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5

1 Introduction

This document provides the theory manual and user manual for two finite elements
for the modeling of hydrogen-induced embrittlement of metallic materials. The co-
hesive zone element (CZE) allows to simulate the creation of new surfaces and the
corresponding absorption of energy. The absorption of energy is made a function of
the hydrogen concentration. The volume element (DIFEL) accounts for mechanical
deformation, the transport of hydrogen, and the kinetics of trapping and untrapping.
Although plastic deformation and hydrogen diffusion driven by triaxial pressure have
been implemented, these have not been tested and the current input format does
not support them. Heat diffusion has not been tested either.
Both elements are implemented as “user-defined elements” (UEL) for ABAQUS. This
has proven to be an extremely costly strategy because ABAQUS’s support for UELs
is actually extremely poor. As a consequence, the version of DIFEL and CZE docu-
mented here is the last that will be implemented for ABAQUS, and further develop-
ment will have to wait for a re-implementation which is being planned at the time
of writing.

2 CZE: Cohesive zone element

2.1 Features

The present document is intended both as a theory manual and a developers manual
for CZE.f90, TSL.f90 and ancillary code. This code was written to provide flexibility
in the modeling of the effect of solutes (in particular hydrogen) on the fracture of
metallic material, using cohesive-zone modeling.
CZ models are common, and SINTEF actually disposed CZ code for ABAQUS prior
to the development reported here. The present code provides several capabilities:

2.1.0.1 Solute diffusion

Element nodes can have one or several degree of freedoms for the concentration
of solutes (hydrogen and so forth). The CZ element can handle the diffusion of
hydrogen across it, the effect of separation on the permeability, and the effect of
solute concentration on the traction separation law.

Isoparametric formulation

The code uses an isoparametric formulation to provide maximum flexibility in mesh-
ing. Local reference systems are introduced at each Gauss point, so that curved
elements are properly handled.
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2.1.0.2 Multiple elements

The present code handles both 3D and 2D analyses and provides isoparametric
transforms of triangle, square and segment. New elements (with higher number
of nodes and/or higher numbers of Gauss points) can easily be added. “Over-
integration”, with higher numbers of Gauss point can be a strategy to handle the
strong non-linearity of the traction separation law.

An element type is defined by just a few lines of code, that specify the layout of
nodes, and degrees of shape functions. For example, the subroutine UEL in uel.f90
contains:

1 case ( 2 ) ! ’ CZE_RECT8H4
2 ! cohes i ze zone , r ec tang le , 8 nodes , so lu te , 4 nodes
3 ga = Legendre ( 4 )
4 quad = ga∗ga
5 c a l l CZelement ( coords , u , v , a , a l f a , rhs ( 1 : ndo fe l , 1 ) , amat ,

svars , props , j p rops , quad , j t ype , je lem , kstep , k inc , &
6 xterm = reshape

( [ 0 , 1 , 0 , 2 , 1 , 0 , 2 , 1 , 0 , 0 , 1 , 0 , 1 , 2 , 1 , 2 ] , [ 8 , 2 ] ) ,&
7 sterm = reshape ( [ 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 ] , [ 4 , 2 ] ) ,&
8 znod = reshape ( [ −1 . 0 _dp , 0 . 0 _dp , 1 . 0 _dp , 1 . 0 _dp , 1 . 0

_dp , 0 . 0 _dp , −1 .0 _dp , −1 .0 _dp , &
9 −1.0_dp , −1 .0 _dp , −1 .0 _dp , 0 . 0 _dp , 1 . 0 _dp , 1 . 0 _dp , 1 . 0 _dp , 0 . 0

_dp ] , [ 8 , 2 ] ) ,&
10 sznod = [ 1 , 3 , 5 , 7 ] , &
11 sca la = s c a l e f a c )

2.1.0.3 Tangential strains

While the CZ element has initial zero thickness, it actually represents a process zone
with possibly finite stiffness. In particular, in the case of ductile failure, tangential
stresses promote void growth over a brittle mechanism, and conversely, void growth
induces a local relaxation of tangential stresses. This may be a mechanism of the
influence of “constraint” on the fracture toughness.

The present formulation handles this by providing the TSL (traction separation law)
with tangential strains, and accepting tangential “stresses” (actually, multiplied by
the thickness of the process zone) in return.

2.1.0.4 Research-oriented

The present implementation focuses on flexibility and maintainability, not on per-
formance:

• Expansion of shape function arrays serves code readability, not performance.
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• Operations that could be done at compile time, or at the start of the analysis,
are repeated at each iteration.

• The element “stiffness” matrix is computed from the element “forces” by finite
differences. This simplifies the code for the element, and not least, that of
traction separation laws.

• Isoparametric formulation is used to cope with a wide range of meshes. This is
used for all element types, although triangular elements do not gain anything
from isoparametric formulation.

Hopefully, the performance loss thus incurred is insignificant, as the bulk of CPU
time should be consumed by the volume elements in the model, and/or the solution
of the system of equations for the whole model.

2.2 Formulation

2.2.1 Reference systems

The present family of elements uses isoparametric formulations. Because of the ne-
cessity to distinguish components of various tensors that are normal and tangential
to the element, it is necessary to introduce reference systems that are not present,
at least in typical volume elements.
These reference systems are described in this section.
In the code and this document, x-coordinates refer to the “global”, “canonical” or
“Eulerian” orthonormal reference system. This is for example the reference system
in which ABAQUS expresses node coordinates or displacements. The base has nx
dimensions, 2 in membrane analysis, 3 in volume analysis.
Isoparametric elements are classically described in a “reference” configuration. For
example, in that reference configuration, all triangular elements have vertices with
coordinates (0,0), (1,0) and (0,1). All “square” elements have vertices with coor-
dinates (−1,−1), (1,−1), (1,1) and (−1,1). These coordinates, often described as
ζ-coordinates in the literature, are referred to as z-coordinates here and in the
code. There are nz = nx− 1 such coordinates. The position of nodes and Gauss
integration points is expressed in this reference system. At each Gauss point, a
base is defined, which vectors are the partial derivative of a point with respect to
each z-coordinate.
The “initial” configuration is the as meshed geometry. The convected of the z-base
by the transformation from the reference to the initial configuration is a general
base. It is orthonormalised using Gram-Charlier: the convected of z1 is normalized,
yielding y0

1, and the convected of z2 is made orthogonal to y0
1 and normalized,

yielding y0
2. We then introduce yo3 = yo1 ×yo2/

∣∣yo1×yo2∣∣, completing the “y0-base”.
This cross product is necessary because, while one could introduce a third vector
in the z-base, there is no way convect it with the deformation of the element, since
the element’s displacement field is only defined with a 2D surface.
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At any time t, we can introduce the convected of the above base by the transfor-
mation from initial to instantaneous configuration, yielding yt1 and yt2. We then
introduce yt3 = yt1×yt2/

∣∣yt1×yt2∣∣. This defines the “y-base”, which coordinates in
the x base are found in the code as x_y. The y-base is not orthonormal, so the
coordinates y_x of its dual base appear in the computation.
The stress to be returned by the traction separation law is the 2 Piola-Kirchhoff
tensor, expressed in the y0-base (which is its own dual). The traction to be returned
by the traction separation is the traction per unit of initial surface (or the traction
per unit of instantaneous surface, multiplied by the Jacobian determinant), to be
expressed in the dual of the y-base.

2.2.2 Shape functions

We consider the array A of size nznod×ngp, which contains the value of the
displacement at a Gauss point, corresponding the displacement of a node in a
face. Similarly, we consider the array B of size nznod×nz×ngp containing the
values at the Gauss points of the gradients of the derivatives of the displacement,
corresponding to a nodal displacement. These are the classical shape functions of
membrane elements.
From these, the following arrays are constructed:
Aδ which to the displacement in each of nx directions, of each node of each face,
associates the coordinates of the gap vector at each Gauss point, expressed in the
global x-coordinate system.
As which to the concentration of each solute, at each node of each face, associates
the concentration of each solute at each Gauss point, averaged over the two faces.
Bz which to the displacement in each of nx directions, of each node of each face,
associates the gradient with respect to z-coordinates of displacement expressed in
the global x-coordinate system at each Gauss point, averaged over the two faces.
By is the same as Bz, but the gradients are with respect to the y-coordinates.

2.2.3 Solute concentration

For each solute, concentration is a scalar, and for each phase, its interpolation from
nodal values is done in the usual fashion. The concentration at a Gauss point,
transmitted to the TSL is the mean of the concentrations at each face.

2.2.4 Gap

In volume elements, the coordinates of a point within the element are found by
multiplying the vector of nodal coordinates by the shape functions. In the present
implementation, this is done for each face, and the results are subtracted to yield
the gap. More specifically, the shape function Ns is constructed to directly yield the
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difference. This gives the coordinates of the gap in the x-base. This is re-expressed
in the yt-base by projection on its dual base (by solving gapy=LUsolve(x_y,gap)).

δ = δxi xi (2.1)
= δ

y
i y

t
i (2.2)

As a consequence, (in a 3D analysis), the two first coordinates of the gap are
tangential values in material-orthogonal directions. The third component is the
opening in the instantaneous-normal direction. Positive values refer to an opening,
negative to interpenetration of the faces.

2.2.5 Strain

Green-Lagrange strain and their computation in a FEA setting are well documented
in the literature. In the present setting, there is a small deviation from the canonical
theory because only the strain within the plane tangent to the element are computed:
The deformation gradient is F= yt

i y
0
i

contains the coordinates yt1 and yt2 in the x-
base, and is of size nx×nz. As a result

ε =
1
2

(
F
T ·F− I

)
(2.3)

=
1
2

(
y0
i
y

t

i ·y
t

j y
0
j
−y0

i
y

0

i ·y
0

j y
0
j

)
(2.4)

=
1
2

(
y

t

i ·y
t

j −y
0

i ·y
0

j

)
y0
i
y0
j

(2.5)

=
1
2

(
y

t

i ·y
t

j −δij

)
y0
i
y0
j

(2.6)

= ε
y
ijy

0
i
y0
j

(2.7)

is of size nz×nz: it is a material strain expressed in terms of coordinates in the
orthonormal base y0 (built by Gram-Charlier orthonormalisation).

2.2.6 Nodal forces

The work in the element is equal to

W =

∫
V
y0

WdVy0 (2.8)

=

∫
V
y0

WJdVz (2.9)
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W is a function of εy, δ and si . The two firsts are functions of the nodal position,
and by definition the nodal forces are

Ri =
∂W

∂Xi
(2.10)

=

∫
V
y0

∂

∂Xi
(WJ) dVz (2.11)

=

∫
V
y0

(
∂W

∂Xi
J+W

∂J

∂Xi

)
dVz (2.12)

≈
∫
V
y0

∂W

∂Xi
JdVz (2.13)

=

∫
V
y0

(
∂W

∂δ
y
j

∂δ
y
j

∂Xi
+
∂W

∂ε
y
jk

∂ε
y
jk

∂Xi

)
JdVz (2.14)

=

∫
V
y0

(
t
y
j

∂δxk
∂Xi

∂δ
y
j

∂δxk
+σyjk

∂ε
y
jk

∂Xi

)
JdVz (2.15)

=

∫
V
y0

(
t
y
jNikFkj+σ

y
jkBiljFlk

)
dVy0 (2.16)

R =

∫
V
y0

(N ·F · ty+B : (F ·σy)) dVy0 (2.17)

A comment: in the term in tyj the sum over j spans nx, while in the term in σykj, the
sum over k spans nz.

By construction, σy are the y-coordinates of the 2nd Piola-Kirchhoff stress tensor:
both surface direction, surface measures and tractions relate to the initial config-
uration and are expressed in y-coordinates. Similarly, ty are the y-coordinates of
tractions related to the initial configuration. They are per unit of initial surface.

2.2.7 Nodal flow

Similarly, the nodal flow is, by definition, the dual of the work with respect to the
nodal concentrations:
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Qi =
∂W

∂Si
(2.18)

=

∫
V
y0

∂

∂Si
(WJ) dVz (2.19)

=

∫
V
y0

∂W

∂Si
JdVz (2.20)

=

∫
V
y0

∂W

∂sj

∂sj

∂Si
dVy0 (2.21)

=

∫
V
y0

qjMijdVy0 (2.22)

Q =

∫
V
y0

M ·qdVy0 (2.23)

2.3 CZE/ABAQUS interface

The interface to ABAQUS is complicated (FORTRAN 77...) and is described in
ABAQUS manuals. Aspects specific to the present implementation are discussed in
this section.

2.3.1 Node and degree of freedom numbering

The CZ element is designed to be compatible with ABAQUS: looking from above,
the nodes of the lower face are numbered in a counter-clockwise direction, followed
by the nodes on the upper face (Figure 2.1).
In ABAQUS the degrees of freedom of each element are grouped by node. Further,
the ABAQUS volume elements used jointly with the CZ are mechanical/heat diffusion
elements, pressed to task with solute diffusion. Such elements use a lower order
interpolation for heat diffusion, and only nodes at the vertices have temperature
degrees of freedom.
For each node, the nx = 2 or nx = 3 displacement degrees of freedom come first.
Then, if the node is a node with solute concentration degree of freedom, the degree
of freedom for each solute is appended.

2.3.2 Limitations

In its present implementation, the CZE element can only handle non-linear static
analysis. Dynamic analysis, in particular, are not supported, although returning a
zero mass matrix will not be challenging.
In the present implementation, the Gauss schemes are hard coded for so-called
exact integration. This could be made user-decidable using jprop.
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Figure 2.1: Node numbering in a linear-strain triangle cohesive zone element
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In the present implementation, derivatives of duals (stiffness matrix etc.) is computed
by finite differences. They should be computed from analytical derivatives if the TSL
also provides analytical derivation.

2.4 TSL/CZE interface

The CZE provides the TSL at each Gauss point with prop(2:), and with jprop. It
also provides the TSL with a segment of svar, the state variables for both input
and output.

Three “physical” inputs are provided, and correspondingly, their duals are taken
as output (Table 1). gapy, ty, epsy and sigy are all expressed in the y reference
system.

name intent size description unit
3D 2D

gapy in (nx) gap [L]
ty out traction [L−1T

−2
M] [T−2

M]
epsy in (nz,nz) in-plane strain [·]
sigy out “membrane stress” [T−2

M] [LT−2
M]

sgp in (nface ·ns) solute concentration [molL−3]
flow out solute flow [molL−2T−1] [molL−1T−1]

Table 1: Input and output to the TSL

Note that the partial derivatives of the duals with respect to the primary variables
are not part of the output: this is computed by the CZE using finite differences. This
is intended to facilitate the exploration of different TSL.

3 DIFEL: element for diffusion and capture

3.1 Mechanics

3.1.1 Hypotheses

The volume within the element is modeled as a “continuum”. Depending on the scale
of the model, a volume element may cover multiple grains, which are homogenized,
or part of a grain.

In the current version, plasticity is not modeled, although everything is in place to
add plasticity models, including plasticity models influenced by hydrogen concen-
tration.
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3.1.2 Equations

With these hypotheses, the equations to be solved are the classical equations of
continuum mechanics. Equilibrium between the external volume forces (e.g. gravity)
f and the Cauchy stresses σ is written

∇·σ= f (3.1)

where the Cauchy stress is expressed from the 2nd Piola-Kirchhoff (PK2) S stresses

σ = J−1 F ·S ·F
T

(3.2)

where J= detF.

The PK2 stresses are related to the Green-Lagrange strain E by the constitutive
model,

S= S
(
E
)

(3.3)

(here simplified to the linear relation S = C : E) and the Green-Lagrange strain is
related to the deformation gradient F by

E=
1
2

(
F
T
·F− I

)
(3.4)

3.1.3 Formulation

3.1.3.1 Deformation gradient

We introduce the shape function N
x
(z) where X are nodal positions, z are the

element’s natural coordinates and x(z) are the coordinates of a material point within
the element.

x(z) =N
x
(z) ·X (3.5)

For brevity, the dependence on the natural coordinate z is omitted from the notation
in the following.
For an isoparametric formulation, with the convention that the derivative adds an
index in front of the tensor, and sub-scripting with “0” variables related to the initial
configuration,

F
T
,

∂x

∂x0
(3.6)

=
∂N

x

∂x0
·X (3.7)

= B
x

0 ·∆X (3.8)



3.1 Mechanics 15

with

B
x

0 ,
∂N

x

∂x0
(3.9)

=

(
∂x0

∂z

)−1

· ∂N
x

∂z
(3.10)

=

(
∂N

x

∂z
·X0

)−1

· ∂N
x

∂z
(3.11)

3.1.3.2 Isoparametric element

An isoparametric formulation provides good flexibility when creating meshes. Intro-
ducing

B
x

,
∂N

x

∂x
(3.12)

=
∂x0

∂x
· ∂N

x

∂x0
(3.13)

= F
−T
·B
x

0 (3.14)

and writing the weak form of the equilibrium equation 3.1 (with an integral in the
instant configuration), and carrying out a partial integration yields

R
x

=

∫
v
B
xT

: σdv+

∫
v
N
x
· fdv (3.15)

=

∫
V
B
xT

: σJdV+

∫
V
N
x
· fJdV (3.16)

=

∫
V
B
xT

0 :

(
F
−1
·σ
)
JdV+

∫
V
N
x
· fJdV (3.17)

=

∫
V
B
xT

0 :

(
S ·F

T
)
dV+

∫
V
N
x
· fJdV (3.18)

where S ·F
T

is known as the nominal stress. Letting the material model return the
PK2 nominal stress makes it unnecessary to inverse F.

3.1.3.3 Mixed element

It is important to provide good quality gradients of the triaxial pressure, since pres-
sure gradients are one of the drivers of hydrogen diffusion.
Triaxial pressure is notoriously difficult to compute in displacement-based elements,
which are prone to volumetric locking. Pressure gradients are even more difficult to
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obtain with these elements. To get the require quality of pressure gradient, a mixed
formulation is used. Several such formulations exist ([1][5]). In the present work,
the pressure p and the dilatation (the triaxial part of strain) d are interpolated
separately [7, 6] :

d(z) = N
d
(z) ·D (3.19)

p(z) = N
p
(z) ·P (3.20)

where the dependence on the natural coordinate z will be kept implicit in the
following.
The deviator operator can be written as

devijkl = δikδjl−n−1
x δijδkl (3.21)

To ensure stability of the numerical scheme, Nd and Np must be chosen of lower
order than N

x
[2, 3, 4].

The residuals can be written

R
x

=

∫
V
B
xT

: σ (1+d)dV+

∫
V
N
xT
· fJdV (3.22)

R
d

=

∫
V
N
d
(
n−1
x I : σ

∗
−p
)
dV (3.23)

R
p

=

∫
V
N
p
(

detF−(1+d)
)
dV (3.24)

(remembering that the force is −R
x) with

J = detF (3.25)

θ =

(
1+d
J

)n−1
x

(3.26)

F
∗

= θF (3.27)
σ
∗

= M
(
F
∗)

(3.28)

σ = devσ∗+ Iθ
−nx
p (3.29)

Note that because of the way the Cauchy stress is computed in 3.29, it is not possible
to adapt 3.18, instead 3.22 is adapted from 3.16: in the hybrid formulation, F must
be inverted.

3.1.4 Plasticity

Both a linear elastic and a elastoplastic model are implemented. For the elasto-
plastic model, the hardeing law is of the form

σy (εpeq) = p1 +p2ε
p3
peq (3.30)

Currently, the input system does not allow to switch the elastoplastic model on.
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3.2 Heat diffusion

The conservation of energy is written as

ḣ+
∂

∂x0
·φh = ẇh (3.31)

where the heat generation ẇh is a function of plastic work, compression, mass
diffusion and trapping-untrapping. All quantities are here referred to the undeformed
configuration: densities are per unit original volume, flow is per unit original surface,
gradient is with respect to material coordinates.
To set ideas, a typical model is

ḣ = ρ0c
tṪ (3.32)

and
φ
h
=Dt

∂

∂x0
T (3.33)

but the equation is more generally applicable.
The weak form of this equation is

0 =

∫
V
δT

(
ḣ+

∂

∂x0
·φh− ẇh

)
dV (3.34)

=

∫
V
δT(ḣ− ẇh)dV+

∫
V
δT · ∂

∂x0
·φhdV (3.35)

=

∫
V
δT(ḣ− ẇh)dV−

∫
V

∂

∂x0
δT ·φhdV+

∫
S
δT φ

h ·dS (3.36)

Introducing the discretization

T = N
t ·T (3.37)

∂

∂x0
T = B

t
·T (3.38)

(note the material derivative, as opposed to B
x
) the weak form becomes

R
t

=

∫
V
N
t
(ḣ− ẇh)dV−

∫
V
B
tT
·φhdV+

∫
s
N
t
φds (3.39)

3.3 Mass diffusion and trapping

3.3.1 Trapping

3.3.1.1 Working with kinetics

Kinetic models can describing both “fast” and “slow” reactions. By contrast, a model
of thermodynamic equilibrium can only accommodate fast reactions. As a conse-
quence, a system based on reaction kinetics is more flexible. In particular, the
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untrapping of hydrogen (in the presence of a decreased lattice concentration, or an
increase of temperature) will slow.
In the following, trapping and untrapping are termed “reactions”, as they are a
special case with a one to one reaction between lattice and trapped hydrogen. In
the presence of multiple types of trapping sites, we have a special case of “chemical
reaction network”.
One concern about using reaction kinetics, is that one may want to use time steps
in the analysis, which are longer that the time it takes for some fast reaction to
converge to thermodynamic equilibrium. In many settings, long numeric step times
compared to physical time scales are a source of numerical instability. However, as
long as the complete model only has first order time derivatives (not accounting for
structural dynamics, in particular), it is possible to use the backward Euler method
for time integration. This method is unconditionally stable (stable for any time step
size): for fast reactions, the solution evolves towards thermodynamic equilibrium in
2 or 3 time steps. Of course the rate of evolution is wrong, but if one is prepared to
disregard this, the results are perfectly usable.
Another concern is that experimentally determining the parameters of kinetic laws
may be impracticable in some cases, and in all cases, more work than describing
thermodynamic equilibrium. This is true in particular for fast reactions. Luckily, in
such cases, the kinetic model does not have to be accurate, it only needs to imply the
correct equilibrium. For example in transition state theory, the difference in Gibbs
energy between the left hand side and the right hand side of an equation, can be
established, while the Gibbs energy of the transition state is harder to estimate.
This energy can however be set arbitrarily to a small fraction of the difference
in Gibbs energy between left and right: this ensure fast kinetics, and the proper
equilibrium.
The stability of the numerical solution is achieved by chosing an implicit Euler time
integration scheme, which is of the first order, and unconditionally stable.

3.3.1.2 Chemical reaction network

The rth reaction r is noted as ∑
i

v−risi

∑
i

v+risi (3.40)

where the positive integers v−ri and v+ri are the stoichiometric coefficients of the i-th
species. In this equation, si is the ith species, not its concentration.
The rate of production (or consumption if negative) uir of a species si in reaction ris

uir = ξr
(
v+ri−v

−
ri

)
(3.41)

= ξrvri (3.42)
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with

vri ≡ v+ri−v
−
ri (3.43)

where ξr is the reaction rate. The above models chemistry as a “chemical reaction
network”. Closures to the model are needed in the form of kinetic models, giving the
reaction rate as a function of temperature and reactant concentrations. Examples of
kinetic models are presented in the following.

3.3.1.3 State transition reactions

The case of interest here is the transition between hydrogen at one energy level
(si) and another (sj). We then have v−rk = δik and v+rk = δjk.

In this case, the kinetic of the reaction is

ξr = siKij
nj− sj
nj

nj∑
knk

− sjKji
ni− si
ni

ni∑
knk

(3.44)

= si
nj− sj∑
knk

Kij− sj
ni− si∑
knk

Kji (3.45)

where
Kij =ω(T)exp

(
−
Gij

RT

)
(3.46)

Gij is the activation energy from energy level i to j. T is the absolute temperature.
R is the perfect gas constant.

3.3.1.4 “Many lattice site” approximation

The number of lattice sites ni is much larger than the concentration of hydrogen
in the lattice, and than the number of sites at other energy levels: ni−si

ni

ni∑
knk
≈

1. Further, Aij (T) = ω(T)
nj∑
knk

denotes the frequency with which a molecule is
positioned at the vicinity of an adsorption site

ξr = siKij
nj− sj
nj

nj∑
knk

− sjKji
ni− si
ni

ni∑
knk

(3.47)

= si
nj− sj
nj

Aij (T)exp
(
−
Gij

RT

)
− sjω(T)exp

(
−
Gji

RT

)
(3.48)

Since temperature is a mean kinetic energy, mean velocity will be proportional to√
T so that

ξr = si
nj− sj
nj

aij
√
T exp

(
−
Gij

RT

)
− sjωexp

(
−
Gji

RT

)
(3.49)
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3.3.1.5 Law of mass action

The above is a special case of the law of mass action, which can be written as

ξr = K
+
∏
i

s
m−

ri
i −K−

∏
i

s
m+

ri
i (3.50)

with

K+ =ω(T)exp
(
−
∆G+

r

RT

)
(3.51)

K− =ω(T)exp
(
−
∆G−

r

RT

)
(3.52)

3.3.1.6 General purpose model

A model that covers a range of possible reaction is proposed, to give flexibility in
further software development: The equations

ω+ = a+Te
+ (3.53)

K+ = exp
(
−
∆G+

r

RT

)
(3.54)

p+ =
∏
i

s
m+

ri
i (3.55)

q+ =
∏
i

(
ni− si
ni

)m−
ri

(3.56)

ξ+r =ω+K+p+q+ (3.57)

represent the kinetic of the forward reaction, and model of the backward reaction
has the same form. Note that m−

ri (minus) appears in the expression for q+ (plus).
By careful choice of the parameters a+, e+ and n+

i , (and correspondingly for the
backward equation) all the above models can be accommodated. The user can be
spared the work of choosing these coefficients, by means of computer code (know as
“constructors”) that will translate physics-related parameters into the parameters of
this general model.

3.3.1.7 Improving convergence

Concentrations are constrained into the domain ∀i ∈ {1..n}0 < si < ni. Outside
of this domain, equations like 3.55 or 3.56 have “strange” behavior. The Newton
iteration process is not restricted to exploring values within the physical range.
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Hence to ensure converges, it is necessary to extend the above equation outside of
the physical range,to avoid convergence problems.
If we have n species involved in the reaction, the above-mentioned domain is a
rectangle parallelepiped with 2n vertices: for 2 species the domain is a square (22

vertices), for 3 species, a cube (23 vertices) and so forth.
A vertex v can be addressed by a a set of values wvi : for each species i, wvi = 0 if
the vertex corresponds to si = 0, and wvi = 1 if the vertex corresponds to si =ni. We
introduced the change of variable

s∗i = si where wvi = 0 (3.58)
s∗i = ni− si where wvi = 1 (3.59)

This change of variables ensures that the vertex has coordinates s∗i = 0 and all
s∗i > 0 in the domain.
In the general purpose model, the reaction rate is a polynomial P in the concentra-
tions si. One can express this polynomial in term of s∗i concentrations, and expand
the polynomial. Then, in all monomials of total order strictly higher that 1, all vari-
ables s∗i are replaced by < s∗i >, max

(
0,s∗i

)
. The expression is then transformed

back s∗i → si. This results for each vertex v in a function fv (si i∈1..n) which

1. Is identical to the original polynomial in the domain.

2. Is C0 everywhere.

3. Is C1 at the vertex, and at all the edges passing through this vertex.

In order to construct a function ξ∗ that is C1 everywhere, the 2n functions fv are
merged. We introduce a sigmoïd function σ

σ(x) = 0 for x < 0 (3.60)
σ(x) = −2x3 +3x2for 0< x < 1 (3.61)
σ(x) = 1 for 1< x (3.62)

which is C1 everywhere and always verifies

σ(x)+σ(1−x) = 1 (3.63)

We introduce
σv (si i∈1..n) =

∏
wv

i=0

σ

(
si
ni

) ∏
wv

i=1

σ

(
1−

si
ni

)
(3.64)

which is equal to 1 at vertex v and 0 at all other vertices. The modified model is
then defined as

ξ+∗r (si i∈1..n),
∑
v

σv (si i∈1..n)f
v (si i∈1..n) (3.65)

Figure 3.1 provides an example of such a construction. The left graph shows the
original polynomial with roots (thermodynamic equilibrium) outside of the domain,
found to cause instability. The left graph is obtained by the present procedure.
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Figure 3.1: Reaction rate as a function of the concentrations of free and adsorbed
chloride. Original formulation (left) and correct formulation (right)
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3.3.2 Diffusion and conservation

The concentration of species i is noted si. The conservation of mass is given as

∀i ṡi−
∑
r

ξrvri+
∂

∂x0 ·Φi
(
∇si,si,ε,∇p

)
= 0 (3.66)

As for the heat diffusion, all quantities are here referred to the undeformed con-
figuration: density are per unit original volume, flow is per unit original surface,
gradient is with respect to material coordinates.
To set ideas, the mass flow may be modeled as

Φi =−D
s

i ·
∂

∂x0 si+D
p

i ·
∂

∂x0psi (3.67)

where p is the opposite of the pressure, but the element formulation is more general.

3.3.3 Weak form

The weak form of the differential equation is obtained by requiring that for any
“virtual variation” δci of the unknown field ci, equation (3.66) multiplied by δci and
integrated over the reference domain V , must be verified

∀i 0 =

∫
V
δsiṡi dV +

∫
V
δsigi dV +

∫
V
δsi

∂

∂x0
·Φi dV (3.68)

=

∫
V
δsiṡi dV +

∫
V
δsigi dV +

∫
V

∂

∂x0
·
(
δsi Φi

)
dV−

∫
V

∂

∂x0
δsi ·Φi dV

(3.69)

=

∫
V
δsiṡi dV +

∫
V
δsigi dV +

∫
S
n ·δsi ΦidS−

∫
V

∂

∂x0
δsi ·Φi dV (3.70)

=

∫
V
δsiṡi dV +

∫
V
δsigi dV +

∫
S
δsi φidS−

∫
V

∂

∂x0
δsi ·Φi dV (3.71)

with

φi = n ·Φi (3.72)

where n is the outward-pointing normal to the surface s and φi is the flow of solute
i through the surface s.

gi =−
∑
r

ξrvri (3.73)

is the rate of production of species i by all reactions. Again, ṡi and gi are densities
related to the original volume.
The integration by parts has allowed to introduce boundary conditions: at any point
of the surface s, either φi must be known (non-essential boundary condition) or δsi
must be zero (essential boundary condition).
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We introduce the interpolation

si = N
s ·Si (3.74)

∂

∂x0
si = B

s
·Si (3.75)

with

B
s
,

∂N
s

∂x0
(3.76)

=

(
∂x0

∂z

)−1

· ∂N
s

∂z
(3.77)

=

(
∂N

x

∂z
·X0

)−1

· ∂N
s

∂z
(3.78)

Similarly

p = N
p ·P (3.79)

∇p = B
p
·P (3.80)

with

B
p
,

(
∂N

x

∂z
·X0
)−1

· ∂N
p

∂z
(3.81)

Posing
δsi =N

s ·δSi (3.82)
and requesting that (3.71) be verified for any δSi leads to Rsi = 0 with

∀i R
s
i ,

∫
V
N
s
(ṡi+ fi)dV −

∫
V
B
sT
·Φi dV+

∫
s
N
s
φids (3.83)

4 User manual

The present text assumes that the reader is familiar with ABAQUS *.inp files and
has access to the ABAQUS manual. A sample file is provided in Section A. Line
numbers mentioned in the following text refer to the line numbers in the appendix.
Line 12: All input in this file must be in SI base unit (m, s, kg, mol).
Line 33 describes a “user defined” DIFEL element. Although the code of the user
defined element is connected to ABAQUS, ABAQUS knows nothing about it. The
DIFEL elements that have been defined are described in Table DIFEL element types.
Lines 35 to 42 tell ABAQUS which types of degrees of freedom each node of the
element has. The fragments below must be copied verbatim, including the missing
node number on the first line. For U101:
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TYPE Description NODES COORDINATES PROPERTIES IPROPERTIES VAR

U101 Fully integrated tri-quadratic hexahedron 20 3 14 4 54
U102 Fully integrated quadratic triangle 6 2 14 4 6
U103 Fully integrated bi-quadratic rectangle 8 2 14 4 18

Table 2: DIFEL element types

1 , 2 , 3 , 12 , 1 3 , 7 , 8
2 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
3 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
4 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
5 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
6 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
7 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
8 , 1 , 2 , 3 , 12 , 1 3 , 7 , 8
9 , 1 , 2 , 3
10 , 1 , 2 , 3
11 , 1 , 2 , 3
12 , 1 , 2 , 3
13 , 1 , 2 , 3
14 , 1 , 2 , 3
15 , 1 , 2 , 3
16 , 1 , 2 , 3
17 , 1 , 2 , 3
18 , 1 , 2 , 3
19 , 1 , 2 , 3
20 , 1 , 2 , 3

For U102
1 , 2 , 1 2 , 1 3 , 7 , 8

2 , 1 , 2 , 1 2 , 1 3 , 7 , 8
3 , 1 , 2 , 1 2 , 1 3 , 7 , 8
4 , 1 , 2 , 1 2 , 1 3 , 7 , 8
5 , 1 , 2
6 , 1 , 2
7 , 1 , 2
8 , 1 , 2

For U103
1 , 2 , 1 2 , 1 3 , 7 , 8

2 , 1 , 2 , 1 2 , 1 3 , 7 , 8
3 , 1 , 2 , 1 2 , 1 3 , 7 , 8
4 , 1 , 2
5 , 1 , 2
6 , 1 , 2
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TYPE Description NODES COORDINATES PROPERTIES IPROPERTIES VAR

U1 Fully integrated bi-linear rectangle 8 3 5* 2 1
U2 Over integrated bi-quadratic rectangle 16 3 5* 2 1
U3 Fully integrated quadratic line 6 2 5* 2 1

Table 3: CZE element types

Line 44 is standard ABAQUS input, and the element type must correspond to a type
defined as described above.
Line 48 describes a “user defined” CZE element. The CZE elements that have been
defined are described in Table CZE element types. The actual value of PROPERTIES
depends on the TSL chosen.
Lines 35 to 42 tell ABAQUS which types of degrees of freedom each node of the
element has. The fragments below must be copied verbatim, including the missing
node number on the first line. For U1:

1 , 2 , 7 , 8
2 , 1 , 2 , 7 , 8
3 , 1 , 2 , 7 , 8
4 , 1 , 2 , 7 , 8
5 , 1 , 2 , 7 , 8
6 , 1 , 2 , 7 , 8
7 , 1 , 2 , 7 , 8
8 , 1 , 2 , 7 , 8

For U2
1 , 2 , 7 , 8

2 , 1 , 2
3 , 1 , 2 , 7 , 8
4 , 1 , 2
5 , 1 , 2 , 7 , 8
6 , 1 , 2
7 , 1 , 2 , 7 , 8
8 , 1 , 2
9 , 1 , 2 , 7 , 8
10 , 1 , 2
11 , 1 , 2 , 7 , 8
12 , 1 , 2
13 , 1 , 2 , 7 , 8
14 , 1 , 2
15 , 1 , 2 , 7 , 8
16 , 1 , 2

For U3
1 , 2 , 7 , 8

2 , 1 , 2
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Name Description Typical Unit
visc viscosity coefficient 0. Nsm−3

δc critical separation 10−4 m

σc0 critical stress w/o H 108 Pa

C0 critical concentration 103 mol ·m−3

k shear stiffness 1010 Pa
ns number of hydrogen levels 2 Integer
mat selection of TSL 4 Integer

Table 4: Material parameters for CZE elements, assuming mat=4

3 , 1 , 2 , 7 , 8
4 , 1 , 2 , 7 , 8
5 , 1 , 2
6 , 1 , 2 , 7 , 8

Lines 62, 63 and 65, 66 specify “element sets” needed to associate properties (in
particular material properties) to the elements.
Lines 70, 71 associate properties to the set containing the unique CZE element.
The description provided in Table Material parameters for CZE elements, assuming
mat=4 is for the Needleman TSL model.
Lines 76 to 79 associate properties to the set containing the DIFEL elements. The
description is provided in Table Material parameters for CZE elements.
Lines 110 to 120. ABAQUS must have at least one material definition in a file -
even though here, this data is dummy.
Line 125: step specification. The option UNSYMM=YES might not be needed, but
this has not been tested.
Line 126: ABAQUS’ “soils consolidation” solution algorithm must be used, as it
provides an implicit-Euler time integration together with a linear equation solver
tackling asymmetric indefinite systems.

A Sample *.inp file

The following is an ABAQUS *.inp file, which describes a “sandwich test”: a square
CZE element with a cubic DIFEL element on each side.

1 *HEADING
2 *PREPRINT , ECHO = NO , MODEL = NO, HISTORY = NO, CONTACT = NO
3 **
4 ** 2D Sandwich test with DIFEL and CZE
5 **
6 *PART , NAME = Part -1
7 **
8 *****************************************************************
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Name Description Typical Unit
T Temperature 293. K

E Young’s modulus 2.1 ·1011 Pa

v Poisson coefficient 0.3 ·
p1 plasticity 1 4 ·108 Pa

p2 plasticity 2 109 Pa

p3 plasticity 3 0.5 ·
ρr mass density 8000 kg ·m−3

ct specific heat 447. J ·kg−1 ·K−1

Dt thermal conductivity 80.4 W/(K/m)/(kg/m3)

Ds mass diffusivity m2 · s−1

G Trapping energy 104 J ·mol−1

nsite Trap density 0.3 mol ·m−3

f Attempt frequency 100 s−1

R The gas constant 8.31 J ·mol−1 ·K−1

ns Number of hydrogen levels 2 Integer
nt Switch for temperature 0 Integer
npd 0: disp-based, 1:hybrid 1 Integer
mattyp 1: concrete, 2:metal 2 Integer

Table 5: Material parameters for CZE elements

9 **
10 **Nodes coordinates
11 **node number , node x-coordinate , node y-coordinate , node z-

coordinate
12 ** Values are in S.I. units (i.e. m)
13 ** *NODE
14 1, .00, .00
15 2, .02, .00
16 3, .02, .02
17 4, .00, .02
18 5, .01, .00
19 6, .02, .01
20 7, .01, .02
21 8, .00, .01
22 9, .00,-.02
23 10, .02,-.02
24 11, .02, .00
25 12, .00, .00
26 13, .01,-.02
27 14, .02,-.01
28 15, .01, .00
29 16, .00,-.01
30 **
31 *****************************************************************
32 ** DIFEL
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33 *USER ELEMENT , TYPE = U103 , NODES = 8, COORDINATES = 2, PROPERTIES
= 14, IPROPERTIES = 4, VAR = 54

34 ** x1 x2 p d s1 s2
35 1, 2,12, 13,7, 8
36 2, 1, 2,12, 13,7, 8
37 3, 1, 2,12, 13,7, 8
38 4, 1, 2,12, 13,7, 8
39 5, 1, 2
40 6, 1, 2
41 7, 1, 2
42 8, 1, 2
43 **
44 *ELEMENT , TYPE = U103
45 1, 1,2,3,4,5,6,7,8
46 2, 9,10,11,12,13,14,15,16
47 **
48 *USER ELEMENT , TYPE = U3 , NODES = 6, COORDINATES = 2, PROPERTIES =

5, IPROPERTIES = 2, VAR = 1
49 ** x1 x2 s1 s2
50 1, 2, 7, 8
51 2, 1, 2
52 3, 1, 2, 7, 8
53 4, 1, 2, 7, 8
54 5, 1, 2
55 6, 1, 2, 7, 8
56 **
57 *ELEMENT , TYPE = U3
58 3, 12,15,11,1,5,2
59 **
60 *****************************************************************
61 **
62 *ELSET , ELSET = czeElSet
63 3
64 **
65 *ELSET , ELSET = difelElSet , GENERATE
66 1, 2
67 **
68 *****************************************************************
69 ** visc delta_c sigma_c0 C0 k ns mat
70 *UEL PROPERTY , ELSET = czeElSet
71 0., 1e-3, 1.e8 , 1.e3, 1.e10 , 2, 4
72 *****************************************************************
73 ** T E v p1 p2 p3 rhor ct
74 ** Dt Ds Gibbs nsite attempt R ns nt
75 ** npd mattyp
76 *UEL PROPERTY , ELSET = difelElSet
77 293., 2.1e11 , 0.3, 4.e8, 1.e9 , .5, 8000. , 447.
78 80.4, 1., 1.e4 , 0.3, 1.e2 , 8.31, 2, 0
79 1,2
80 *END PART
81 *****************************************************************
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82 **
83 *ASSEMBLY , NAME = Assembly
84 **
85 *****************************************************************
86 **
87 *INSTANCE , NAME = Part -1-1, PART = Part -1
88 *END INSTANCE
89 **
90 *****************************************************************
91 **
92 **Some node sets usefull to apply boundary conditions (not all of
93 ** them are needed for the current alalysis)
94 **
95 *NSET , NSET = TopBoundary , INSTANCE = Part -1-1 4,7,3
96 *NSET , NSET = BottomBoundary , INSTANCE = Part -1-1 9,13,10
97 *NSET , NSET = LeftBoundary , INSTANCE = Part -1-1 4,8,1,12,16,9
98 *NSET , NSET = AllNodes , INSTANCE = Part -1-1, GENERATE 1, 16, 1
99 *END ASSEMBLY

100 *****************************************************************
101 **
102 ** MODEL DATA BOUNDARY CONDITIONS
103 **
104 **Are defined before a
105 *STEP
106 *BOUNDARY
107 *****************************************************************
108 **
109 ** DUMMY - not used by UEL , but necessary to apease ABAQUS
110 *MATERIAL , name = Material -1
111 *CONDUCTIVITY
112 50.,
113 *DENSITY
114 7.8e-06,
115 *ELASTIC
116 210000. , 0.3
117 *SPECIFIC HEAT
118 1.,
119 *PERMEABILITY , SPECIFIC = 1.
120 1., .1, 0.
121 *****************************************************************
122 **
123 ** STEP: Step -Temp
124 **
125 *STEP , NAME = Step -Temp , NLGEOM = YES , AMPLITUDE = RAMP , INC = 100,

UNSYMM = YES
126 *SOILS , CONSOLIDATION , HEAT = NO 0.1, 1., 1e-4, 0.1
127 **
128 ** HISTORY DATA BOUNDARY CONDITIONS
129 **
130 ** NOTE: Specifing only the first DOF where the BC applies doesn ’t

work
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131 ** although the documentation states otherwise
132 **
133 *BOUNDARY
134 AllNodes , 3 , 3, 0.0
135 TopBoundary , 2 , 2, 0.001
136 BottomBoundary , 2 , 2, 0.0
137 LeftBoundary , 1 , 1, 0.0
138 ********** REMEMBER SCALING ************
139 TopBoundary , 7, 7, 0.1
140 BottomBoundary , 7, 7, 0.1
141 *****************************************************************
142 *OUTPUT , FIELD , VARIABLE = PRESELECT
143 *OUTPUT , HISTORY , VARIABLE = PRESELECT
144 *END STEP



32 REFERENCES

References

[1] D. Al Akhrass, S. Drapier, J. Bruchon, and S. Fayolle. Stabilized finite element
method to deal with incompressibility in solid mechanics in finite strains. In
European comgress on computational methods, 2012.

[2] I. Babuska. Error bounds for finite element method. Numerische Mathematik,
16:322–333, 1971.

[3] F. Brezzi. On the existence, uniqueness and approximation of saddle-point prob-
lems arising form lagrange multipliers. R.A.I.R.O., 8, R2:129–151, 1974.

[4] Franco Brezzi and Donatella Marini. Subgrid phenomena and numerical schemes.

[5] D. Chappelle and K. J. Bathe. The inf-sip test. Computers and structures,
47(4/5):537–545, 1993.

[6] Kjell Magne Mathisen, Knut Moten Olstad, Trond Kvamsdal, and Siv Bente Rak-
nes. Isogeometric analysis of finite deformation nearly incompressible solids.
Rakenteiden Mekaniikka, 44(3):pp. 260 – 278, 2011.

[7] J.C. Simo, R.L. Taylor, and K.S. Pister. Variational and projection methods for the
volume constraint in finite deformation in elasto-plasticity. Computer methods in
applied mechanics and engineering, 51:pp. 177 – 208, 1985.


	H_models.pdf
	Introduction
	CZE: Cohesive zone element
	Features
	Solute diffusion
	Multiple elements
	Tangential strains
	Research-oriented


	Formulation
	Reference systems
	Shape functions
	Solute concentration
	Gap
	Strain
	Nodal forces
	Nodal flow

	CZE/ABAQUS interface
	Node and degree of freedom numbering
	Limitations

	TSL/CZE interface

	DIFEL: element for diffusion and capture
	Mechanics
	Hypotheses
	Equations
	Formulation
	Deformation gradient
	Isoparametric element
	Mixed element

	Plasticity

	Heat diffusion
	Mass diffusion and trapping
	Trapping
	Working with kinetics
	Chemical reaction network
	State transition reactions
	“Many lattice site” approximation
	Law of mass action
	General purpose model
	Improving convergence

	Diffusion and conservation
	Weak form


	User manual
	Sample *.inp file
	References


		2020-11-30T13:07:50-0800
	Agreement certified by Adobe Sign




