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ABSTRACT:  

Industrial processes for the production of metals and alloys by metallurgical and 

electrochemical methods generate a lot of waste heat due to irreversible losses. This waste 

heat may be used as a power source to generate electricity. A thermocell with non-critical and 

inexpensive molten carbonate based electrolyte mixtures with reversible (CO2|O2) gas 

electrodes was reported recently. It demonstrates the possibility of utilizing the waste heat (> 

550 °C) as a power source. Thermocell is an electrochemical cell with two identical 

electrodes placed in an ionic conducting electrolyte solution with a temperature gradient 

between the electrodes. The heat source will be used to create the temperature gradient 

between the electrodes, which will lead to a potential difference by executing ionic diffusion 

in the electrolyte. In this work, the thermo-physical and chemical properties of the electrolyte 

mixture were tuned by multi-component mixing with molten (K and Ca) carbonate and LiF 

additives into the binary (Li,Na) carbonates mixture. It reduces the liquidus temperature to ~ 

400 °C and enables the molten carbonate thermocells to recover the high-grade waste heat 

available at even low temperatures well below 550 °C. Still, the Seebeck coefficient of the 

thermocells remains large (in the range of -1.5 mV/K). 
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INTRODUCTION 

 Many industrial metal production processes require a high temperature operating 

conditions. Almost half of the heat is emitted as high grade (≥ 400 °C) waste heat into the 

environment by irreversible losses. The risk of global warming and possible scarcity of the 

non-renewable energy sources in the near future demands us to use the available waste heat 

for renewable energy production. Recently, thermocells using symmetrical gas (66 % CO2 in 

O2) electrodes and molten carbonate electrolyte mixtures demonstrated the chance of 

converting the high grade waste heat (550 - 850 °C) into power.1-3 One candidate target is 

waste heat (~ 700 °C) recovery from the industrial silicon-producing furnaces operating at 

1800 °C.2 The electrodes with (CO2|O2) gas mixture offer reversibility and fast reactivity with 

the electrolyte carbonate ions. The change in entropy due to the gas-liquid phase transition of 

the electrode gas also contributes to the large Seebeck coefficient. The constant supply of the 

CO3
2- anion source to the melt through the electrode gas mixture keeps the operation 

continuous. This thermocell shows a predicted increase in the Seebeck coefficient (more 

negative) with a decrease in the partial pressure of CO2|O2 in the electrode gas mixture.1 This 

suggests an opportunity to also use the industrial off-gases containing CO2 and O2 in mixture 

with other gases.1-2  

The melting point of molten carbonate in the electrolyte mixture is the key factor to enable 

the conditions for thermoelectric conversion. It limits the thermocell operation to be above 

550 °C with binary eutectic carbonates. This restricts accessing the waste heat (~ 450 °C) 

from the industrial aluminum production.4 The production of aluminum is the second largest 

amount of metal produced worldwide, next to the iron and steel. At present the primary 

aluminum is produced by Hall-Héroult electrolysis process5 with molten cryolite containing 

the dissolved alumina (Al2O3) raw material as an electrolyte. The cells are operated at 
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temperatures from 950 - 980 °C. Dissolved Al2O3 reacts with the consumable carbon anodes 

to produce aluminum metal along with CO2 gas: 

�
� 	Al�O��dissolved� +	�� 	C�s� = Al�l� +	�� 	CO��g�   (1) 

Nearly 50 % of the input energy is lost as waste heat to the surroundings.5 As an integral part 

of the reaction process, the CO2 gas emission is unavoidable but could be reduced.6-7 

Empowering the molten carbonate thermocells to operate below 450 °C will permit the 

access to avail the dual sources of waste heat and CO2-rich off-gases from the industrial 

aluminum production cells.  

Table 1. The melting point and the lattice energy8 of the molten salts in the electrolyte 

mixture. 

Molten Salt 
Melting Point 
(ºC) 

Lattice energy 
(kJ/mol) 

Li2CO3 723 2523 

Na2CO3 851 2301 

K2CO3 891 2084 

CaCO3 825 2804 

LiF 845 1030 

 

Table 2. The electrolyte molten melt composition dispersed in 55 vol % of solid MgO. 

Electrolyte 
Mixture 

Melt Composition MX Melting Point 
without MgO 
from 
literature (ºC) 

Eutectic Carbonates 
(mol %) 

Addtivies 
(wt %) 

Li2CO3 Na2CO3 K2CO3 CaCO3 LiF 

LNC 53 47 --- --- --- 496 

LNKC 43.5 31.5 25 --- --- 397 

LNKC-CC 43.5 31.5 25 14 --- 376 

LNKC-LF 43.5 31.5 25 --- 14 368 
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The lattice structure and ionic arrangement of the molten salts will change during the solid 

to liquid phase transition due to the dissociation of anion-cation pairs.9-10 The salt possesses a 

high electrical conductivity in the molten phase, which increases with the temperature.11 On 

the other hand thermal conductivity decreases with increasing temperature. It is thus easier to 

maintain a stable temperature gradient between the electrodes. The physical properties of the 

molten salts such as density, viscosity, surface tension, and liquidus temperature are easily 

tunable by multi-component mixing.12-15 Addition of new salts with less lattice energy8 

(Table 1) will lower the lattice chemical energy of the mixture and liquidus temperature 

(Table 2).13 In addition to the liquidus temperature, the decomposition temperature of the 

mixture will also be shifted. So, the possible stable temperature window of the electrolyte 

mixtures in the molten phase is determined by thermal analysis. In the present work we 

investigate the ternary eutectic (Li,Na,K)2CO3, with and without CaCO3 and LiF additives, as 

electrolyte mixture for reduced temperature operation (< 450 °C). The thermocell 

experiments are conducted with the same conditions as in our previous work,3 except for 

difference in electrolyte composition and a wider range of operating temperatures.  

 

EXPERIMENTAL 

High purity (> 99%) carbonates of lithium, sodium, potassium and calcium, lithium 

fluoride and magnesium oxide powders from Sigma-Aldrich were used in electrolyte mixture 

preparation as purchased. The composition specification of the electrolyte mixtures is listed 

in Table 2. The mixtures were prepared in a mortar by hand mixing and dried in a hot air 

oven for 48 h at 200 °C. Pure metal sheet and wire for making the electrodes (Au) and type S 

thermocouples (Pt-Pt/Rh10%) were purchased from K.A. Rasmussen, Norway. The 

necessary alumina components for thermocell (Figure 1) construction, like 5-bore tubes (one 

center bore dia 2.3 mm and four other bores with dia 0.75 mm) and a tubular crucible (inner 
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diameter of 38 mm with 200 mm length) were bought from MTC Haldenwanger, Germany. 

The electrodes were made of a gold sheet point-welded to the gold wire inserted into the 

alumina tubes center bore and the thermocouples (Pt-Pt10%Rh) inserted into two other holes 

of the tube. The thermocouple junctions were positioned close to the gold electrode to 

measure the accurate temperature at the electrode surface.  

 

Figure 1. The cross-sectional schematic representation of the molten carbonate thermocell. 

The electrodes are positioned to establish the temperature gradient of 5 °C, while the cell was 

maintained at the average cell temperature above the liquidus temperature. 

The thermocell was assembled by placing the two alumina tubes (with the electrode and 

thermocouple) in the cylindrical crucible containing electrolyte mixture. Then the cell was 

transferred (Figure 1) to a standard laboratory vertical cylindrical furnace under N2 
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atmosphere. First, the electrolyte mixture was melted at the average cell temperature in the 

vertical tube furnace for at least 48 hours to ensure homogeneous melt condition. Pre-mixed 

34% oxygen in carbon dioxide gas mixture from AGA, Norway was supplied to electrode 

tubes at a flow rate of 21 ml/min. The gas mixture flow was controlled by a pair of Brooks 

instrument Sho-Rate flow meters with ± 5% accuracy. This molten carbonate electrolyte 

mixture thermocell can be represented as follows: 

Au(Ts,a) | CO2,O2(g) | 45 vol% MX (l), 55 vol% MgO(s) | CO2,O2(g) | Au(Ts,c) (2) 

where MX is the molten salt melt in the electrolyte mixture, listed in Table 2. The reversible 

(CO2|O2) gas electrode reaction in the carbonate electrolyte melt is: 

2CO�	�g� +	O�	�g� + 	4	e� =	2	CO�
��	�l�  (3) 

with the reverse reaction at the electrolyte interface of the other electrode. 

The electrodes temperature and potential difference were continuously recorded by Agilent, 

34972A data acquisition unit. Positioning the electrodes at different heights in the electrolyte 

creates the temperature gradient (∆T) between them by the difference in heating zones of the 

furnace. Meantime the average cell temperature was maintained to be constant. An 

equilibration time of 15-20 min from the positioning of the electrodes was used to make sure 

the measured potentials were stable. Then the cell potential was measured at least for 30 mins 

at each temperature gradient. 

The Seebeck coefficient of the thermocell with homogeneous binary electrolyte mixture 

LNC at the initial state (short time) is: 

� ∆�
���,����,�� = 	!",# = 	−	�% 	 &

�
� 	'()*

	 +	�� 	')*
	 + '+∗ − �

� 	'()-*.
∗ +	�/*0* −	 /101 

2∗

� 	3 (4) 

The Seebeck coefficient of the same LNC electrolyte mixture at steady Soret equilibrium 

state is: 

!",4 = −	�% 	&
�
� 	'()*

	 +	�� 	')*
	 + '+∗ − �

� 	'()-*.
∗ 3  (5) 
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where	'5	 is the entropy of component j at an average temperature of the electrodes T and 

pressure 65	 . The terms '+∗	and '()-*.
∗  are the transported entropies of the electron and 

carbonate ion, respectively. This equation applies also to multicomponent mixtures.  

The entropies and the transported entropies are generally functions of temperature. The gas 

entropies are expected to be larger than the transported entropies. These terms have then a 

negative contribution to the Seebeck coefficient. Then 7�, 7� are the transference coefficients 

and 8�,	8� are the mole fractions of Li2CO3 and Na2CO3. The ratio 
2∗

�  may be interpreted in 

terms of enthalpy changes across the layer, but it is difficult to interpret the sign of this last 

term. The last term in the initial state is not included at the Soret equilibrium state. A detailed 

theoretical derivation of the equations (4 and 5) based on non-equilibrium thermodynamics is 

explained in our previous work.1-2 The reported Seebeck coefficients in this paper are 

considered as to be at initial state, which means the measurement made short time after the 

establishment of the temperature gradient.  

Table 3. Experimental algorithm used for the DSC/TGA thermal analysis. 

Segment Mode 
Temperature Range 
(ºC) 

Heating/Cooling Rate 
(ºC/min) 

Hold Time 
(min) 

1 Heating 50 - 300 20 --- 

2 Isothermal 300 --- 10 

3 Heating 300 - 530 10 --- 

4 Heating 530 - 900 20 --- 

5 Isothermal 900 --- 10 

6 Cooling 900 - 50 20 --- 

 

The chemical and phase stability was analyzed by determining the phase of as-prepared and 

re-solidified (i.e. before and after thermocell measurement) electrolyte mixture by X-ray 

diffraction (Bruker-D8 ADVANCE with a CuKα source of λ = 1.5406 Å). The thermal 

stability and liquidus/solidification temperature of the electrolyte mixtures were determined 
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by TGA/DSC thermal analysis (NETZSCH STA449C Jupiter). Thermal analysis was 

performed by heating an alumina pan gently pressed with the powders of as-prepared 

electrolyte mixture in reference with a similar empty alumina pan under N2 atmosphere. 

Different segments of the temperature profile (Table 3) were used to improve the accuracy 

and minimize the analysis time. 

 

RESULTS AND DISCUSSION 

For comparison, the DSC was also performed for pure single lithium carbonate mixture 

(LC) with 55 vol% solid MgO along with the proposed electrolyte mixtures in Table 2. 

Figure 2 shows the change in thermal behavior of multi-component mixtures from the pure 

single salt system. The LC mixture DSC heating curve (Figure 2a) shows a sharp 

endothermic peak at 718 ºC representing the melting point of the mixture, which is slightly 

lower than for the pure Li2CO3.
16 The presence of solid MgO could help in the early melting 

of the carbonates due to the decrease in enthalpy of fusion.14, 17 It suggests that the presence 

of solid MgO stabilizes the Li2CO3 below its liquidus temperature. Then the carbonates begin 

to melt from the region near the solid MgO surface as an affected solid state in this 

heterophase mixture.18  

In all other electrolyte mixtures, a broad endothermic peak covering a wide temperature 

range with less intensity is observed. The endothermic peak begins once the first liquid is 

formed and due to the low thermal conductivity of the mixture a wide range of temperature is 

required to melt the last fraction of carbonates in the mixture. Even two endothermic peaks 

are seen in the case of LNC and LNKC mixtures. The formation of a metastable solid state by 

solid-solid phase transformation may lead to an additional endothermic peak before 

melting.19 After the solid-solid phase transition the absorption of heat leads to a rapid 

endothermic peak, which represents the liquidus temperature of the eutectic mixture. Also the 
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10 

 

inhomogeneity of the multi-component mixture may lead to an additional endothermic peak. 

However, the peak maximum is higher than the expected liquidus temperature in Table 2 

(molten carbonates without MgO). The large thermal contact resistance between the solid 

sample and alumina pan container at this heating rate (10 ºC/min) affects the homogeneous 

temperature distribution in the sample and shifts the melting point.19 Using a slow heating 

rate (below 5 ºC/min) may improve the data accuracy.12  
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Figure 2. DSC analysis to show the change in (a) liquidus and (b) solidification 

temperatures of the electrolyte mixtures in Table 3. 

The improved thermal contact between the alumina pan and the sample after melting shows 

a sharp exothermic peak on resolidification in the DSC cooling curves (Figure 2b). The 

change in the sharp peak position in the cooling curves confirms the reduction in liquidus 

temperature in multi-component mixing, in the order of (LC > LNC > LNKC > LNKC-CC > 

LNKC-LF), this drift is identical to the literature.13, 20 The steady baseline in the cooling 

curves displays the enhanced homogeneity21 after melting. This makes it certain that the 

melting procedure with average cell temperature for 48h in the tubular furnace before the 

thermocell measurement will improve the electrolyte melt homogeneity. The presence of the 

two well distinguishable separate exothermic peaks in the LNKC-LF cooling curve will be 

discussed later.  

The recorded potentials after 20 min of equilibrium time from the establishment of each 

temperature gradient are shown as raw data in time scale (inset plot in Figure 3a) for the 

LNKC thermocell. The negative temperature steps show a positive increase in potential 

which is reversed by reversing the temperature gradient between the electrodes. A negative 

potential is observed for the thermocell measurements with the hot electrode as a negative 

terminal. Then the potential changes to positive on reversing the hot and cold electrodes (the 

positive terminal becomes hot). A negligible bias potential is observed when both the 

electrodes are close to the average cell temperature (∆T is ~ 0).1-2, 22  

The recorded raw data is plotted as potential against the temperature gradient (Figure 3a), 

and the slope of the straight line determines the Seebeck coefficient. It displays a well-

defined thermoelectric condition for the LNKC thermocell at 415 ºC. This behavior is 

identical to the reports with binary or single carbonate electrolyte mixture at 550 ºC.1-3 The 
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thermocell Seebeck coefficients of all the electrolyte mixtures listed in Table 2 are shown in 

Figure 3b. Lower melting point of the ternary eutectic carbonate electrolyte mixtures makes 

the thermocell measurement possible at 415 ºC. However, the Seebeck coefficient is also 

measured at 550 ºC to make a comparative scale with the reported binary LNC electrolyte 

mixture in identical experimental condition.3  

 

 

Figure 3. (a) Thermocell measurement with LNKC electrolyte mixture at 415 °C and (b) 

Seebeck coefficient of the thermocells different electrolyte mixtures in Table 2. 
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The ionic framework and transport behavior of the molten carbonates electrolyte mixture 

dispersed with solid MgO will be discussed before considering the changes in Seebeck 

coefficient for different electrolyte mixtures. Mizuhata et.al.,18, 23-24 reported a lower 

electrical conductivity of similar molten carbonate electrolyte mixtures dispersed with 

different solid oxides, compared to pure molten carbonates. They also confirmed that the 

dispersed solid oxide behaves more as an insulator and that the electric conductivity of the 

mixture depended mostly on the ionic conductivity of the molten phase. The presence of 

dispersed solid oxide interface influences different transport properties. Nafe25 supported this 

observation; the reduction in conductivity of carbonate based composite electrolyte was due 

to anion-conduction rather than cation on dispersed solid oxides in carbonate melts. In Figure 

4, a scheme is proposed to illustrate the ionic environment of the binary molten carbonate 

electrolyte mixture (LNC) with solid MgO above the liquidus temperature. According to 

molten salt chemistry, the cation-anion pairs begin to dissociate at the liquid phase transition 

and increase the ionic degrees of freedom. However, in the liquid phase near the melting 

point a short-range lattice order remains as a memory effect of the solid lattice.26-27 Here the 

cation sits next to the respective anion or vice versa, like in a quasi-crystal.10, 16 Upon further 

increase in temperature, the ionic pair dissociation-distance increases and the concentration of 

ionic charge carriers increases with temperature.15, 26-28 Reaching the complete dissociation of 

ion pairs at a higher temperature (boiling point), decomposition will be initiated.29  
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Figure 4. Schematic to illustrate the ionic arrangement in LNC electrolyte mixture at initial 

condition. 

Identical melting behavior is expected in the molten carbonate electrolyte mixtures in 

thermocells. Ionic movement occurs in electrolyte melt due to thermal diffusion setup by the 

temperature gradient between the electrodes. In pure molten salts without solid oxide, the 

fast-moving small cations are the predominant charge carriers rather than the large anions. 

However the dispersion of solid oxides turns the larger anions into being the charge carriers 

due to the interface (solid MgO/M+ cations) composite effect.25 Thus, the randomly arranged 

solid MgO particles wrapped with a negative surface charge attract the small metal (Li, Na) 

cations and withhold its mobility, thus the anions become a dominant carrier. Also, the MgO 

interface effect on the carbonate melt will reduce the heat flux.30 The theoretical expression 

for the Seebeck coefficient of these thermocells derived by irreversible thermodynamics 

depends on the transported entropy of the carbonate ions, rather than the metal ions, in 

agreement with the illustrated transport behavior.1-2 Also, in high-temperature molten 

carbonate fuel cells with solid oxide matrix and carbonate melt electrolyte, the negative 

carbonate ions is considered as a major charge carrier.20, 31  
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In this thermocell, the large carbonate anions diffuse from the cold to the hot electrode in 

the electrolyte mixture. The ionic arrangement in the electrolyte mixture may influence the 

carbonate ions’ degree of diffusion.15, 25 Even though the cations are immobilized on the solid 

MgO surface, the addition of larger cations could alter the carbonate ion mobility. The 

change in anion-cation coulombic force of attraction and polarization power on the change in 

cation size varies the activation energy for conduction and diffusion of the carbonate ions.1, 15 

The thermocell Seebeck coefficient, directly depends on the transported entropy carried along 

with the charge carrier (transported entropy is an energy from the lattice order-disorder 

transition). Thus, the transported entropy of the carbonate ions is reduced while moving from 

the pure LC to binary LNC electrolyte mixture due to the lattice defects by multi-component 

mixing and will increase the Seebeck coefficient. But the substitution of sodium cation by 

large potassium in the binary melt, reduces the Seebeck coefficient.2 Also in the present study 

(Figure 3b), the Seebeck coefficient (average cell temperature 550 °C) of the binary LNC 

thermocell reduces from -1.7 mV/K to -1.5 mV/K for the LNKC. The Seebeck coefficient 

reduces further to -1.2 mV/K for the electrolyte mixture LNKC-CC due to the strong lattice 

energy between the asymmetric divalent calcium (Ca2+) cation and carbonate anion in the 

monovalent cations melt. The LNKC-LF mixture results show a slightly higher Seebeck 

coefficient than the ternary LNKC mixture, even though the concentration of carbonates is 

reduced by fluorides addition in the melt. The illustrated ionic framework and the 

dependency of the Seebeck coefficient on cation composition in the electrolyte mixture, 

suggest that the preferred path for carbonate ion diffusion is associated with cations that are 

attracted to the solid MgO surface, rather than to the core of carbonate melt. Mizuhata, 

et.al.,18 reported an increase in electrical conductivity upon increasing the amount of solid 

oxide content, or its surface area in the carbonate melt, which makes the claim reasonable. 
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A high chemical and phase stability of the dispersed solid MgO in LNC electrolyte melt 

was reported.3 The addition of other carbonates into the LNC mixture should retain the 

stability of the MgO phase.16-17 The stability of MgO in electrolyte (LNKC-LF) melt with LiF 

additive is studied by XRD (Figure 5). The sharp and intense diffraction peaks of MgO are at 

the same position before and after thermocell measurement. But the peaks related to 

carbonates and fluoride show reduced intensity for the re-solidified electrolyte melt cooled 

from 550 ºC.3 Phases other than the phases due to the known melt composition are not 

observed. The lag in crystallinity on re-solidification from the completely disordered melt 

phase reduces the diffraction peak intensity of the molten salts. Also, no evidence for 

recombination of the fluoride anions to the Na/K cations is seen, the strong lattice force of 

small Li+ in favors the LiF formation.32 Meanwhile, the Li+ rich melt leads to a cation phase 

separation on re-solidification showing a splitting in peak position corresponding to pure 

Li2CO3 with an additional peak for binary (Li, Na)2CO3 phase. Such splitting was not 

observed previously in LNC electrolyte mixture.3, 32-33 In the LNKC-LF mixture DSC cooling 

curve, the occurrence of a small additional exothermic peak in the re-solidification range of 

LNC supports this cation phase separation observed using XRD. However, it couldn’t be an 

impurity phase, thus the multi-component mixing just leads to a doping effect without any 

chemical side reaction.13 The solid MgO phase remains stable throughout the thermocell 

operation even in the presence of LiF in the electrolyte.  
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Figure 5. XRD phase analysis of the LNKC-LF electrolyte mixture, before and after the 

thermocell measurement at 550 °C. 

The decomposition temperature of the electrolytes beyond the melting point, where the 

dissociated CO3
2- ions begin to escape as CO2 and affects the melt homogeneity,29 determines 

the stable liquid phase temperature upper window for the thermocell operation. So, the 

thermochemical stability of the electrolyte mixtures is analyzed by TGA along with the DSC 

measurements. In Figure 6 the decomposition process is monitored by measuring the change 

in electrolyte weight on heating to 900 ºC under N2 atmosphere. The weight loss observed 

before 200 ºC is due to the removal of moisture12 and the sudden drop around 300 ºC is 

attributed to the implemented isothermal condition followed by the different heating rates 

used in the measurement algorithm (Table 3). The electrolyte mixtures solid to liquid phase 

transition shows the respective change in TGA curve around 400 ºC for the ternary carbonate 

mixtures (LNKC, LNKC-CC, LNKC-LF). As mentioned in the DSC discussion the high 

interface thermal resistance between the solid sample and alumina pan in high heating rate 

can shift the corresponding liquid weight change in TGA to high/low temperatures.12 The 

lattice energy and cation polarization power of the salt have strong effects on their thermal 

Page 17 of 25

ACS Paragon Plus Environment

ACS Applied Energy Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-037.jpg&w=252&h=222
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-037.jpg&w=252&h=222
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-037.jpg&w=252&h=222
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-037.jpg&w=252&h=222
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-037.jpg&w=252&h=222


18 

 

stability.34 As shown in Table 1, the larger lattice energy of the CaCO3 prompts the early 

decomposition in LNKC-CC.21, 32 However, the presence of Na, K carbonates with low lattice 

and ionization energies establishes a short range of stable melt phase in LNKC-CC between 

the melting and decomposition temperatures.35 The ternary eutectic carbonate electrolyte 

mixtures with and without LiF offer a chemical stability at higher temperatures along with the 

reduced liquidus temperature.13-14 

 

Figure 6. Thermochemical stable of the different electrolyte mixtures by TGA analysis. 
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The thermocell measurements with LNKC ternary molten carbonate electrolyte mixture 

were performed in the determined stable temperature window (from 405 to 750 ºC). Along 

with the Seebeck coefficients, the TGA weight loss of the corresponding electrolyte mixture 

on increase in temperature is also merged in Figure 7. An increase in the carbonate ion degree 

of freedom by enhanced cation-anion pair dissociation by raising the thermocell temperature 

lowers the activation energy required for carbonate ion migration.25, 28 Also the transported 

entropy of carbonate ions reduces due to large lattice disorder by an increase in the average 

cell temperature. Thus, the Seebeck coefficient increases from -0.9 mV/K (405 °C) to -1.5 

mV/K (550 °C). The dependence of the Seebeck coefficient on the operating temperature is 

similar to the behavior reported previously (increase in Seebeck coefficient with average cell 

temperature).2 Existence of short-range lattice order (quasi-crystalline nature)33 in the melt 

phase near the liquidus temperature results in a drastic change in Seebeck coefficient for a 

small raise (10 ºC) with the average cell temperature (405 to 415 ºC). The further increase in 

thermocell temperature to 750 ºC, slightly reduces the Seebeck coefficient to -1.2 mV/K. 

 

Figure 7. Seebeck coefficient of the LNKC thermocell at different average cell temperatures 

merged with the TGA weight loss profile. 

Page 19 of 25

ACS Paragon Plus Environment

ACS Applied Energy Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-047.jpg&w=312&h=231
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-047.jpg&w=312&h=231
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-047.jpg&w=312&h=231
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-047.jpg&w=312&h=231
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-047.jpg&w=312&h=231
http://pubs.acs.org/action/showImage?doi=10.1021/acsaem.8b00984&iName=master.img-047.jpg&w=312&h=231


20 

 

There is no significant decomposition weight loss observed during TGA measurement under 

N2 atmosphere at this temperature. But during the thermocell measurements, the availability 

of O2 electrode-gas along with CO2 could initiate carbonate decomposition a bit earlier, 

around 730 ºC.14 Then the dissociated CO3
2- ions begin to escape as CO2 and affects the 

homogeneity of the electrolyte mixture by decrease in CO3
2- ions concentration and reduced 

Seebeck coefficient at 750 °C. However, the LNKC mixture enables thermocell operation at 

405 ºC which is well below the desired reduced temperature (450 ºC). The electrolyte mixture 

with LiF will likely corrode the metal electrodes which demands an extensive study for 

higher temperature operation,36 but the gold and platinum metals are stable in this regards. 

The morphology of the Au electrodes is not modified during the thermocell measurements. 

Also change in electrolyte composition has no impact on the surface morphology of the Au 

electrodes. The SEM images showing the surface morphology of the electrodes are provided 

in the supporting information. Also, the addition of the low melting temperature salts like 

molten chlorides, nitrates, and hydroxides will liquidize the ternary carbonate mixture even 

sooner, but the complex ionic melt will affect the solid MgO phase and melt chemical 

stability.14, 32, 35
 

 

CONCLUSIONS 

A low liquidus temperature of the ternary eutectic LNKC electrolyte mixture can be 

achieved by multi-component mixing with low lattice energy salts. This permits the operation 

of molten carbonate thermocell at a reduced temperature range (< 450 ºC).  The high-

temperature thermochemical stability of the mixture widens the operating temperature 

window of the thermocell. Addition of CaCO3 and LiF into the ternary eutectic carbonates 

shifts the liquid phase-transition to even lower temperatures. But the higher lattice energy of 

CaCO3 brings down the stable temperature window by early decomposition. While the LiF-
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addition demonstrates a better stability at high-temperatures, the corrosion effect of the 

electrodes and other cell components should be investigated before warranting the better 

performance. XRD analysis shows that the dispersed solid MgO remains stable in LNKC-LF 

electrolyte at 550 ºC. Thus, the stable and suitable reduced temperature is optimized for the 

molten carbonate thermocell operation to recover the waste heat (< 450 ºC) from primary 

aluminum production industries.  
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