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Abstract

We consider an electricity market with two sequential market clearings, for
instance representing a day-ahead and a real-time market. When the �rst
market is cleared, there is uncertainty with respect to generation and/or
load, while this uncertainty is resolved when the second market is cleared.
We compare the outcomes of a stochastic market clearing model, i.e. a mar-
ket clearing model taking into account both markets and the uncertainty,
to a myopic market model where the �rst market is cleared based only on
given bids, and not taking into account neither the uncertainty nor the bids
in the second market. While the stochastic market clearing gives a solution
with a higher total social welfare, it poses several challenges for market de-
sign. The stochastic dispatch may lead to a dispatch where the prices deviate
from the bid curves in the �rst market. This can lead to incentives for self-
scheduling, require producers to produce above marginal cost and consumers
to pay above their marginal value in the �rst market. Our analysis show
that the wind producer has an incentive to deviate from the system optimal
plan in both the myopic and stochastic model, and this incentive is partic-
ularly strong under the myopic model. We also discuss how the total social
welfare of the market outcome under stochastic market clearing depends on
the quality of the information that the system operator will base the market
clearing on. In particular, we show that the wind producer has an incentive
to misreport the probability distribution for wind.
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1. Introduction

An increased share of power production from non-dispatchable energy
sources cause challenges for the energy systems and calls for a revision of
electricity market designs. One option for making electricity markets more
robust with respect to uncertainty in production and consumption levels is
to use a stochastic dispatch when clearing the markets. In the stochastic
dispatch, the market clearing is performed under explicit consideration of
possible market clearings in subsequent markets. We consider an electricity
market with two sequential market clearings. The �rst is in the day-ahead
market, while the second is the real-time market. The real-time market is pri-
marily used to resolve any deviations between the day-ahead market clearing
and the real demand and supply. Such deviations may occur due to the uncer-
tainty with regards to demand levels and production from non-dispatchable
energy sources when the day-ahead market is cleared. Traditionally, these
markets are cleared in sequence, and the day-ahead market is cleared only
based on the supply and demand bids, not considering what will happen in
the real-time market. With an increased share of intermittent generation it
is timely to look at alternative designs, where these two are more tightly
linked. In order to improve the day-ahead market clearing it is bene�cial to
let the day-ahead market models foresee the possible outcomes of the uncer-
tain demand and supply in the real-time market. Given that we are able to
predict the possible future outcomes of supply and demand it is possible to
use a stochastic model to do the market clearing. This is bene�cial because
the cost of deviations from planned production and consumption is usually
lower when the potential deviations are considered in the initial planning
phase.

Real-time �exibility comes at a cost, i.e., extra costs will be incurred if
a �exible producer or consumer has to deviate from his initial plan in real-
time. The �exibility costs, as discussed by Khazaei et al. (2014) and Bjørndal
et al. (2013b), are incurred because real-time changes have to be made at
short notice. Such costs could be caused by, e.g., decreased component life
due to frequent changes in generation levels, limitations on ramp-rates, or
limited ability to re-optimize plans on short notice. See NETL (2012) for a
discussion of di�erent sources of �exibility costs.

Numerous authors have developed stochastic market clearing models and
showed that they yield better plans, in terms of expected social surplus,
than deterministic market clearing models. Examples include Bou�ard et al.
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(2005a,b); Bou�ard and Galiana (2008); Ruiz et al. (2009b,a); Papavasileiou
et al. (2011); Papavasileiou and Oren (2012); Khazaei et al. (2014).

The pricing issue under stochastic market clearing was �rst discussed by
Kaye et al. (1990), who argued that day-ahead prices should be set equal to
the expected values of real-time prices. Wong and Fuller (2007) propose sev-
eral pricing schemes for their stochastic model, and they show that real-time
pricing yields cost recovery in expectation and prices at, or above marginal
cost for every generator that supplies energy. Morales et al. (2012) formu-
late a two-stage stochastic programming problem for clearing the market in
an electricity pool with high wind power production. They also prove that
their pricing scheme gives, in expectation, revenue adequacy for the system
operator and cost recovery for the generators. A similar model is used in
Pritchard et al. (2010) where also the load (in addition to wind production)
is uncertain in the �rst-stage of the model. They prove that their pricing
scheme is revenue-adequate in expectation. Morales et al. (2014) propose an
improved version of the conventional deterministic market clearing model, in
which the system operator controls the intermittent generator's bid in the
day-ahead market in order to optimize the system as a whole. The proce-
dure is solved using a bilevel optimization model, and yields an expected
social surplus that is smaller or equal to the surplus under stochastic market
clearing. Since their approach clears the day-ahead market in a deterministic
manner, the merit order for all generators, except the intermittent genera-
tor, will be preserved. Zavala et al. (2015) proves, in a model similar to
that of Pritchard et al. (2010), a bound for the di�erence between day-ahead
prices and expected real-time prices. The bound depends on the parame-
ters describing the �exibility costs, i.e., they show that day-ahead prices will
converge to expected real-time prices when �exibility costs are small enough.

Our contribution is a thorough discussion of challenges and potential
improvements from a market design based on stochastic dispatch, where we
discuss the obtained market outcomes and compare these to the results from
a conventional market clearing. Our model is similar to the energy-only
models in Pritchard et al. (2010) and Morales et al. (2014). We discuss
incentive challenges for the participants in the market, and we include a
discussion of individual rationality as well as an analysis highlighting how
misrepresentations of the probability distribution for wind can alter the total
social welfare in the network and the distribution of surplus between the
participants in the market. A stochastic model will �nd the most e�cient
market solutions (for the given representation of the uncertainty), and as
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such increase the total social welfare in the network. The solutions from the
stochastic model can, however, lead to non-intuitive results that will pose
severe challenges for the market design and operation of the network. Since
the stochastic model will consider both the day-ahead market and the real-
time market when choosing the market clearing in the day-ahead market, the
solution may require the market participants to accept prices that deviate
from their marginal values. That is, a consumer may have to consume more or
less than its marginal bene�t suggests, and a producer may have to produce
more or less than its marginal cost suggests.

In Section 2 we present the mathematical formulation used in our models,
before we de�ne the two market clearing models in Section 3. We specify in
detail our numerical example in Section 4 and discuss the assumptions we
have made for our case studies. In this section we also present the results
from our numerical analysis. The implications for market design is discussed
in Section 5. We end the paper with conclusions in Section 6.

2. Mathematical models

We provide two alternative models for dispatch in the day-ahead mar-
ket. The �rst model is a deterministic myopic model clearing the day-ahead
market based on the demand bids and the supply bids only. Later, when
uncertainty is resolved and generation and load is known, imbalances are
cleared in the real-time market. The second model is a stochastic dispatch
model, where the clearing of the day-ahead market is done integrated with
the clearing of the real-time market. In this case, each possible outcome of
the realized generation and the corresponding cost in the real-time market is
taken into account, when deciding the dispatch for the day-ahead. For both
models there are separate supply bids into the real-time markets, including
�exibility costs. There will then be a trade-o� between the day-ahead dis-
patch cost and the resulting expected regulation cost, which is considered in
an integrated manner.

We have chosen an approach for stochastic dispatch in line with Pritchard
et al. (2010) and Morales et al. (2014), where a day-ahead price and volume
is announced after the day-ahead clearing. We will give the details on the
underlying assumptions and the mathematical formulation for the two models
in the rest of this section. First we will introduce notation and give some
more detail on the �exibility costs in the real-time market.
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2.1. Generation and load

Our model framework is similar to that of Pritchard et al. (2010). We
consider a collection of o�ers i ∈ I, where each o�er can represent either
generation (positive values) or load (negative values). For each i ∈ I we
require a solution (xi, Xi), where xi is the solution for the �rst-stage dispatch,
and Xi is a vector of stochastic variables representing the solution for the
second-stage dispatch. The �rst-stage dispatch corresponds to the market
clearing in the day-ahead market, while the second-stage dispatch is the
results from the real-time market clearing. The set of feasible solutions for
the �rst stage is denoted C1

i , while the set of feasible solutions for the second
stage will depend on the realized scenario ω ∈ Ω as well as the decision xi
from the �rst stage. We denote this set as C2

i (ω, xi). A feasible solution
(xi, Xi) to both stages must satisfy

xi ∈ C1
i ∀i ∈ I

Xiω ∈ C2
i (ω, xi) ∀i ∈ I, ω ∈ Ω.

Our set up di�ers somewhat from that of Pritchard et al. (2010), since
we will also study alternatives to the integrated stochastic model, where the
two stages are resolved in a sequential manner, as in Morales et al. (2014).

The models have a system perspective, i.e. as if the dispatches were
performed centrally in an energy-only mandatory dispatch. We do not con-
sider unit commitment, intertemporal constraints (water values are assumed
equal), other types of ramping constraints, etc. These may be represented
indirectly by the �exibility costs, however they are not considered explicitly.
We also assume that all possible outcomes are modelled by our scenarios
(which is clearly unrealistic), and we do not consider out-of-sample e�ects
of the day-ahead market clearing. When discussing up- and down-regulation
we will use the convention from the Norwegian market. Up-regulation then
refers to a change in production or consumption that increases the net sup-
ply situation in the system. Down-regulation on the other hand, decreases
the net supply situation in the system (i.e. generation is decreased and / or
consumption is increased).

Our focus is on deviations from the day-ahead scheduling and how we
model the cost- and bene�t curves of �exible producers and consumers. That
is, the regulation costs refer to the costs of changing production and / or
consumption in the real-time market. If the consumers increase the quantity
consumed in real time, it is not as valuable as if it was planned. If they
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reduce it, they would ask for more than the day-ahead willingness to pay. If
the generators must increase their production beyond the planned level it is
more costly, and if they reduce production form the planned level, they will
not save all the incurred marginal costs. Hence, the �exibility costs represent
real costs incurred by the participants in the market.

2.2. Objective function

The objective function for our models is minimization of total costs in
the system. This includes the sum of costs from the day-ahead market and
the regulation costs incurred in the real-time market. An illustration of the
components in the objective function is provided in Figure 1. The �gure
on the left illustrates a supply function for a generator, while the �gure on
the right illustrates a demand function for a consumer. In addition, the two
�gures illustrates the �exibility costs incurred in the real-time market when
there is a deviation from the day-ahead market clearing. The day-ahead
clearing is given by volume xi, whilst examples of up- and down-regulation
volumes are given by Xd

iω1
, Xu

iω1
, Xd

iω2
and Xu

iω2
. The functions for up- and

down-regulation costs have the parameters, respectively, aui , b
u
i and adi , and

bdi .
We use linear functions to represent the cost and bene�t functions for the

participants in the market. Each o�er i ∈ I is associated with a day-ahead
cost- and bene�t function with non-negative parameters ai and bi, given by

ĉi(xi) = aixi + 0.5bix
2
i .

For the supply side, this cost function is based on an assumption of a
linear marginal cost function: ai + bixi. In this expression, the parameter
ai represents a constant marginal cost, while the parameter bi represents the
slope of the marginal cost curve. The second stage cost- and bene�t function
parameters will typically di�er from those in the �rst stage, due to reduced
�exibility at this stage. We assume that this can be represented, for any
�exible generator, with parameters aui and bui for up-regulation and adi and
bdi for down-regulation, where a

d
i ≤ ai ≤ aui and min{bui , bdi } ≥ bi.

To represent the demand side, and keep the formulation compact, we use
the same set of formulas. If xi < 0 , then −aixi will represent the bene�t
from consuming an amount −xi. The inverse linear demand curve is given as
ai + bixi. Since xi will take negative values, this corresponds to a downward
sloping demand curve. For both generators and consumers, the slopes of their
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Figure 1: Illustration of the cost- and ben�t functions used in our models. The �gure on
the left illustrates a supply function for a generator, while the �gure on the right illustrates
a demand function for a consumer. In addition, the two �gures illustrates the �exibility
costs incurred in the real-time market when there is a deviation from the day-ahead market
clearing.

cost functions for changes in dispatch in the real-time market is steeper than
their cost functions in the day-ahead market. The parameter bi represents the
slope of a linear demand curve. Similarly as for the supply side, we assume
that any �exible consumer can be represented with parameters aui and b

u
i for

up-regulation and adi and bdi for down-regulation, where adi ≤ ai ≤ aui and
min{bui , bdi } ≥ bi.

With reference to Figure 1 we can formulate the total cost after the
second-stage regulation as:

ci(xi, Xiω) = ĉi(Xiω) + c̃i(xi, Xiω),

where ĉi(Xiω) is the total cost of the �nal schedule evaluated at the day-ahead
cost parameters, and c̃i(Xiω, xi) is the additional cost caused by in�exibility
in the real-time market. The �exibility cost associated with the �rst-stage
quantity xi and the revised quantity Xiω in scenario ω is

c̃i(xi, Xiω) = (aui −ai)Xu
iω+0.5(bui −bi)(Xu

iω)2+(ai−adi )Xd
iω+0.5(bdi−bi)(Xd

iω)2,

where Xu
iω = max{Xiω − xi, 0} and Xd

iω = max{xi −Xiω, 0}.
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This formulation allows for a number of assumptions for �exibility cost
for both consumers and generators. Figure 2 shows three examples of how
the initial schedules may be adjusted, as well as the e�ect on cost and bene�t.
The leftmost diagram illustrates an example where ai = 0 and bi > 0, i.e., a
generator with an increasing marginal cost starting from zero. His day-ahead
schedule is xi, and in scenario ω this quantity is up-regulated to Xiω. The
slope of the up-regulation cost curve is given by the parameter bui > bi. The
area of the light gray triangle equals ĉi(Xiω) = 0.5bi(Xiω)2, i.e., the cost of
the �nal schedule given the day-ahead cost function, and the area of the dark
gray triangle equals the �exibility cost c̃i(xi, Xiω) = 0.5(bui − bi)(Xu

iω)2. The
middle diagram illustrates a generator with a constant day-ahead marginal
cost ai, and a marginal cost adi < ai for down-regulation. The total cost after
down-regulation is aiXiω + (ai − adi )Xd

iω, where the last part (ai − adi )Xd
iω is

the non-avoidable cost that remains after the initial scheduled quantity has
been reduced by Xd

iω. The rightmost diagram illustrates a consumer with a
�rst-stage demand function with intercept and slope parameters equal to ai
and bi. Consumption quantities are negative, so the second-stage increase
in consumption is equivalent to down-regulation. Again, the light gray area
represents the bene�t of the �nal schedule evaluated at the day-ahead pa-
rameters, i.e., equal to −(aiXiω+0.5bi(Xiω)2), and the cross-hatched triangle
equals the �exibility cost c̃i(xi, Xiω) = 0.5(bdi − bi)(Xd

iω)2.

2.3. Network �ow equations

The generator and load entities are linked to a set of nodes N . For a
particular o�er i ∈ I we denote by ν(i) ∈ N the node where generator /
consumer i is located. We then consider the network as a directed graph
where the nodes are connected by a set of transmission lines L. For a given
�ow vector f = (fl)l∈L, we let τn(f) denote the net in�ow of power in node
n from the transmission network. We de�ne ν0(l) as the starting point and
ν1(l) as the end point of line l, and fl > 0 implies that power is �owing from
ν0(l) to ν1(l). We assume, as in Pritchard et al. (2010), that lines are lossless,
and this implies that:

τn(f) =
∑

l:ν1(l)=n

fl −
∑

l:ν0(l)=n

fl.

See Pritchard et al. (2010) for a discussion of how the network model can
be generalized to incorporate line losses. We will associate the day-ahead
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b ixi

b iX i ω

Xi ω

b ixi + b i
uX i ω

u

xi

ai

X i ω

ai
d

ai

− Xi ω− xi

ai + b ixi

ai + b iX i ω

ai + b ixi

− b i
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d

Figure 2: Calculation of cost and bene�t for suppliers and consumers. The two �gures to
the left shows how the �exibility cost are for two suppliers with di�erent supply functions.
The light gray area illustrates the cost of the �nal dispatch with the original cost function
(not including �exibility costs), while the dark gray area is the �exibility cost due to up-
or down-regulation. The �gure to the right illustrates the same for the consumers. The
light gray area is the consumer bene�t with the original demand parameters, while the
chequered area shows the loss in consumer surplus due to �exibility costs.

schedule x with a �ow vector f . The production and consumption quantities
given by x must be consistent with the �ow f , and in a lossless system this
implies that

τn(f) +
∑
i∈I(n)

xi = 0

for all n ∈ N . These constraints give an energy balance in the system.
Similarly we associate the �nal schedule Xω with the �ow vector Fω, and

consistency implies that

τn(Fω)− τn(f) +
∑
i∈I(n)

(Xiω − xi) = 0

for all n ∈ N . The energy balance in the network is also guaranteed by
including this constraint. It is written on di�erence form, as in Pritchard
et al. (2010), in order to provide dual prices that can be used to price real-
time deviations from the day-ahead schedule in a meaningful way.

Additional network constraints for the �rst and second stage are given
by:

f ∈ U1

Fω ∈ U2 ∀ω ∈ Ω
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The sets U1 and U2 can represent capacity constraints for individual lines,
loop �ow constraints, or other relevant network constraints, as discussed in
Bjørndal et al. (2013). Note that we need not have U1 = U2, since the
representation of the network can di�er in the two market clearing stages. In
some day-ahead markets, such as Nord Pool Spot, the network �ow model is
a simpli�ed locational price model, like zonal pricing and market coupling.
In Bjørndal et al. (2016) a discussion of the e�ect of �ow constraints in the
day-ahead market is provided. However, we will not focus on congestion
management in this paper, so the network �ow constraints in the day-ahead
and real-time market clearing are not so important. There will not be any
binding capacity constraints in our examples, i.e., they satisfy U1 = U2 =
R|L|.

3. Market clearing

We consider a situation where the electricity market consists of a day-
ahead market and a real-time market. In the following we present two dif-
ferent dispatch models where the connection between the market clearings
in these two markets is handled di�erently. The markets are cleared sequen-
tially in two stages. In the �rst stage, the day-ahead market is cleared with
uncertainty regarding load and / or generation levels in the real-time market
(the second stage). In the second stage, the real-time market is cleared af-
ter all uncertainty is resolved. In the stochastic market clearing model, the
�rst-stage is solved taking into account the uncertainty in the second-stage
and the connection between the costs and bene�ts in the di�erent stages. In
the myopic market model, however, the day-ahead market is cleared based
only on given bids, not taking into account neither the uncertainty nor the
bids in the real-time market.

In the myopic model, the following problem describes the market clearing
in the day-ahead market (�rst stage):
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min
x,f

∑
i∈I

ĉi(xi) (1a)

s.t.

xi ∈ C1
i ∀i ∈ I (1b)

τn(f) +
∑
i∈I(n)

xi = 0 ∀n ∈ N [λdan ] (1c)

f ∈ U1 (1d)

where λdan is the shadow price for the nodal balance constraints. In the
real-time market (second stage), for every scenario ω ∈ Ω, the market clearing
is found by solving

min
Xω ,Fω

∑
i∈I

(
ĉi(Xiω) + c̃i(xi, Xiω)

)
(2a)

s.t.

Xiω ∈ C2
i (ω, xi) ∀i ∈ I (2b)

τn(Fω)− τn(f) +
∑
i∈I(n)

(Xiω − xi) = 0 ∀n ∈ N [λrtnω] (2c)

Fω ∈ U2, (2d)

where (x, f) is an optimal solution to (1). The resulting expected welfare
from the two stages will be

E

[∑
i∈I

(
ĉi(Xiω) + c̃i(xi, Xiω)

)]
. (3)

We will refer to (1) and (2), solved sequentially, as the myopic market
clearing model. In the myopic model, x and f will be �xed to the solution
from the �rst-stage when solving the second stage.

In the stochastic market clearing model, the two markets are considered
in an integrated manner. This means that the consequences for the real-time
market clearing in the di�erent scenarios is considered by the model when the
day-ahead market is cleared. The objective function of this model is then to
minimize the costs from the day-ahead market and the expected costs from
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the real-time market. This corresponds to the resulting expected welfare
from the myopic model (see (3)), but in the myopic model the contributions
from the day-ahead and real-time markets are calculated independent of each
other.

min
x,f,X,F

E

[∑
i∈I

(
ĉi(Xi) + c̃i(xi, Xi)

)]
(4a)

s.t.

xi ∈ C1
i ∀i ∈ I (4b)

Xiω ∈ C2
i (ω, xi) ∀i ∈ I, ω ∈ Ω (4c)

τn(f) +
∑
i∈I(n)

xi = 0 ∀n ∈ N [λdan ] (4d)

τn(Fω)− τn(f) +
∑
i∈I(n)

(Xiω − xi) = 0 ∀n ∈ N, ω ∈ Ω [pωλ
rt
nω]

(4e)

f ∈ U1 (4f)

Fω ∈ U2 ∀ω ∈ Ω (4g)

The main di�erence between the two model variants is the information
available when the day-ahead market is cleared. In the stochastic dispatch
model, the day-ahead part of the optimization problem takes into account
the possible outcomes of the uncertain parameters and the corresponding
consequences for the market clearing in the regulation market. Due to the
sequential clearing of the markets in the myopic model, the market clearing
in the day-ahead market will be independent of the uncertain parameters
(except for the in�uence on bids).

Under myopic market clearing, we calculate prices in the day-ahead and
real-time markets by using the dual variables from constraints (1c) and (2c),
respectively. The dual variable λdan from constraint (1c) can be interpreted as
the marginal cost of a deterministic load at node n, both for the day-ahead
and the real-time market. The dual variable λrtnω from constraint (2c) can
then be interpreted as the marginal cost of the changed load in node n in
scenario ω. Similarly, under stochastic market clearing, the day-ahead and
real-time prices are given by the dual variables of the constraints (4d) and
(4e), respectively. For a further discussion on these dual variables we refer
to Pritchard et al. (2010).
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4. Numerical example

For a discussion of the stochastic dispatch solutions and their economic
interpretations, we use a simple example with an uncongested network con-
sisting of 3 nodes, as illustrated in Figure 3. The example is motivated by the
day-ahead market in Nord Pool Spot (the Nordic Power Exchange), which
is an energy only market that includes both in�exible and �exible load (for
instance due to large power-intensive industries), as well as di�erent charac-
teristics of the marginal cost curves of the producers (due to a combination
of hydro power, wind power, thermal power and nuclear power). For a more
detailed description of market clearing in Nord Pool Spot, see Bjørndal et al.
(2013).

4.1. Data and parameters

In the example, there are 5 generators of various types, and their day-
ahead marginal cost curves are given by the solid lines in the diagrams in
Figure 3. We assume that wind power (Node 1) has a marginal cost of
zero, up to the capacity limit, and will thus always be dispatched in the
day-ahead market in the myopic market clearing model. For hydro power
(Nodes 1 and 2), marginal cost equals water values, and we assume that
they increase linearly with the quantity produced. Moreover, we assume
that they are not a�ected by the market clearing model. Nuclear (Node 3)
has a low and constant marginal cost, while thermal (Node 3) has a higher
constant marginal cost. The demand curves are given by the dashed lines,
and we assume that only Node 2 has elastic demand. In the example, there
is no load shedding, so the value of the inelastic demand is constant and
not represented in the objective functions. The only source of uncertainty is
the wind generator in Node 1. Three wind scenarios and their probabilities
are described in Figure 4. The marginal cost curve for Node 1 in Figure 3
is based on Scenario 2, where the wind generator can produce up to 7000
MWh/h. Expected wind power is 9650 MWh/h.

The cost parameters of the real-time market are described in Table 1. We
assume that the wind generator's capacity is uncertain when the day-ahead
market bid is submitted. The wind generator may regulate the quantity
up or down without any extra costs, but must respect the realized capac-
ity constraints given by the scenarios in Figure 4. Thus, the wind power
generator is partly �exible. The two hydro generators, as well as the ther-
mal generator in Node 3 and the load in Node 2, are also assumed to be
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Figure 3: Example parameters. The �gure shows the three nodes in the network along
with the supply (solid lines) and demand (dashed lines) curves.
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Figure 4: Illustration of the three wind scenarios.
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Entity Node Flexible? real-time cost

Wind 1 Partly 0 e/MWh

Hydro 1 Yes bu = bd = 1.1c
Hydro 2 Yes bu = bd = 1.1c
Nucl. 3 No N/A
Therm. 3 Yes au − a = a− ad = 5 e/MWh

Load 1 No N/A
Load 2 Yes bu = bd = 1.5b
Load 3 No N/A

Table 1: Flexible entities and their regulation costs. The number in parentheses gives the
index number for the entity in the node.

�exible, however with some additional cost compared to being scheduled in
the the day-ahead market. The up- and down-regulation costs of the hy-
dro generators and the elastic load is represented by increasing the slopes
of the corresponding bid curves compared to the day-ahead market. We in-
crease the slope for the hydro generators with 10%, i.e. buhydro1 = bdhydro1 =

buhydro2 = bdhydro2 = 0.01 · 1.1 = 0.011, and for the �exible load with 50%,

i.e. buload2 = bdload2 = 0.01 · 1.5 = 0.015. For the �exible thermal generator,
the up/down-regulation cost is included by increasing/decreasing the inter-
cept of the real-time market bid curve relative to the corresponding intercept
for the day-ahead market, i.e., authermal = athermal + 5 = 55 e /MWh, and
adthermal = athermal − 5 = 45 e /MWh. Thus, like Pritchard et al. (2010), we
assume symmetric up- and down-regulation costs for all market participants.

4.2. Results from the two dispatch models: Stochastic and Myopic

4.2.1. Day-ahead part

In Figure 5 the day-ahead part of the stochastic dispatch model is illus-
trated. Since the network is uncongested, the price found from the nodal bal-
ance constraint in equation (4d), is equal for all three nodes(68.1 e /MWh).
We note that the wind production is planned at 11505 MWh/h, which is well
above the expected wind power available in real time. Moreover, in Node 3,
the �exible thermal producer is dispatched at 5877 MWh/h (seen as the to-
tal generation in Node 3 of 15877 MWh/h less the 10000 MWh/h produced
by the nuclear generator) while, with a day-ahead price of 68.1 e/MWh,
his bid curve suggests that he would want to produce at full capacity. In
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order to achieve such a solution in the day-ahead market, we cannot rely on
a market mechanism that only uses price as the signal - quantities would
have to be included as well. Note that this is also the case with traditional
market design with stepwise bid functions, but in these cases the producers
would be indi�erent within each step. If only price signals were used to clear
the day-ahead market, the thermal producer would want to produce more
electricity. The solution that would result from a traditional market clearing
(found with the Myopic Model) is illustrated in Figure 6. The day-ahead
market price is now changed to 50 e/MWh, i.e., the marginal cost of the
thermal generator. The day-ahead market quantity of the thermal generator
has been increased to 9495 MWh, but it is still below full capacity. In the
myopic model however, the thermal generator is dispatched at his marginal
cost and will be indi�erent with respect to the production level, thus there
is no longer an incentive for self-scheduling.

The di�erence between the results from the day-ahead dispatch in the
stochastic model (Figure 5) and the day-ahead market clearing in the myopic
model (Figure 6) is due to the di�erence in information structure between
the two models. The stochastic model will take into consideration how the
day-ahead market clearing in�uences the regulation market clearing given the
possible realizations of the uncertain parameters, whilst the myopic model
will only consider the day-ahead market. Since the myopic model does not
include the �exibility costs and the need to deal with wind uncertainty when
clearing the day-ahead market, it will �nd the most e�cient market clearing
for the day-ahead market. The stochastic model, however, will choose a
di�erent dispatch in the day-ahead market to prepare for the uncertainty that
it foresees in the regulation market. This means that it will choose a dispatch
that provides �exibility in the regulation market. In our example, this can
be seen from di�erence in how the �exible thermal producer is dispatched
in the myopic and stochastic model. Under stochastic market clearing the
thermal producer is dispatched at a level where he can be used for both up-
and down-regulation in the real-time market, while in the myopic model he
is dispatched at almost full capacity in the day-ahead market.
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Figure 5: Day-ahead market schedule under stochastic market clearing.
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4.2.2. Real-time part

Based on the market clearing decided in the day-ahead market, there
will be di�erent needs, possibilities and costs associated with clearing the
regulation market. Figure 7 shows the market clearing for the stochastic
model in the three di�erent scenarios, while Figure 8 shows the same for the
myopic model. Starting with the stochastic model, we see that in Scenario
1, the reduction (from the day-ahead market dispatch) in wind production
is o�set by the increased production from all �exible producers that are
not already dispatched at full capacity in the day-ahead market, as well as
reduction of the �exible load in Node 2. In the myopic model the thermal
producer is dispatched at almost full capacity in the day-ahead market and
cannot be used to o�set the lost wind production in Node 1. This must
be compensated by larger increases in hydro generation in Node 2, as well
as a larger decrease in the �exible load in Node 2. This e�ect is strongest
in scenario 1 where the wind production is reduced drastically without the
possibility to compensate fully with increased production from the thermal
producer.

In Scenario 2, where the wind production is at the medium level (7000
MWh/h), the stochastic model adjusts the day-ahead market clearing by
increasing the production of the thermal generator to full capacity, while the
quantities for the other �exible entities are changed in the same direction,
but with smaller amounts, as in Scenario 1. In the myopic model, almost
the entire capacity of the thermal generator has been dispatched in the day-
ahead market, so most of the reduction in production by the wind power
plant must be compensated by the other �exible entities.

Finally, in Scenario 3 we see that the thermal producer has an unchanged
production level in the regulation market in the stochastic model. In order to
incorporate the high wind production (15000 MWh/h) in this scenario, the
hydro power producer in Node 2 reduces his production and the load in Node
2 is increased. In the myopic model, the thermal producer is regulated down
from 9495 MWh/h to 6788 MWh/h. In addition, the hydro power producer
in Node 2 is regulated in the same manner as for the stochastic solution. The
same is true for the load in Node 2.
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Figure 7: Adjusted (stage 2) schedule under stochastic market clearing. The crosses show
the day-ahead dispatch while the circles show the dispatch in the real-time market.
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Figure 8: Adjusted (stage 2) schedule under standard (myopic) market clearing. The
crosses show the day-ahead dispatch while the circles show the dispatch in the real-time
market.
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Tables 2 and 3 shows the results from the two models. As expected, we
can see that the social surplus in the day-ahead market is higher in the my-
opic model (1180.3' e) than in the stochastic model (1147.5' e), while the
total expected surplus is higher in the stochastic model (980.9' e) than in the
myopic model (971.7' e). This di�erence in results is due to the lower �exi-
bility costs in the regulation market in the stochastic model. The di�erence
is illustrated by how the two model variants dispatch the thermal producer.
In the myopic model the thermal producer is dispatched at almost full ca-
pacity in the day-ahead market, while in the stochastic model the thermal
producer is dispatched at a much lower level (5877 MWh/h instead of 9495
MWh/h of a capacity of 10000 MWh/h). Due to the relatively low �exibility
costs of the thermal producer, he can be used both for absorbing high levels
of non-dispatchable production (in Scenario 3) as well as substituting for low
production levels (in Scenario 1 and 2). In the myopic model, the thermal
producer is dispatched almost at his production limit in the day-ahead mar-
ket. This strongly limits his ability to up-regulate in the low-winds scenarios,
and the myopic model must then rely on the more expensive hydro-power
producers to compensate. The stochastic model however chooses to dispatch
the thermal producer at a level where both up- and down-regulation can be
used in the di�erent scenarios.

Table 2: Summary of results for stochastic model. Surpluses in 1000 es. ∆x is used to
indicate the di�erence between the real-time market and the day-ahead quantities, while
−∆c denotes the increase in the total surplus.

Day-ahead No wind (0.25) Medium wind (0.2) High wind (0.55)
Entity Node λ x −c λ ∆x −∆c λ ∆x −∆c λ ∆x −∆c E[−c− ∆c]

Wind 1 68.1 11505 783.4 114.9 -11505 -1322.4 70.5 -4505 -317.7 45.9 3495 160.4 477.5
Hydro 1 68.1 3000 159.3 159.3
Hydro 2 68.1 6809 231.8 114.9 4259 99.8 70.5 221 0.3 45.9 -2016 22.4 269.1
Nucl. 3 68.1 10000 630.9 630.9
Therm. 3 68.1 5877 106.3 114.9 4123 247.1 70.5 4123 64.0 180.9

Load 1 68.1 6000 -408.5 -408.5
Load 2 68.1 13191 870.0 114.9 -3123 73.2 70.5 -162 0.2 45.9 1479 16.4 897.4
Load 3 68.1 18000 -1225.6 -1225.6

Grid -0.0 -0.0 -0.0 0.0 -0.0

Total 1147.5 -902.3 -253.3 199.2 980.9

5. Market design implications

One way of achieving the day-ahead market outcome suggested by the
stochastic dispatch is to assume a central planner that can dictate the pro-
duction and consumption levels. Theoretically, rules could also be put in

21



Table 3: Summary of results for myopic model. Surpluses in 1000 es.
Day-ahead No wind (0.25) Medium wind (0.2) High wind (0.55)

Entity Node λ x −c λ ∆x −∆c λ ∆x −∆c λ ∆x −∆c E[−c− ∆c]

Wind 1 50.0 11505 575.3 119.8 -11505 -1378.4 75.4 -4505 -339.6 45.0 3495 157.3 249.2
Hydro 1 50.0 3000 105.0 105.0
Hydro 2 50.0 5000 125.0 119.8 6346 221.5 75.4 2308 29.3 45.0 -455 1.1 186.9
Nucl. 3 50.0 10000 450.0 450.0
Therm. 3 50.0 9495 -0.0 119.8 505 32.7 75.4 505 10.3 45.0 -2707 0.0 10.2

Load 1 50.0 6000 -300.0 -300.0
Load 2 50.0 15000 1125.0 119.8 -4654 162.4 75.4 -1692 21.5 45.0 333 0.8 1170.4
Load 3 50.0 18000 -900.0 -900.0

Grid 0.0 -0.0 -0.0 -0.0 0.0

Total 1180.3 -961.7 -278.6 159.2 971.7

place that would distribute the surplus and risk in the network between the
participants. There are, however, several challenges with using the central
planner approach in the network. One major challenge is the question of in-
dividual rationality: How would the participants in the markets behave given
that they know the central planner will use a stochastic dispatch when clear-
ing the markets? In Section 5.1 we will discuss how the wind producer may
have incentives to strategically alter their behavior when they know that a
stochastic dispatch solution will be used to clear the markets. Another main
question related to the stochastic dispatch is where the information regarding
uncertainty is coming from. When studying the issue with a stochastic model
from a system perspective, we include the distribution of possible wind pro-
duction for the producer in our problem. Hence, we implicitly assume that
the wind producer truthfully reports his distribution to the system operator,
who will use this information to determine the optimal bid in the day-ahead
market. Is this assumption valid, or will the wind producer have an incentive
to deviate from the true distribution? The distributions that are used to rep-
resent the uncertain demand and supply will highly in�uence the stochastic
dispatch, and as such, both the surplus and risk for each of the market partic-
ipants. In Section 5.2 we will investigate how varying assumptions regarding
the probability distribution for production from the wind producer in Node
1 can in�uence the results in the markets.

5.1. Rationality in bidding behavior

A market design for the electricity market based on a stochastic model
face several challenges. One of these is the individual rationality of the
participants in the market. When a system perspective is used to �nd the
optimal production decisions in the network, the resulting prices may lead to
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Figure 9: E�ect on prices of varying the day-ahead market quantity for the wind generator
in myopic (left) and stochastic (right) model.

small (or even negative) pro�ts for the participants in the day-ahead market.
Although Pritchard et al. (2010) show that the participants in a market
using stochastic dispatch will have revenue adequacy on expectation, the
participants may not have a positive revenue in all scenarios. In a recent
paper by Morales et al. (2014), a small example that illustrates the impact
of a stochastic model on a �exibility provider in an electricity network that
uses a stochastic model for market clearing is provided. In the example,
the �exibility provider ends up with a very small expected pro�t and with a
large probability of negative pro�ts. It is natural to then question how this
producer would behave given this market design. When the producer knows
that a stochastic dispatch will be used, would he change his bidding curves?

In the following, we will investigate these issues by studying a simple
example. We will use an MPEC model where the upper level is the deter-
mination of the day-ahead market quantity for the wind producer, while the
lower level problem is the stochastic dispatch model used by the system op-
erator. We solve the MPEC by using enumeration over a discrete number
of possible production quantities for the wind producer. This solution pro-
cedure allows us to draw the pro�t functions for each market participant as
a function of the wind quantity included in the day-ahead market clearing.
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This approach is di�erent from the one used in Morales et al. (2014) where
the optimal day-ahead bid conditional on the system optimum is found. In
our example, we focus on the individual rationality of the wind producer, not
on the system as a whole.

The results from our analysis for both the myopic model and the stochas-
tic model is shown in Figures 9 and 10. As we can see from both �gures,
the wind producer will optimize his pro�ts with a day-ahead market quan-
tity that is di�erent from the system optimum. The system optimum is
achieved with a production quantity of 7500 MWh/h in the myopic model
and 11505 MWh/h in the stochastic model. The system optimal expected
surplus is, as expected, higher with stochastic market clearing (981' e) than
with myopic market clearing (979' e). If we look at the surplus for the wind
producer however, we see that in the case of the myopic model the wind pro-
ducer would bene�t from lowering the production quantity to 3900 MWh/h,
whilst in the stochastic model he would bene�t from increasing the quan-
tity to 13875 MWh/h. This means that the incentives of the wind producer
and the system are not aligned, and that the wind producer would like to
deviate from the day-ahead market dispatch that has been chosen by the
TSO. The �gures also clearly illustrates a di�erence between the stochastic
dispatch and the myopic model in that the consequences of deviating from
the system optimal wind quantities in the day-ahead market is smaller for
the stochastic dispatch model. This is as expected given that the stochastic
dispatch model will have more information available when the dispatch in
the day-ahead market is decided upon. The stochastic model will realize the
consequences of the changed wind production on the �exibility costs in the
regulation market and adjust accordingly. The myopic model on the other
hand, will not consider the possibility of actual wind production deviating
from the quantity cleared in the day-ahead market.

5.2. Information requirements

An important assumption for the stochastic dispatch model (and for
stochastic programming models in general) is the assumption of a known,
joint probability distribution. Such a distribution must be assumed avail-
able to the decision maker, either from objectively available sources or based
on subjective analysis. Given that the stochastic dispatch will depend on
this joint probability distribution, it is very important for the market and
the market participants that this probability distribution is determined in
a fair manner. The credibility of the market will depend directly on the

25



0
20

40
60

80
10

0
12

0

0

0.
25

0.
56 0.
8

P
ric

e 
(€

/M
W

h)

Reported probability of no wind

Day−ahead
No wind
Medium
High

Figure 11: E�ect on prices of varying the reported probabilities.

credibility of the process for estimating the probability distribution. If the
probability distribution is not correct it will impact the distribution of sur-
plus between the participants, the proofs of revenue adequacy in the system
(Pritchard et al. (2010)) will no longer hold, and the risk for the participants
in the market will increase. It is then vital to determine where this proba-
bility distribution will come from, who will estimate it and how it should be
represented in the stochastic dispatch model.

In the following we assume that the wind producer reports his estimation
of the probability distribution for wind production, and we examine whether
or not he will have an incentive to misrepresent this probability distribution.
We will perform this analysis by varying the probabilities for the extreme
scenarios ("No wind" and "High wind"). The probability of the middle
scenario (wind production of 7000 MWh/h) will be held constant at 0.2,
while the probabilities of "No wind" and "High wind" will be varied between
0 and 0.8 (a decrease in one of the probabilities will be o�set by an identical
increase in the other). After the stochastic dispatch is solved with this new
probability distribution, we will then recalculate expected surpluses with the
original probability distribution which we assume is the correct one.

The results, which are illustrated in Figures 11 and 12 show that the wind
producer will have an incentive to misreport the probability distribution for
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the wind production. In our example, he will have an incentive to report
a lower probability of high wind production. This way, his expected pro�ts
will increase while his risk exposure (in terms of uncertainty of pro�ts) will
decrease. For other parameter sets we have seen di�erent results, but the
problem of the wind producer not being incentive compatible with the total
system will be valid for most parameter sets (it will naturally, theoretically,
be possible to construct a parameter set such that the results of the wind pro-
ducers are aligned with the total system). In our example, the wind producer
will alter the probability of the "No wind" scenario from 0.25 to 0.56, and
the probability of the "High wind" scenario from 0.55 to 0.24. This example
illustrates both the impact on the surplus of the di�erent participants in the
system of a misrepresented probability distribution for wind production, as
well as the potential for gaming with this information for the participants.
Given that there is no "true" probability distribution for wind production
ahead in time, such estimations will always be subject for discussions. This
poses a serious challenge for designing market mechanisms where both the
distribution of surplus between the participants in the system, as well as
the risk exposure of the participants must be handled in a fair and e�cient
manner.

6. Conclusions

We have presented a discussion and analysis of a stochastic dispatch
model for electricity networks with two sequential markets. The examples
illustrate both the potential gains from using a stochastic dispatch as well
as some of the challenges. Generally, if the representation of the underlying
uncertainty is correct, the stochastic dispatch model will always give a higher
expected surplus in the network than the conventional myopic market model,
as illustrated by our example. Under both types of market clearing, however,
there is a discrepancy between what is optimal for the system, with respect
to scheduled wind power production, and what is optimal for the wind power
producer. The consequences of this discrepancy, in terms of reduction in so-
cial surplus, is more severe in the myopic model, than with stochastic market
clearing. We have also demonstrated that the wind power producer may ex-
ercise market power by manipulating the information about the probability
distribution of wind, if he is responsible for supplying this information.
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