4) can be written in a quasilinear form as:

∂tU + A(U)∂xU = Q(U), (2.5)

where the vector of evolved variables U and the vector of source terms Q are defined as:

U =
[
ρgαg, ρlαl, ρgαgvg, ρlαlvl

]T
, (2.6)

Q(U) =
[
0, 0,Qg,Ql

]T
, (2.7)

and the coefficient matrix A is defined as in [3]:

A(U) =


0 0 1 0
0 0 0 1

κ
(
ρlαg + ∆pαl

∂ρl
∂p

)
− v2

g κ
(
ρgαg − ∆pαg

∂ρg

∂p

)
2vg 0

κ
(
ρlαl − ∆pαl

∂ρl
∂p

)
κ
(
ρgαl + ∆pαg

∂ρg

∂p

)
− v2

l 0 2vl

 , (2.8)

where κ is defined as:
κ =

1
∂ρg

∂p αgρl +
∂ρl
∂p αlρg

, (2.9)
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and the interface pressure term ∆p is defined as:

∆p = p − pi = δ
αgαlρgρl

ρgαl + ρlαg

(
vg − vl

)2
, (2.10)

with δ = 1.2. The interface pressure term ∆p ensures that the system remains hyperbolic for
physically realistic states. For the cases we consider in this paper the system will always remain
hyperbolic, i.e. the coefficient matrix A will have 4 real and distinct eigenvalues and thus linearly
independent eigenvectors. Physically, these eigenvalues correspond to fast pressure waves and
slow interface (volume fraction) waves. Although it is possible to derive the analytical expres-
sions for eigenvalues and eigenvectors, these expressions are too complicated to be of practical
value. Some useful approximations may be obtained through perturbation techniques [2, 3, 5]:

• pressure waves:

λp ≈
ρgαlvl + ρlαgvg

ρgαl + ρlαg
±

√
ρgαl + ρlαg

ρgαl∂pρl + ρlαg∂pρg
, (2.11)

• interface waves:

λi ≈
ρgαlvg + ρlαgvl

ρgαl + ρlαg
±

√
∆p(ρgαl + ρlαg) − ρgρlαgαl(vg − vl)2

ρgαl + ρlαg
. (2.12)

These expressions may become inaccurate if the relative velocity becomes too large. In the
following, we will not use the approximations (2.11) and (2.12). Instead we will calculate the
eigenstructure numerically for increased accuracy.

2.2. Closure relations and thermodynamic submodel
The model is closed by a basic relation between volume fractions and by an equation of state

for each phase k:

αg + αl = 1, ρk = ρk,0 +
p − pk,0

a2
k

, (2.13)

where the speed of sound a is defined as a2
k = ∂p/∂ρk. The parameters are pl,0 = 105 Pa, pg,0 = 0,

ρl,0 = 1000 kg/m3, ρg,0 = 0, al = 103 m/s and ag =
√

105 m/s. The assumption of equal phase
pressures, pg = pl = p, allows us to write (2.13) in terms of conserved variables:

u1

ρg(p)
+

u2

ρl(p)
= 1 → p = p(u1, u2), (2.14)

where u1 = ρgαg and u2 = ρlαl are elements of the vector of evolved variables U, Eq. (2.6). For
details on closure relations and interface pressure modeling we refer to the papers [3, 27].

3. Numerical model

We start by discretizing the homogeneous version of (2.5) by the explicit Euler method in
time and a Roe scheme in space:

Un+1
j = Un

j −
∆t
∆x

(
Â+

j−1/2∆Un
j−1/2 + Â−j+1/2∆Un

j+1/2

)
, (3.1)
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where Un
j is a discrete approximation of the cell average of U in the cell with center at x j and

at the time level n, and Â±j∓1/2∆U j∓1/2 are flux differences at the cell interfaces x j∓1/2, where we
introduce ∆U j+1/2 = U j+1 − U j. For more convenient notation, here and throughout the paper,
we assume that the absence of a time index implies the time level n.

Herein, the fundamental component is the construction of a Roe matrix Â, originally pro-
posed for the Euler equations [28]. We are discussing the non-conservative system modeling
two-phase flow and we construct the Roe matrix Â following the approach found in [5, 3]. Once
the Roe matrix Â is defined, the positive and negative parts of Â are defined through its eigen-
values:

Â± = R̂Λ̂±R̂−1, (3.2)

where R̂ is the matrix of right eigenvectors and Λ̂ is the diagonal matrix of eigenvalues with the
eigenvalues defined as:

λ+ = max(0, λ), λ− = min(0, λ). (3.3)

A known limitation of this scheme is that the time step must satisfy the constraint C ≤ 1, where
C is the Courant number:

C = max
j
|λ j|

∆t
∆x

. (3.4)

In the following, we will describe an extension of the Roe scheme that is not limited by this
condition.

3.1. Large Time Step Roe scheme
To extend the standard Roe scheme to the LTS Roe scheme we use the ideas developed by

LeVeque [12] and approach used by Lindqvist et al. [22]. We start by recalling that the standard
Roe scheme is a three-point scheme:

Un+1
j = U

(
Un

j−1,U
n
j ,U

n
j+1

)
. (3.5)

In the standard Roe scheme this property is ensured by the CFL condition (3.4), which requires
that no wave can travel more than one cell during a single time step. As a consequence, the
Un+1

j in the (3.1) is updated only by the flux differences at the cell interfaces x j−1/2 and x j+1/2,
see Figure 1. However, if we increase the time step ∆t, the particular wave may travel more
than one cell during a single time step. To take this into the account we increase the domain of
dependence. Therefore, the value in a particular cell may depend on more than three cells:

Un+1
j = U

(
...,Un

j−2,U
n
j−1,U

n
j ,U

n
j+1,U

n
j+2, ...

)
, (3.6)

where the particular size of the domain of dependence depends on the local Courant number.
Since the information from the domain of dependence with which we update cell state Un+1

j is
delivered in terms of flux differences through the cell faces, we reformulate the flux differences to
include all flux differences in the domain of dependence. Hence we modify the flux differences
in (3.1) to obtain the LTS extension of the Roe scheme:

Un+1
j = Un

j −
∆t
∆x

 ∞∑
i=0

Âi+
j−1/2−i∆U j−1/2−i +

∞∑
i=0

Âi−
j+1/2+i∆U j+1/2+i

 . (3.7)

The matrices Âi± are defined as:
Âi± = R̂Λ̂i±R̂−1, (3.8)
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with the eigenvalues defined as in [22]:

λi± = ±max
(
0,min

(
±λ − i

∆x
∆t
,
∆x
∆t

))
. (3.9)

The superscripts i+ and i− in (3.8) denote the parts of the Roe matrix Â defined by the positive
(i+) and the negative (i−) wave speeds λi+ and λi− at the cell interface located i cells to the left
(i+) and to the right (i−) of the cell interface associated with i = 0, i.e. x j+1/2. Herein, flux
differences associated with Âi+ and Âi− are traveling to the right and left, respectively.

We assume that these flux differences, i.e. the waves they describe are moving independently
of each other, i.e. all the interactions between the waves are linear. Figure 1 shows the flux
differences that update the cell U j in the standard and LTS Roe scheme. We note that even
though we allow more waves to pass through the particular interface, the different waves need
to travel a different distance before they start ”passing” through the relevant interface. This fact
is taken into the account by the modification of the eigenvalues in (3.9). Also, we note that the
infinite sums in (3.7) will only contain a finite number of nonzero terms, because the term λ− i ∆x

∆t
becomes negative, and the term λ + i ∆x

∆t becomes positive in (3.9) for sufficiently large i. The
reader is referred to [22] for a more extensive explanation of the LTS method.

x

t

n

n+ 1

xj−5/2 xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2

Un
j−2 Un

j−1 Un
j

Un+1
j

Un
j+1 Un

j+2

...

...

Â1−
j−3/2

∆Uj−3/2

Â1+
j−3/2

∆Uj−3/2

Â−
j−1/2

∆Uj−1/2

Â+
j−1/2

∆Uj−1/2

Â+
j+1/2

∆Uj+1/2

Â−
j+1/2

∆Uj+1/2

Â1+
j+3/2

∆Uj+3/2

Â1−
j+3/2

∆Uj+3/2

...

...

∞∑
i=0

Âi+
j−1/2−i

∆Uj−1/2−i

∞∑
i=0

Âi−
j+1/2+i

∆Uj+1/2+i

Figure 1: Updating of U j: domain of dependence and flux differences in standard Roe (dashed boxes) and LTS Roe
scheme (full boxes)

4. Boundary conditions

We now discuss how to incorporate boundary conditions into the LTS scheme (3.7). Bound-
ary conditions may be divided into two main categories [14]: closed, in which no information
is allowed to cross the boundary, and open, in which information travels across the boundaries
along the waves inherent in the equations, as described for instance in [29].

Herein, the direction of information flow is determined by the sign of the eigenvalues of the
matrix A given by (2.8), with positive eigenvalues corresponding to flow along the positive x-
direction. Hence, the number of imposed boundary conditions must correspond to the number of
inflowing characteristics at the given boundary.

For the purposes of this paper, we will assume that the flow is subsonic. In that case we have
at least one incoming and one outgoing characteristic at each boundary, i.e. one of the pressure
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eigenvalues (2.11) will be positive and one will be negative. Then, at each boundary, we are left
with 3 different scenarios according to the sign of the interface eigenvalues (2.12):

• No interface eigenvalue represents inflow: 1 boundary condition must be imposed;

• one interface eigenvalue represents inflow: 2 boundary conditions must be imposed;

• both interface eigenvalues represent inflow: 3 boundary conditions must be imposed.

In this paper, we will present a method general enough to handle all these cases. We will however
limit ourselves to constant boundary conditions, i.e. we consider only cases where both the
imposed boundary conditions and the signs of the boundary eigenvalues do not vary in time.
This allows us to focus on a main difficulty in the LTS setting (3.7): how to naturally incorporate
boundary cells into the increased domain of dependence.

For the first cell in the domain, the standard Roe scheme stencil (3.5) implies:

Un+1
1 = U

(
Un

LBC,U
n
1,U

n
2

)
, (4.1)

with ULBC being U in the left boundary cell, where the value at the boundary is typically pre-
scribed for the problem. Clearly, this leads to a difficulty when it comes to the definition of
numerical boundary conditions in the LTS method. If we assume that U j in (3.6) is the first cell
in the domain, then the LTS Roe scheme stencil (3.6) implies:

Un+1
1 = U

(
...,Un

−1,U
n
LBC,U

n
1,U

n
2,U

n
3, ...

)
. (4.2)

Here, we do not have the cell values associated with Un
j−1, Un

j−2, etc. We now suggest two
different ways to define these boundary cells.

4.1. Extrapolated boundary conditions

Assume that we apply a Courant number C > 0, i.e. we will need M = ceil(C) numerical
ghost cells at each boundary to directly apply the LTS Roe scheme, where ceil(C) is the smallest
integer that is larger or equal to C. The straightforward way to provide these additional cells is
to simply extrapolate the values of the original boundary cell. In this way, all additional cells in
the boundary zone will have the same values as the original boundary cell:

Un
j = Un

LBC ∀ j < LBC, (4.3)

Un
j = Un

RBC ∀ j > RBC, (4.4)

where LBC and RBC denote the indices of the left and right boundary cells, respectively. Assum-
ing N cells in the interior domain, we will use the convention that LBC = 0 and RBC = N + 1.
We will refer to this formulation as EBC, i.e. extrapolated boundary conditions. If there are no
source terms present in the computational domain and the boundary conditions are constant in
time this approach will be very effective, and very accurate results may be obtained, as will be
shown for the shock tube example.

Next, we are interested how appropriate this definition is when there are source terms present.
If we assume constant boundary conditions, the assumption of locally uniform data corresponds
to a valid steady state solution in the absence of source terms. Consequently, the application of
(4.3) and (4.4) may be viewed as follows:
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• Calculate ULBC and URBC by some boundary scheme.

• Solve the steady state and homogeneous version of the problem (2.5):

A dxU = 0, (4.5)

in an artifical domain extended at the boundaries (the solution is simply U = const.)

• Transport the solution from this artificial domain into the actual computational domain
through the LTS method.

Comparing the steady state form of (2.5) to (4.5), we see that under this point of view the EBC
approach assumes there is no effect of the source terms in the boundary cells. Applying a Courant
number C > 1, we will then see this manifest itself as a discontinuity in the numerical solution,
propagating C cells per time step away from the boundary. Clearly, this is a numerical artifact
due to the fact that we allow information to travel more than one cell during a single time step,
without being affected by the source term. Herein, there are a number of ways of constructing
the values of the primary boundary cells at xLBC and xRBC, for instance by extrapolation of the
characteristic [30] or primitive variables. However, regardless of our choice of updating ULBC
and URBC, we are left with a central problem associated with the EBC as given by (4.3) and
(4.4) in the presence of source terms. We observe that this problem is somewhat independent
of the choice of extrapolation variables, and we focus on primitive variable extrapolation for the
purposes of this paper.

4.2. Steady state boundary condition
To overcome the problem discussed above, we replace (4.5) by the steady state form of (2.5):

A dxU = Q(U). (4.6)

Assuming that the eigenvalues of A are nonzero, we obtain:

dxU = (A(U))−1 Q(U). (4.7)

Now, by discretizing this equation at the left and the right boundary cells we obtain the slopes
δxUL and δxUR (left and right, respectively) as:

δxUL = (A(ULBC))−1 Q(ULBC), δxUR = (A(URBC))−1 Q(URBC), (4.8)

which we then use to formulate the additional boundary cells as:

Un
j = Un

LBC + ( j − LBC)∆xδxUL, ∀ j ∈ [LBC − M, . . . ,LBC], (4.9)

at the left boundary zone and:

Un
j = Un

RBC + ( j − RBC)∆xδxUR, ∀ j ∈ [RBC, . . . ,RBC + M], (4.10)

at the right boundary zone. These equations then replace (4.3) and (4.4). We will refer to this
formulation as SSBC, i.e. steady state boundary conditions.

Remark 1: We note that in practice, this approach must be handled with caution. Namely,
using (4.9) and (4.10) may result in negative values of the conserved variables. This will be
further addressed in section 5.
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4.3. Numerical example
To illustrate how the presence of a source term causes an error close to the boundary and to

show the advantage of using the SSBC we consider a linear advection with a source term:

∂tu + a∂xu = q(u), a = 1, (4.11)

with initial data and source term defined as:

u(x, 0) = 1, q(u) = −0.1u. (4.12)

For the problem (4.11) to be well-posed we need a boundary condition at the left boundary. We
choose u(0, t) = 1. The Eq. (4.11) is solved by the explicit Euler method in time, the LTS upwind
scheme in space and an explicit treatment of the source term:

un+1
j = un

j −
∆t
∆x

 ∞∑
i=0

ai+
j−1/2−i∆u j−1/2−i +

∞∑
i=0

ai−
j+1/2+i∆u j+1/2+i

 + ∆tq j(un
j ), (4.13)

where we note that (4.13) is (3.7) applied to the scalar problem (4.11) including the source term.
We set ∆x = 1 and evaluate the solution at time t = 3. Figure 2a shows the solution obtained with
the non–LTS upwind scheme (∆t = 1 ⇒ C = 1, 3 time steps). Next, we consider the solution
obtained with the LTS upwind scheme (∆t = 3 ⇒ C = 3, 1 time step) and EBC, see Figure 2b.
It can be seen that the EBC approach neglects the effect of the source term during a single LTS
step, and then applies the source term only at the end of the LTS step. In addition, the effect of
the source term is magnified, since it multiplies ∆t and ∆t is larger in the LTS method. To fix
this issue, we use the SSBC and reconstruct the boundary zone according to (4.6) – (4.10), see
Figure 2c.

Here we note that this pattern of error generation in the presence of source term is not limited
only to the vicinity of the boundaries. Similar pattern may appear whenever we transport a
discontinuity since the LTS method neglects the effect of the source term on the Riemann problem
during a single LTS step. In addition, similar mechanism may arise if there are no source terms,
but strong nonlinear effects. In that case, the LTS method neglects the nonlinear interactions
during a single LTS step, leading to errors that exhibit similar behavior, i.e. transport of sections
of constant data unaffected by nonlinear interactions. In section 5 we will discuss errors caused
by the source term elsewhere in the domain.

Remark 2: It should be noted that the discretization (4.13) is stable for our illustrative
example, but for arbitrary initial data stability may be lost due to interaction between the source
and transport terms.

To demonstrate the performance of the LTS Roe scheme and boundary treatments we con-
sider two test cases. The numerical solutions are obtained by (3.7) and explicit treatment of the
source term:

Un+1
j = U j −

∆t
∆x

 ∞∑
i=0

Âi+
j−1/2−i∆U j−1/2−i +

∞∑
i=0

Âi−
j+1/2+i∆U j+1/2+i

 + ∆tQ j. (4.14)

In all the numerical investigations considered below, the time step ∆t is fixed and determined
at the beginning of the calculation, based on the Courant number we want to use and prior
knowledge of the largest eigenvalue that will appear during the computation:

∆t =
C∆x

max
j,n
|λn

j |
. (4.15)
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x
x

u
1 0.909 0.829 0.729 0.729

(a) Standard (non–LTS) upwind scheme with C = 1

x

u
1 1 1

0.7 0.7 0.7 0.7

(b) LTS–upwind scheme with C = 3 and EBC

x

u1.2 1.1 1 0.9 0.8 0.7 0.7

x = 0

boundary cells

(c) LTS–upwind scheme with C = 3 and SSBC

Figure 2: Numerical solution for problem (4.11) after t = 3

4.4. Shock tube results
We first consider a shock tube problem studied by Cortes et al. [2] and Evje and Flåtten [3].

The tube has a length of 100 m and initial data with a discontinuity at x = 50 m. The initial data
on the left and the right of the discontinuity are:

V(x, 0) =
[
p, αl, vg, vl

]T
=

{
[265000 Pa, 0.71, 65 m/s, 1 m/s] if x < 50;
[265000 Pa, 0.7, 50 m/s, 1 m/s] if x > 50. (4.16)

The solution is evaluated at the time t = 0.1s. Boundary conditions are obtained by simple
extrapolation (EBC), because the waves will not reach the boundaries, therefore no special treat-
ment of the boundaries is required. The numerical solution is obtained with (4.14), and we note
that for the shock tube test case Qn

j = 0. The reference solution is obtained by the Roe scheme
with superbee wave limiter on a grid with 12 000 cells and ∆t = 2.1815 · 10−5 s, corresponding
to C ≈ 1.

Figure 3 shows the comparison between the standard and LTS Roe scheme at Courant number
C ≈ 5 and C ≈ 39 on the grid with 100 cells. It can be seen that the LTS Roe scheme with C ≈ 5
resolves the left going shock with higher accuracy than non–LTS Roe scheme. The LTS Roe
scheme with C ≈ 39 achieves even higher accuracy. However, one can note that LTS Roe scheme
leads to slight overshoots and undershoots which can be best seen in pressure and liquid velocity
profiles. Similar oscillations have been observed previously for the Euler equations [22, 18],
and are due to the assumption of linear wave interactions. Regardless of these oscillations one
should note that the solution obtained with the LTS Roe scheme took only 8 and 1 time steps (ts),
respectively, making it more efficient than the standard Roe scheme that took 39 time steps.

We also investigate the convergence of the LTS Roe scheme for different grids and Courant
numbers, see Table 1. We can observe that the accuracy increases as we refine the grid and that
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Figure 3: Comparison between standard and LTS Roe scheme on the grid with 100 cells for shock tube problem (4.16)

Table 1: 1-norm error estimate E (×103 Pa) and convergence rates L for pressure for shock tube problem (4.16)

Roe Roe + superbee LTS Roe LTS Roe LTS Roe
∆t
∆x 2.6 · 10−3 (C ≈ 1) 2.6 · 10−3 (C ≈ 1) 1.25 · 10−2 (C ≈ 5) 2.5 · 10−2 (C ≈ 10) 0.1 (C ≈ 39)

n En Ln En Ln En Ln En Ln En Ln

100 15.5 – 4.12 – 8.27 – 6.41 – 11.2 –
200 11.1 0.482 2.58 0.676 6.31 0.390 4.85 0.401 6.54 0.777
400 7.16 0.633 1.04 1.311 4.01 0.654 2.84 0.775 3.25 1.009
800 4.90 0.546 0.52 0.986 2.64 0.605 1.75 0.700 1.59 1.031

in most cases the convergence rate increases as we increase the Courant number. A similar trend
is observed for the velocity profiles, while the accuracy and convergence of the volume fraction
are somewhat ambiguous due to the presence of the spike, see Figure 3.

4.5. Water faucet results

As a second test case we consider the classical water faucet problem proposed by Ran-
som [31]. The problem consists of a vertical pipe 12 meters long with initial data:

V(x, 0) =
[
p, αl, vg, vl

]T
=

[
105 Pa, 0.8, 0 m/s, 10 m/s

]
. (4.17)
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The water in the pipe is accelerated due to the effect of gravity which we define as a source term
in (2.5):

Q(U) = [0, 0, gρgαg, gρlαl]T, (4.18)

where g = 9.81 m/s2. The solution is computed at time t = 0.6 s. In addition, the following
boundary conditions are given:

Inlet: αl = 0.8, vl = 10 m/s, vg = 0 m/s,

Outlet: p = 105 Pa.

The remaining values required to determine the evolved variables at the boundary cells are ex-
trapolated from the computational domain, which yields the following set of values at the bound-
aries:

Bn
LBC =


p
αl

vg

vl


n

LBC

=


pn

1
0.8
0

10 m/s

 , Bn
RBC =


p
αl

vg

vl


n

RBC

=


105 Pa
(αl)n

N(
vg

)n

N
(vl)n

N

 . (4.19)

The analytical solution for the liquid volume fraction and liquid velocity can be found in [3].
The reference solution for the remaining variables is obtained by the standard Roe scheme with
superbee wave limiter on a grid with 12 000 cells and ∆t = 2.9154 · 10−6 s, corresponding to
C ≈ 1.

4.5.1. Effect of time step
Figure 4 shows the comparison between the standard and the LTS Roe scheme with different

time steps and different implementations of the boundary conditions on the grid with 100 cells.
It can be seen that the pressure solution obtained with SSBC is smoother and larger than the

solution obtained with EBC for corresponding time steps, especially for larger time steps. That
is expected regarding smoothness, since the boundaries defined with SSBC introduce a smaller
error and provide a smoother transition between the boundary zone and the rest of the domain.

The accuracy of the gas volume fraction and liquid velocity increase as we increase the
Courant number. This is because the larger time step ∆t leads to a smaller number of time steps,
which reduces the numerical diffusion introduced each time we average a cell state, i.e. in each
time step. However, the error in the gas velocity near the outlet gets larger for larger Courant
numbers. We note that the Courant numbers corresponding to the interface waves are smaller
than one for all cases. More rigorous insight into the relation between time step and numerical
diffusion can be gained through the modified equation analysis, see for instance Harten et al. [32].

4.5.2. Effect of grid refinement
We also compare the effect of grid refinement starting with a grid of 100 cells and a time

step ∆t = 0.0017 s, which corresponds to C ≈ 5. For each refined grid we keep the Courant
number constant, i.e. the ratio ∆t/∆x = 0.0146 = const., see Figure 5. We again note that the
SSBC provides smoother and larger pressure profiles than EBC. However, this effect becomes
less significant as the grid is refined. This is expected, since the number of boundary cells
remains constant as the total number of grid cells is increased. Hence their relative influence
becomes smaller. Nevertheless, practical simulations are often performed on coarse grids due to
computational efficiency constraints. Here the results may be sensitive to the different treatments

12



 99550

 99600

 99650

 99700

 99750

 99800

 99850

 99900

 99950

 100000

 0  2  4  6  8  10  12

P
re

s
s
u

re
 (

P
a

)

Distance (m)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  2  4  6  8  10  12

G
a

s
 v

o
lu

m
e

 f
ra

c
ti
o

n

Distance (m)

 9

 10

 11

 12

 13

 14

 15

 16

 0  2  4  6  8  10  12

L
iq

u
id

 v
e

lo
c
it
y
 (

m
/s

)

Distance (m)

Reference

Δt = 3.5E-4, C≈1

Δt = 0.001,   C≈3, EBC

Δt = 0.001,   C≈3, SSBC

Δt = 0.0017, C≈5, EBC

Δt = 0.0017, C≈5, SSBC

Δt = 0.0024, C≈7, EBC

Δt = 0.0024, C≈7, SSBC

Δt = 0.0031, C≈9, EBC

Δt = 0.0031, C≈9, SSBC
-25

-20

-15

-10

-5

 0

 5

 0  2  4  6  8  10  12

G
a

s
 v

e
lo

c
it
y
 (

m
/s

)

Distance (m)

Figure 4: Effect of increasing the time step for different treatments of boundary conditions on the grid with 100 cells for
water faucet problem (4.17)
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Figure 5: Effect of grid refinement for different treatments of boundary conditions with ∆t/∆x = const., (C ≈ 5 ) for
water faucet problem (4.17)

of the boundary conditions presented here. Figure 5 indicates that both with EBC and SSBC,
the LTS Roe scheme converges to the exact solution as the grid is refined. A similar trend is
observed for the velocities.

To confirm that, we again investigate the convergence of the LTS Roe scheme for different
grids and Courant numbers, see Table 2. We can observe that both accuracy and convergence
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rate tend to increase as we increase the Courant number and refine the grid. A similar trend is
observed for the pressure and velocity profiles.

Table 2: 1-norm error estimate E (×10−2) and convergence rates L for volume fraction for water faucet problem (4.17)

Roe Roe + superbee LTS Roe LTS Roe LTS Roe
∆t
∆x 2.9 · 10−3 (C ≈ 1) 2.9 · 10−3 (C ≈ 1) 1.46 · 10−2 (C ≈ 5) 2.91 · 10−2 (C ≈ 10) 5.81 · 10−2 (C ≈ 20)

n En Ln En Ln En Ln En Ln En Ln

100 20.99 – 1.55 – 18.76 – 15.64 – 7.12 –
200 13.82 0.603 0.85 0.867 12.26 0.614 10.05 0.637 4.01 0.827
400 8.87 0.641 0.50 0.751 7.78 0.655 6.26 0.683 2.10 0.932
800 5.50 0.689 0.28 0.847 4.76 0.707 3.75 0.741 1.10 0.934

5. Source terms

Until now, we applied the explicit Euler method for time integration of the source term Q,
cf. Eq. (4.14). That way, the accuracy of solutions for volume fractions and phase velocities were
increased at the cost of the accuracy of the pressure profile. The oscillations in the pressure profile
did not affect the volume fraction profiles, because interface waves are not strongly affected by
the pressure waves, cf. see the results in section 4.5. Further, the pressure waves are not strongly
affected by gravity. For the water faucet example this is an acceptable approach as long as we
apply the LTS method only to the pressure waves, i.e. the Courant numbers corresponding to
interface waves (2.12) are less or equal to one at all times:

Ci =
∆t
∆x

max
j,n

∣∣∣∣(λi
)n

j

∣∣∣∣ ≤ 1, (5.1)

where Ci are interface Courant numbers and λi are the interface eigenvalues (2.12). We note
that the eigenvalues associated with the interface waves (2.12) could be further approximated by
assuming ρg/ρl ≈ 0 for which we would obtain that both interface waves are λi ≈ vl. For the
water faucet case considered here this assumption is also justified by numerical investigations.

However, if the source term is discretized with the explicit Euler method, and interface
Courant number is increased beyond the standard CFL condition, severe oscillations will appear
in the volume fraction and velocity profiles, regardless of how we define additional boundary
cells. This suggest that if we want to use the LTS discretization for interface waves we need a
more refined treatment of the source term.

In the literature, two improvements to the straightforward Euler discretization of the source
term are commonly applied [33]:

• Operator splitting [34], which is based on solving the hyperbolic system ∂tU+A(U)∂xU = 0
alternately with the ODE dU = Q(U) to approximate the solution to the full problem (2.5).

• Flux modification [35], which is based on modifying the numerical flux at the cell inter-
faces to take into account the effect of the source term during the time step.

LeVeque [36] notes that operator splitting methods may cause difficulties when the system is
close to a steady state solution, i.e. when the flux gradients are balanced with the source terms.
Schemes that correctly balance the source volume integral with the flux surface integral are
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denoted as well-balanced schemes, and are most conveniently formulated in the flux modification
setting.

In this paper, we will follow the flux modification approach, starting by considering a scalar
conservation law. Then, we provide the natural extension to the LTS Roe scheme and the system
of equations. We follow the work of Murillo and Garcı́a-Navarro [23], which again is based on
ideas introduced by Bermúdez and Vázquez-Cendón [35]. We will end up formulating a slightly
modified discretization.

5.1. Scalar conservation law with source term
We are considering a scalar conservation law with source term in the form:

∂tu + ∂x f (u) = q(u), (5.2)

with initial data corresponding to the Riemann problem:

u(x, 0) =

{
uL if x < 0;
uR if x > 0. (5.3)

We can also write (5.2) in quasilinear form as:

∂tu + λ∂xu = q(u), λ = du f (u). (5.4)

The Riemann problem (5.3) can be solved exactly by integrating (5.2) over the control volume
[xL, xR] × [0,T ] such that:

|λRPT | < |xL| , |xR| , xL < 0 < xR, (5.5)

where λRP is wave speed corresponding to Riemann problem (5.3) determined by the Rankine–
Hugoniot condition. By integrating (5.2) in space and time we obtain:∫ xR

xL

u(x,T ) dx = uRxR − uLxL + T ( f (uL) − f (uR)) +

∫ T

0

∫ xR

xL

q(u) dx dt. (5.6)

As a discrete analogue to the above, we consider the local Riemann problem with piecewise
initial data:

u(x, 0) =

{
u j if x < 0;
u j+1 if x > 0. (5.7)

By integrating the local Riemann problem over the corresponding discrete control volume [−∆x
2 ,

∆x
2 ]×

[0,T ] we obtain:∫ ∆x
2

− ∆x
2

u(x,T ) dx =
∆x
2

(
u j+1 + u j

)
+ T

(
f (u j) − f (u j+1)

)
+ T s j+1/2, (5.8)

where we expressed the source term as:

T s j+1/2 =

∫ T

0

∫ xR

xL

q j+1/2 dx dt. (5.9)

As for now, we will leave the specific ways to evaluate the source term q j+1/2 at the interface
aside and return to it later, when we consider system of equations, cf. section 5.4. Since we
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are considering a scalar conservation law, the Riemann problem (5.7) consists of only one wave
traveling either to the right (if λ j+1/2 > 0) or to the left (if λ j+1/2 < 0). If the wave speed λ j+1/2 is
positive, the value of u+

j+1 corresponding to the right going wave can be calculated from (5.8) as:∫ 0

− ∆x
2

u(x,T ) dx +

∫ λ j+1/2T

0
u+(x,T ) dx +

∫ ∆x
2

λ j+1/2T
u(x,T ) dx =

∆x
2

(
u j+1 + u j

)
+ T

(
f (u j) − f (u j+1)

)
+ T s j+1/2. (5.10)

By using the Rankine–Hugoniot condition:

f (u j+1) − f (u j) = λ j+1/2

(
u j+1 − u j

)
, (5.11)

on the right hand side of (5.10) and the fact that the integrands on the left hand side of (5.10) are
equal to u j, u+

j+1 and u j+1, respectively, (5.10) yields:

u+
j+1 = u j +

s j+1/2

λ j+1/2
, (5.12)

where u+
j+1 denotes the state that travels to the right of the Riemann problem, into the cell with

center at x j+1. If the wave speed λ j+1/2 is negative, the corresponding u−j is:

u−j = u j+1 −
s j+1/2

λ j+1/2
, (5.13)

where u−j denotes the state that travels to the left of the Riemann problem, into the cell with
center at x j. Therefore, an arbitrary cell state u j can be seen as being updated by information
from neighboring Riemann problems:

un+1
j ∆x = u j∆x + (u+

j − u j)λ+
j−1/2∆t − (u−j − u j)λ−j+1/2∆t, (5.14)

where we recall that λ± was defined according to (3.3). By inserting (5.12) and (5.13) into the
(5.14) we have:

un+1
j = un

j −
∆t
∆x

(
λ+

j−1/2∆u j−1/2 + λ−j+1/2∆u j+1/2

)
+

∆t
∆x

(
s+

j−1/2 + s−j+1/2

)
, (5.15)

with s+
j−1/2 and s−j+1/2 defined as:

s+
j−1/2 =

λ+
j−1/2

λ j−1/2
s j−1/2, s−j+1/2 =

λ−j+1/2

λ j+1/2
s j+1/2. (5.16)

We will denote this type of source term discretization as the split source discretization, as op-
posed to unsplit explicit Euler discretization. We note that the quotient of eigenvalues in the
(5.16) is either zero or one, i.e. the source terms in (5.16) are either zero or s j−1/2 or s j+1/2,
respectively.

Note that, as in the original formulations [35, 23], the expressions (5.16) are not defined if a
cell interface eigenvalue is zero. In this case, a convention would be needed to uniquely define
the splitting of the source term. As this situation will not arise for any of our test cases, the
description (5.16) will be sufficient for our present purposes.
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In [23], Murillo and Garcı́a-Navarro obtain the equivalent of finite volume method (5.15) as:

un+1
j = un

j −
∆t
∆x

(
λ+

j−1/2θ j−1/2∆u j−1/2 + λ−j+1/2θ j+1/2∆u j+1/2

)
, (5.17)

with θ j+1/2:

θ j+1/2 = 1 −
s j+1/2

λ j+1/2(u j+1 − u j)
. (5.18)

Although (5.15) and (5.17) are mathematically equivalent, (5.17) suffers from a drawback that
source term yields no effect if the initial data is uniform. Since the initial data in the water faucet
problem is uniform, it is necessary to use the approach corresponding to (5.15).

Remark 3: In [23], Murillo and Garcı́a-Navarro further discuss the effect of source term on
the time step ∆t and the effect it might have on the positivity preserving property of the scheme.
Here, we do not discuss that matter because the water faucet test case, as discussed here, does
not contain issues related to loss of positivity.

5.2. Extension into the LTS framework

In this subsection, we are interested in generalizing this new discretization of the source term
into the LTS framework. We start by observing that for a homogeneous problem, (5.15) is the
scalar formulation of the flux difference splitting form (3.1). In section 3, the discretization (3.1)
was extended into the LTS framework by extending the domain of dependence, i.e. by taking
into the account more flux differences, cf. section 3.1. The procedure may be summarized as:

• Take into the account flux difference contributions from all interfaces in the domain of
dependence;

• modify the wave speeds associated with flux differences according to (3.9).

By applying these steps, the homogeneous version of (5.15) can be extended into the LTS frame-
work as:

un+1
j = un

j −
∆t
∆x

 ∞∑
i=0

λi+
j−1/2−i∆u j−1/2−i +

∞∑
i=0

λi−
j+1/2+i∆u j+1/2+i

 . (5.19)

Based on this, we argue that the same reasoning may be applied on the source term contributions
in the (5.15):

• Take into the account source effect contributions from all interfaces in the domain of de-
pendence;

• modify the wave speeds associated with source contribution according to (3.9).

Hence, we obtain the LTS extension of (5.15) as:

un+1
j = un

j −
∆t
∆x

 ∞∑
i=0

λi+
j−1/2−i∆u j−1/2−i +

∞∑
i=0

λi−
j+1/2+i∆u j+1/2+i


+

∆t
∆x

 ∞∑
i=0

λi+
j−1/2−i

λ j−1/2−i
s j−1/2−i +

∞∑
i=0

λi−
j+1/2+i

λ j+1/2+i
s j+1/2+i

 . (5.20)
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That way we take into account source effects that are delivered from all interfaces in the domain
of dependence, and we ensure that the source terms further away from the cell we are updating
contribute less than those closer. We note that in fractions of eigenvalues associated with source
terms in (5.20), we modify only the eigenvalue in the numerator. Due to that, the quotient of
eigenvalues is not either zero or one anymore, but may gradually decrease from one to zero as
we are moving further away from the interface.

5.3. Generalization to system of equations

We are now interested in generalizing (5.20) to systems of equations. We start by generaliz-
ing the non-LTS (5.15), and then proceed to generalize (5.20). For homogeneous problem, we
already observed that (5.15) is the scalar formulation of the flux difference splitting form (3.1).
Hence, we look for the generalization of (5.15) in the form:

Un+1
j = Un

j −
∆t
∆x

(
Â+

j−1/2∆U j−1/2 + Â−j+1/2∆U j+1/2

)
+

∆t
∆x

(
S+

j−1/2 + S−j+1/2

)
, (5.21)

where S±j+1/2 will be the system equivalent to s±j+1/2 in the (5.16). To see how (5.15) generalizes
to system of equations, we recall the way the Roe scheme [28] is constructed, but note that for
our investigations we consider the Roe matrix Â defined for two-fluid model, cf. section 3. We
consider the system of equations (2.5) and linearize:

∂tU + Â j+1/2∂xU = Q j+1/2, (5.22)

where Q j+1/2 is a vector of source terms evaluated at the interface x j+1/2. Different ways on how
to construct this vector will be addressed in section 5.4. Then, we solve this linearized problem
exactly by considering the individual Riemann problem for (5.22) with:

U(x, 0) =

{
U j if x < 0;
U j+1 if x > 0. (5.23)

We start by multiplying (5.22) by R̂−1, where R̂−1 is the right eigenvector matrix of Â = Â j+1/2:

R̂−1∂tU + R̂−1ÂR̂R̂−1∂xU = R̂−1Q j+1/2, (5.24)

to obtain:
∂tW + Λ̂∂xW = Ω j+1/2, (5.25)

where W = R̂−1U is the vector of characteristic variables, Λ̂ is the diagonal matrix of eigenval-
ues, andΩ j+1/2 = R̂−1Q j+1/2 is the vector of characteristic source terms. This way we decoupled
the system (5.22) into linear advection equations. Then we solve each of these equations ac-
cording to the theory we presented for scalar conservation laws, section 5.1. Therefore, for each
characteristic variable wp of vector W we have equation equivalent to (5.15):

(wp)n+1
j = (wp)n

j −
∆t
∆x

(
(λp)+

j−1/2∆wp
j−1/2 + (λp)−j+1/2∆wp

j+1/2

)
+

∆t
∆x

(
(sp)+

j−1/2 + (sp)−j+1/2

)
∀p, (5.26)
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where sp is p-th component of vector S. We note that S is obtained by integrating components of
Ω as done with q j+1/2 in (5.9):

TS j+1/2 =

∫ T

0

∫ xR

xL

Ω j+1/2 dx dt. (5.27)

Following LeVeque [36], the flux difference terms in Eq. (3.1) may be defined as:

Â±∆U j+1/2 = R̂Λ̂±R̂−1∆U j+1/2 =

m∑
p=1

(λp)± rp∆wp
j+1/2. (5.28)

Similarly, we argue that the split source term can be defined as:

S±j+1/2 = R̂Λ̂±Λ̂−1R̂−1S j+1/2 =

m∑
p=1

(λp)±

λp rpsp
j+1/2. (5.29)

Therefore we have that:
S±j+1/2 = Ã±j+1/2S j+1/2, (5.30)

where we introduced:

Ã± = R̂Λ̃±R̂−1, (5.31)

Λ̃± = Λ̂±Λ̂−1. (5.32)

Here we point out that (5.30) is system equivalent of (5.16), where term Ã±j+1/2 in (5.30) corre-
sponds to the quotients of eigenvalues in (5.16). Here, just as in the (5.16), the diagonal elements
of matrix Λ̃± in (5.32) take the values of either zero or one.

Once we have established the relation between (5.15) and (5.21), we are left with the task
of establishing the LTS framework for (5.21). Recall that in section 3 we extended (3.1) to
the LTS framework (3.7) by extending the domain of dependence. The same idea was applied
in extending the scalar conservation law with source term (5.15) to the LTS framework (5.20).
Following that idea, we propose the LTS discretization of the source terms (5.30) in Eq. (5.21)
as:

S+
j+1/2 = Ã+

j+1/2S j+1/2 −→

∞∑
i=0

Ãi+
j+1/2−iS j+1/2−i, (5.33)

S−j+1/2 = Ã−j+1/2S j+1/2 −→

∞∑
i=0

Ãi−
j+1/2+iS j+1/2+i, (5.34)

with:

Ãi± = R̂Λ̃i±R̂−1, (5.35)

Λ̃i± = Λ̂i±Λ̂−1. (5.36)

The modification of eigenvalues in (5.36) has the same role as with the flux difference contribu-
tions – source terms coming from interfaces further away from relevant interface are contributing
less than the source terms closer to the relevant interface, due to the fact that they have to travel
a certain distance before they start passing through the relevant interface. Here, we note that the
diagonal elements of matrix Λ̃i± in (5.36) are not either zero or one, respectively, but may instead
gradually decrease towards zero.
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5.4. On the choice of average for Q j+1/2

Herein we propose two different ways on how to approximate the source term Q j+1/2 in (5.22)
at the cell interface. As a first choice we propose the arithmetic average of Q in neighboring cells,
i.e. a central discretization:

Q j+1/2 =
1
2

(
Q j + Q j+1

)
. (5.37)

An alternative choice is to take into the account the physics of the particular problem. This may
be done by considering the signs of the eigenvalues and defining:

Q j+1/2 = Ã−j+1/2Q j + Ã+
j+1/2Q j+1, (5.38)

which will be denoted as upwind discretization of the source term. We note that Ã±j+1/2 was
defined in (5.31).

5.5. Water faucet results
Herein, we once again consider the water faucet test case from section 4.5 and use the same

initial data, boundary conditions and means of obtaining the reference solution.
In this section we are interested in increasing the global Courant number so that even the

interface Courant number (5.1) exceeds the standard CFL limit. Table 3 shows several global
Courant numbers estimated on prior knowledge of the largest wave speeds and the corresponding
largest interface Courant numbers Ci at starting and end time.

Table 3: Global Courant numbers C with time steps ∆t and largest interface Courant number Ci on grid with 100 cells

Global C ∆t in s Ci (t = 0) Ci (t = 0.6 s)

≈ 1 3.4985 × 10−4 0.030 0.049
≈ 10 0.0035 0.300 0.490
≈ 30 0.0103 0.879 1.444
≈ 49 0.0171 1.459 2.398

5.5.1. Treatment of boundary conditions for very large Courant numbers
At the moment, it remains ambiguous what is the optimal way to apply SSBC approach (cf.

section 4) when we use very large Courant numbers. Namely, we wish to apply SSBC to as many
boundary cells as possible to reduce the oscillations in the pressure. At the same time, applying
(4.9) and (4.10) directly may lead to negative values of the conserved variables. We observed
that if interface Courant number (5.1) is higher than one, using EBC will lead to oscillations in
volume fraction as well. The error will develop in a similar manner as the error in the pressure
profile discussed in section 4, i.e. there will be a step-like pattern in the volume fraction profile.
Since in this section we are interested in volume fraction profiles we apply SSBC to just enough
cells to ensure that we apply the SSBC to the interface waves. Regardless of how we define
the remaining cells, their treatment will affect only the pressure waves and at the moment these
waves are not the focus of our interest. Therefore, we used:

• Left boundary: by examining the Table 3 and noting that the domain of dependence of
interface waves consists of at most three upwind cells, we used the SSBC approach for
five boundary cells at the left boundary.
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• Right boundary: at the right boundary we applied SSBC on all the boundary cells because
it did not cause any of the conserved variables to become negative.

A more rigorous and more general framework on how to properly apply SSBC in the LTS Roe
scheme is being currently investigated.

Remark 4: As discussed above, using EBC when the interface Courant number is larger than
one leads to a step-like error in the volume fraction. We found that this error is independent of
how we treat the source term, i.e. it yields the same error for both unsplit and split discretization
of the source term and it is not affected by the choice of average for Q j+1/2. This justifies our
simplification to treat errors caused by the source terms in the vicinity of the boundaries and the
errors caused by the treatment of source terms elsewhere in the domain as independent problems.

5.5.2. Comparison between different discretizations of source term at Courant number C ≈ 30
Figure 6 shows the comparison of results for the water faucet problem solved by standard

Roe scheme, standard Roe scheme with superbee limiter and three different discretizations of
the source term for global Courant number C ≈ 30, all on the grid with 100 cells. The pressure

 99500

 99550

 99600

 99650

 99700

 99750

 99800

 99850

 99900

 99950

 100000

 0  2  4  6  8  10  12

P
re

s
s
u

re
 (

P
a

)

Distance (m)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0  2  4  6  8  10  12

G
a

s
 v

o
lu

m
e

 f
ra

c
ti
o

n

Distance (m)

 10

 11

 12

 13

 14

 15

 16

 0  2  4  6  8  10  12

L
iq

u
id

 v
e

lo
c
it
y
 (

m
/s

)

Distance (m)

Reference

Δt = 0.00035, C≈1

Δt = 0.00035, C≈1, superbee

Δt = 0.01,       C≈30, unsplit

Δt = 0.01,       C≈30, split - central

Δt = 0.01,       C≈30, split - upwind
-25

-20

-15

-10

-5

 0

 5

 0  2  4  6  8  10  12

G
a

s
 v

e
lo

c
it
y
 (

m
/s

)

Distance (m)

Figure 6: Effect of source term treatment at C = 30 on grid with 100 cells for for water faucet problem (4.17)

profiles associated with the LTS method show strong oscillations which are due to the very large
global Courant number and somewhat ambiguous treatment of boundary conditions that may
affect the accuracy of the pressure waves, see section 5.5.1. In addition, these pressure profiles
seem to stabilize themselves at a values slightly lower than the prescribed outlet pressure (105

Pa). Regardless of that, the volume fraction waves were not affected by the oscillations of the
pressure, and therefore we do not focus on these errors.
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In the plot for the volume fraction, we may see that the standard unsplit treatment leads to a
very large error in the volume fraction on the upstream side of the contact discontinuity, while
the corresponding split discretizations yield much better solution. The best solution is obtained
by using the upwind approximation for the source term (5.38). This hierarchy is expected, and
may be explained in a following way. First, we note that the error manifests itself as an increase
in gas volume fraction. Second, we recall that the source term in (2.5) and the corresponding
discretization in (5.21) are positive. The source term is given by the (4.18), where gravity g
is constant, while the changes in volume fractions dominate the changes in densities. When
we update cell U j, and we treat the source term with unsplit approach, we simply multiply
the strength of the source term at that cell by time step ∆t. We may observe that this is not
true, because what actually enters the cell is coming from the upstream direction, and upstream
of the contact discontinuity the volume fraction is smaller than in the cell at x j. Hence, this
approach overestimates the amount of gas phase. Following the same reasoning, we may see
why central discretization yields a better solution. The central discretization (5.37) of the split
source term uses the volume fractions, i.e. the source terms from upstream interfaces, where
value at each interface is determined according to (5.37). This approach uses smaller values of
volume fraction, and these values give much better results, but they still overestimate the source
strength in the cell at x j. Upwind discretization (5.38) uses even smaller values of the volume
fraction than the central discretization, and does not lead to too large accumulation of the volume
fraction in the cell at x j. We may observe that the accuracy of the best solution obtained with
the LTS Roe scheme is much closer to the high resolution Roe scheme than to the standard Roe
scheme.

The same hierarchy of the solutions is observed for the liquid and gas velocity profiles. We
note that for the gas velocity profile all LTS Roe schemes results seem to stabilize around a
slightly too big outlet velocity at the right boundary.

5.5.3. Comparison between different discretizations of source term at Courant number C ≈ 49
Next we further increase the Courant number and compare different choices of average for

Q j+1/2 with split discretization of the source term, Figure 7.
For Courant number C ≈ 49 the accuracy of pressure profiles is further decreased. In ad-

dition, the pressure profiles corresponding to Courant number C ≈ 49 stabilize themselves at
different values than before, but still not at the prescribed outlet pressure (105 Pa). Once again,
we do not focus on these errors, because we concluded that they do not significantly affect the
volume fractions and the velocity profiles.

For the volume fractions, further increase of the Courant number leads to further increase
in the error upstream of the contact discontinuity. At C ≈ 49, only the split discretization of
the source term with upwind average for Q j+1/2 gives reasonably good solutions, although if we
further increase the Courant number or the simulation time this error keeps increasing. Similar
trend is observed for the velocities. Therefore, even though our new approach significantly im-
proves the solution compared to the explicit treatment of the source term, it does not guarantee
an unconditionally stable treatment of the source term.

Remark 5: Herein, we note that the error in the volume fraction upstream of the contact
discontinuity is independent of the way we treat boundary conditions, i.e. it is the same for the
EBC and SSBC. This is in agreement with remark 4.
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Figure 7: Effect of source term treatment at C = 49 on grid with 100 cells for for water faucet problem (4.17)

6. Computational performance

Through the paper, it was repeatedly stated that the LTS Roe scheme is more efficient than
the standard Roe scheme. Herein, we investigate the computational efficiency of the LTS Roe
scheme by examining the relationship between the computational time and the 1-norm of the
error for different grids and Courant numbers, Fig. 8.

For the shock tube problem (4.16) (Fig. 8a) we used the EBC treatment of the boundary
conditions. For the water faucet problem (4.17) (Fig. 8b) we used the SSBC treatment of the
boundary conditions as described in section 5.5.1 and upwind treatment of the source term with
the average (5.38). The CPU times are obtained with the MATLAB tic–toc function averaged
over several simulations. We observe that:

• For all the cases, the LTS Roe scheme is more accurate than the standard Roe scheme;

• at each grid size, the increase of Courant number leads to an increase of the efficiency;

• for the shock tube problem (4.16) (Fig. 8a) the optimal Courant number depends on the
grid size. The convergence rate indicates that as we refine the grid, the solution obtained
with the highest Courant number will achieve the highest accuracy.

We note that these results are dependent on numerical implementation of the method and the fea-
tures of the studied problems. However, similar results were independently obtained by Lindqvist
and Lund [21].
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Figure 8: 1–norm error estimate E vs. computational time on grids with 100, 200, 400 and 800 cells

7. Conclusions

We extended the standard Roe scheme to the LTS Roe scheme and showed that the two-fluid
model can be solved with an explicit method not limited by the CFL condition. We applied the
LTS Roe scheme to two test cases, shock tube and water faucet, and focused on the difficulties
related to the treatment of boundary conditions and source terms.

The LTS Roe scheme performed very well for the shock tube test case, where there are
neither source terms nor difficulties associated with boundary conditions. For the water faucet
test case, applying the LTS Roe scheme with the most simple treatment of boundary conditions
and source terms led to two distinct, but related, patterns of error generation. The first error
is associated with the effect of the source term in the vicinity of the boundary. It is highly
dependent on the definition of the boundary cells, and it was shown that this error can be reduced
by imposing the steady state boundary conditions (SSBC). In particular, the SSBC approach
reduced the oscillations and led to smoother profiles of all variables affected by this error. The
second error is associated with the effect of the source term in general, and it is highly dependent
on the discretization of the source term. This error was especially important when the interface
Courant numbers were increased above one, since it caused severe oscillations in the volume
fractions and velocities. It was shown that an appropriate split discretization of the source term
allows us to use interface Courant numbers up to up to Ci ≈ 2.4, which corresponds to global
Courant number C ≈ 49. However, the oscillations associated with the pressure profile remained,
and got even worse as we increased the Courant number. Reducing the oscillations caused by
the source term in the vicinity of the boundaries by introducing SSBC treatment of the boundary
conditions and reducing the oscillations in volume fractions and velocities caused by the source
term elsewhere in the domain by introducing the split discretization of the source term are the
main contributions of this paper.

Finally, it was shown that the LTS Roe scheme is more efficient than the standard Roe scheme
for all the cases investigated in this paper. Further, the convergence analysis suggests that in-
creasing the Courant number increases the convergence rate. The optimal choice of the Courant
number remains to be determined for each particular problem.

The proposed method shows promising potential, especially in the following cases. First,
for the problems where there are no source terms and where complex wave dynamics is not
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happening close at the boundaries. Second, in problems with a large number of grid cells where
the number of additional ghost cells introduced by the LTS method is relatively small compared
to the number of grid cells in the domain. And last, in problems where the velocities of the phases
are much smaller than the pressure wave speeds and we are not interested in maximum accuracy
of the pressure field compared to the accuracy required for volume fractions and velocities.

We believe that the interface Courant number can be further increased by more appropriate
treatment of the source term. First, errors observed in Figure 6 led to an erroneous overshoots
in velocities, and for our investigations we used fixed time step determined at the beginning of
the simulation. Hence, adaptive time stepping procedure may be more appropriate for situations
when the LTS method may cause overshoots in velocity. Second, the split discretization of
the source term, although more successful than standard discretization of the source term, does
not take into the account effect of the source term during single LTS steps. These effects may be
taken into consideration by investigating the discretization of the source term in direction of well-
balanced schemes or some completely new approach, for example by taking into the account the
modification of the wave speeds by the source term. As for now, these investigations remain
outside the scope of this paper.
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