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Abstract 

A selective sampling procedure is applied to reduce the number of density functional theory 

calculations needed to find energetically favorable grain boundary structures. The procedure is based 

on a machine learning algorithm involving a Gaussian process, and uses statistical modelling to map 

the energies of the all grain boundaries. Using the procedure, energetically favorable grain 

boundaries in BaZrO3 are identified with up to 85% lower computational cost than the brute force 

alternative of calculating all possible structures. Furthermore, our results suggest that using a grid 

size of 0.3 Å in each dimension is sufficient when creating grain boundary structures using such 

sampling procedures.  

Introduction 

Grain boundaries (GBs) play an important role in polycrystalline materials, as they affect macroscopic 

properties such as electrical conductivity, capacitance, and diffusion. In the proton-conducting oxide 

BaZrO3, used as case material in this paper, resistive GBs lower the overall electrical conductivity 

significantly [1],[2],[3]. Studying GBs experimentally can be challenging, as the area of interest is in 

the range of a few nanometers. Thus, it is fruitful to also investigate GBs with a theoretical approach. 

One option is to perform density functional theory (DFT) calculations on the grain boundaries, where 

a periodic supercell of the atomic GB structure is given as input, and the structure’s calculated 

potential energy (PE) is the output. However, when constructing a GB supercell, we face a problem: 

the atomic GB structure is unknown and the number of possible configurations is large. Even for a 

simple coincidence-site lattice GB, one typically has to consider hundreds or thousands of possible 

configurations arising when shifting the two grains relative to each other in three dimensional rigid 

body translations [4]. 

To find the correct atomic GB structure, the brute force method is the most accurate: perform DFT 

calculations on all configurations, and define the GB structure as the structure with lowest PE. Due to 
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the computational cost, only a limited number of GBs can be treated this way. As a GB increases in 

complexity, the number of atoms needed to describe its structure in a periodic supercell increases, 

rising the computational cost in two ways. First, the computational cost of a DFT calculation roughly 

goes as the cube of the number of atoms in the supercell. Second, with a larger GB supercell, the 

number of possible GB configurations increases, raising the number of required DFT calculations.  

One alternative to DFT are classical interatomic potentials with significantly lower computational cost, 

such that complex GBs with large supercells can be described [5]. A problem with the classical 

interatomic potentials is however their limitations in accuracy, since the pair potentials usually have 

been developed for simpler geometries so that GBs are outside their validity range. This is 

increasingly problematic as the number of different elements increases, giving rise to an exploding 

number of many-body interactions.  

To reduce computational cost while maintaining high accuracy, several reports in the literature apply 

machine learning-based techniques. Methods based on selective sampling with Bayesian 

optimization [6]  has identified stable fcc-Cu [4] and metal oxide[7] GBs with a computational cost 

around two orders of magnitude lower than the brute force method. Other methods, where the 

algorithm was trained on a subset of GBs to predict properties of other GBs – sometimes labelled 

transfer learning – are able to effectively predict GB energies in fcc-Cu [8] and fcc-Al [9]. The 

combination of selective sampling and transfer learning is also fruitful, shown to reduce 

computational cost by around three orders of magnitude in determining the GB energies in Fe [10] 

and fcc-Al [11]. Furthermore, proton conduction has been characterized in BaZrO3 [12] and atomic 

pathways has been identified in BaZrO3 and LaNbO4 [13], by combining DFT with selective sampling. 

In this paper, we apply an approach inspired by the ones described in [4, 7, 12]:: combine DFT 

calculations with a machine learning-based selective sampling procedure, to identify the low PE grain 

boundary structures with as few DFT calculations as possible. A fine grid is introduced, where one 

grain is shifted relative to the other grain along the grid points. We define the potential energy 

surface (PES) to be the DFT calculated potential energy over the entire grid. Instead of calculating the 

entire PES, only a few grid points are calculated initially. Then we apply a statistical model that 

predicts the remaining part of the PES, based on the already calculated grid points. With a prediction 

of the entire PES, GB structures that are likely to have low PE can be identified. Then we apply 

selective sampling: the next grid point to calculate is selected based on the probability of that grid 

point being in a low PE region, as well as the uncertainty of that grid point. As more GB structures are 

calculated, the statistical model is updated and becomes increasingly accurate, particularly in the low 

PE region where most of the computational effort is focused. After a number of DFT calculations, all 
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low PE structures are with a certain probability identified, and the sampling procedure can be 

terminated. At that point, only a few of the unphysical, high energy GB structures have been 

calculated. The accuracy from DFT calculations is maintained, but careful selective sampling prevents 

us from wasting computational resources on unphysical GBs. 

BaZrO3 is well-studied, and suitable as a case material in this study. Several DFT studies have been 

done on BaZrO3 GBs, however, most of the studies either neglect the rigid body translations [14], 

[15], [16] or treat them inaccurately in a coarse grid [17]. Due to their relatively small supercell sizes, 

the (210)[001] and (111)[11̅0] GBs will be used for demonstration in the present work. For these 

particular GBs, calculating all possible grain shifts with the brute force method is possible with a 

reasonable computational cost. In more complex GBs however, the brute force method is ruled out 

due to large computational cost. Hence, this study serves as a demonstration of a method useful in 

more complex GBs. 

Theoretical background 

First, we discuss the number of possible GB configurations in greater detail, and how a grid with as 

few configurations as possible can be introduced. Since the grains can be shifted relative to each 

other in three dimensions, a large number of possible configurations arise. Second, we introduce the 

Gaussian Process (GP), the statistical model on which the procedure is based. In the GP, each grid 

point is assigned with an expected potential energy as well as an uncertainty of that energy. That 

enables us not only to identify configurations with low expected PE, but also configurations with high 

uncertainty, that is, areas where the GP model has low precision. Third, we explain the actual 

selective sampling procedure. After the model is initialized by calculating a few grid points, the next 

grid point to calculate is selected based on two considerations: the grid point should have a low 

expected PE, and a high expected uncertainty. Finally, the computational details of the DFT 

calculations are laid out.  

Number of grain boundary configurations 

In this consideration the (210) GB will be used as an example, but a similar procedure applies for the 

(111) GB. Detailed information about the GB supercells is shown in Table 1. 

Table 1. Angles, dimensions, number of atoms, grain boundary separation of the GB supercells in this study. a0 = 4.235 Å 

is the lattice parameter.  

GB Angles Dimensions # of atoms GB separation [Å] 

(210)[001] 𝛼 = 90°, 𝛽 = 90°, 𝛾 = 90° √5𝑎0 × 𝑎0 × 4√5𝑎0 100 19.54 

(111)[11̅0] 𝛼 = 90°, 𝛽 = 90°, 𝛾 = 60° √2𝑎0 × √2𝑎0 × 4√3𝑎0 60 14.82 
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With three geometrical degrees of freedom, the number of possible GB configurations is obviously 

very high, and we will reduce that number as much as possible. Keeping the right grain fixed, the left 

grain can be shifted in the x- and y-direction, shown in Figure 1 and Figure 2, respectively. Also, the 

GB will typically expand in the z-direction perpendicular to the GB plane: Due to a different chemical 

environment at the GB core than in the bulk, distances between the atomic planes tend to differ 

significantly. The two grains may also be twisted relative to each other. Since the supercell’s periodic 

boundary conditions are violated when twisting the grains, a treatment within the DFT framework is 

non-trivial, and twisted GBs are therefore not considered in this work. 

The geometrical freedom in the z-direction is trivial to eliminate. By only allowing atom movement 

and supercell expansion in the z-direction during DFT relaxation, the most energetically favorable GB 

expansion will be found and is hence not necessary to know prior to the calculation. Treating the 

degrees of freedom in the x- and y-direction is more complicated. 

Applying a fine grid size of 0.12 Å in the x- and y-direction yields a mesh of 80 × 36 = 2880 grid 

points. Figure 1 shows the supercell with a view perpendicular to the x-direction. The left structure 

shows the symmetric tilt GB; in the right structure, Grain 1 is shifted 0.1 unit cell lengths in the x-

direction relative to Grain 2. Increasing the grid size will reduce the number of grid points. However, 

in the x-direction, the atomic plane arrangement is complicated, and it is not straightforward to 

increase the grid size without risking missing the most energetically favorable GB configuration. 

 

Figure 1. Supercells of the (𝟐𝟏𝟎)[𝟎𝟎𝟏] grain boundary. In the left part, the grains are in the symmetric tilt configuration. 

In the right part, Grain 1 is shifted 0.1 unit cells in the x-direction, while Grain 2 is kept fixed. Only half of the atoms in 

the supercell are shown. Green, blue and red colors indicate Ba, Zr and O atoms, respectively. The black dashed line 

shows the grain boundary, the horizontal lines mark the supercell edges. 

In the y-direction an increased grid size is possible, as shown in Figure 2. Due to symmetry, only 

configurations where y = 0 or y = 0.5 are likely, where y is the grain shift in direct coordinates, with 

the starting point being the symmetric tilt GB shown in Figure 2. In the case of a configuration with 

for example y = 0.3, the close-packed atomic planes in the y-direction are not aligned across the grain 
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boundary. In a DFT calculation with no volume constraints, such a structure will therefore very likely 

relax into either a y = 0.0 or a y = 0.5 configuration. This was tested by relaxing several configurations 

with starting points 0.1 ≤ 𝑦 ≤ 0.4, and with no exceptions the configurations relaxed into either y = 

0.0 or y = 0.5. Hence, the number of required grid points in the y-direction can be reduced to 2. Such 

reduction can, however, only be done in orientations with a special symmetry. 

 

Figure 2. Supercells of the (𝟐𝟏𝟎)[𝟎𝟎𝟏] grain boundary. In the left part (y = 0.0), the grains are in the symmetric tilt 

configuration. When the shift in the y-direction is 0.0 or 0.5, the atomic planes are aligned across the GB. However, with 

a shift between 0.0 and 0.5, the symmetry is lost; the structure is not stable and will, if allowed, relax into a y=0.0 or 

y=0.5 configuration during unconstrained relaxation. Less than half of the atoms in the supercell are shown. Colors as in 

Figure 1. The black dashed line shows the grain boundary, the horizontal lines mark the supercell edges. 

The total number of grid points is then 80 × 2 = 160 for the (210) GB. Since we expect a low 

correlation in the DFT calculated energy between the 𝑦 = 0 and 𝑦 = 0.5 structures, it is convenient 

to treat these grid points as two separate datasets, shown as Datasets I and II in Table 2. In the (111) 

GB, the atomic plane arrangement is complex in both x- and y-directions, and it is not possible to 

reduce the grid density vastly in one of the directions. To keep the number of configurations 

reasonably low, a coarser grid of 0.50 × 0.50 Å2 was applied, shown as Dataset III in Table 2.  

Table 2. The datasets on which the selective sampling procedure are applied. In Datasets I and II, the shift in the y-

direction is fixed, reducing the problem to one spatial dimension. In Dataset III, the shift in both x- and y-direction is free, 

leading to a two-dimensional problem. 

Dataset GB x y Grid size # of configurations 

I (210)[001] Free 0.0 0.12 Å 80 

II (210)[001] Free 0.5 0.12 Å 80 

III  (111)[11̅0] Free Free 0.50 × 0.50 Å2 144 
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The simple brute force method would be to calculate all configurations for all datasets, but that 

comes with a large computational cost. Rather, we will only calculate some configurations for each 

dataset, and use the Gaussian Process model to predict the entire PES. 

Gaussian Process Model 

In this section, we introduce the machine learning-based Gaussian Process (GP) model that describes 

the PES over the entire grid [18]. A GP model can roughly be seen as a collection of Gaussian 

functions: for the entire configuration space, the GP model returns the mean and the variance of the 

normal distribution at a given location. In our case, the GP model specifically returns the expected 

DFT calculated energy and its variance for each grid point: The potential energy Ei at grid point i is 

described as a normally distributed variable, 

 𝐸𝑖~𝒩(𝜇𝑖 , 𝜎𝑖
2),    𝑖 = 1, … , 𝑁.  (1) 

Here, N is the total number of GB configurations and 𝒩(𝜇𝑖 , 𝜎𝑖
2) is the normal distribution of the 

potential energy at grid point i, with 𝜇𝑖  as the expected mean and 𝜎𝑖
2 as the variance. The probability 

density function at each grid point i is then the usual 𝑓𝑖(𝑥) = (2𝜋𝜎𝑖
2)

−1/2
exp (−

(𝑥−𝜇𝑖)2

2𝜎2 ).  

A simple illustration of a one-dimensional GP model is shown in Figure 3, where the model is based 

on five observed data points. Close to observed data points (such as 𝑥 = 𝑥2) the model has a low 

uncertainty, while further away from the observed data points (such as 𝑥 = 𝑥1), the uncertainty 

increases. 

 

Figure 3. One dimensional GP model, with five observed (in this work: calculated by DFT) data points. The orange line 

shows the mean prediction, with the shaded area being the uncertainty. 𝑬− is defined as the lowest energy among the 

observed data points. 
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Moving from one to d dimensions, we introduce a d-dimensional vector of descriptors as 𝝌𝑖 ∈

ℝ𝑑  for 𝑖 = 1, … , 𝑁, where a descriptor can be interpreted as a variable describing the PES. The 

descriptors we use will be explained in a later section; an example of a descriptor is the grain shift in 

the x-direction. The covariance function k, which roughly describes the similarity between grid point i 

and grid point j, is defined as a radial basis function: 

 

𝑘(𝝌𝑖 , 𝝌𝑗) = exp (−
1

2
∑ (

𝜒𝑖𝑙 − 𝜒𝑗𝑙

𝜃𝑙
)

2
𝑑

𝑙=1

). (2) 

Here, 𝜒𝑖𝑙  is the value of the lth descriptor at grid point i, and 𝜃𝑙 is the length scale parameter for the lth 

descriptor, automatically tuned by the “fmin_l_bfgs_b” algorithm from the Python 

scipy.optimize library [19]. The covariance function can be understood intuitively from Figure 3. 

There, only one descriptor is applied, meaning that 𝝌𝑖 = 𝑥𝑖. For two points i and j very close to each 

other, |𝑥𝑖 − 𝑥𝑗| ≈ 0 ⟹ 𝑘(𝑥𝑖 , 𝑥𝑗) ⟶ 1, implying a high correlation between point i and j; for two 

points i‘ and j‘ far from each other, 𝑘(𝑥𝑖′ , 𝑥𝑗′) ⟶ 0, implying zero correlation. 

To apply the GP model on the entire PES, we first need to calculate at least two potential energies to 

initiate the model. Calculating t potential energies from the grid, we define the kernel matrix as 

 
𝐊 =  [

𝑘(𝝌1, 𝝌1) ⋯ 𝑘(𝝌1, 𝝌𝑡)
⋮ ⋱ ⋮

𝑘(𝝌t, 𝝌1) ⋯ 𝑘(𝝌𝑡 , 𝝌𝑡)
]. (3) 

We apply the kernel matrix to provide a prediction of the mean and variance over the entire 

descriptor space [20]: 

 𝜇(𝝌) = 𝐤(𝛘)T𝐊−1𝐄, (4) 

 𝜎2(𝝌) = 𝑘(𝝌, 𝝌) − 𝐤(𝝌)T𝐊−1𝐤(𝝌). (5) 

Here, 𝐄 represents a vector with the t calculated potential energies, 𝐄 = [E1, … , E𝑡], and 𝐤(𝝌) =

[𝑘(𝝌, 𝝌1), … , 𝑘(𝝌, 𝝌𝑡)]T. Each time we do a new DFT calculation, the GP model is updated with 

improved accuracy. To implement the model, the Gaussian Processes software from Python sklearn 

[21] is used, whose implementation is based on Algorithm 2.1 in [18]. 

Descriptors 

In principle, any kind of descriptor can be used as input to the GP model. Yet, for a descriptor to be 

effective, it should be correlated with the output of the model, which in our case is the DFT 

calculated PES. In this work we have used five descriptors, shown in Figure 4. 
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Figure 4. Relation between the PES and the other descriptors. Each spatial point in the PES is described by the x and y 

shift, as well as three additional descriptors. When all descriptors are included in the model, it becomes five dimensional. 

The already mentioned x descriptor, and its equivalent y, are the two most obvious choices of 

descriptors, describing relative grain shifts in the x- and y-direction, respectively. It is reasonable to 

assume that two GB configurations close to each other in space have a similar potential energy. 

Hence, including these descriptors should improve the GP model. 

There is also a correlation between the energy calculated from fast, inaccurate DFT calculations and 

slow, accurate ones. The prePES descriptor, standing for preliminary PES, exploits this principle. It 

describes the entire PES using deliberately sloppy convergence criteria (see Table 3 for details) with 

zero ionic relaxation steps, having around two orders of magnitude lower computational cost than a 

full DFT relaxation. Performing fast prePES calculations across the entire grid thus comes with a 

relatively low computational cost. 

In the 6steps descriptor, the DFT calculation is slow and accurate, and differs from the full 

calculation only at one point: the calculation is stopped after six ionic relaxation steps. The energies 

given by the descriptor will thus be more accurate than those from the prePES descriptor. However, 

acquiring all the data needed for the 6steps descriptor comes with a significant computational cost, 

typically around one order of magnitude higher than the cost of acquiring the prePES descriptor. 

Hence, including the 6steps descriptor will likely improve the GP model, but it is not clear if the 

total computational cost will be reduced. 

The bond length ratio (BLR) descriptor captures deviations in the bond lengths of the GB supercell 

compared to bulk bond lengths. These bond length deviations correlate with higher calculated 

potential energies, indicating that this descriptor may improve the performance of the GP model. To 

calculate the BLR coefficient, let i be an atom type in the supercell that consists of N atoms. Each 

atom has three types of neighbors, with each neighbor type denoted as j, that is, 𝑗 = {Ba, Zr, O}. 

Each atom type i with neighbor type j has 𝑚𝑖𝑗  nearest neighbors. For example, in the BaZrO3 
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perovskite structure, the Ba-Ba bond has 𝑚𝑖𝑗 = 6, and the Ba-O bond has 𝑚𝑖𝑗 = 12. The BLR 

coefficient is 

 

BLR =  
1

2
⋅ ∑ ∑ ∑

|𝑟𝑖𝑗𝑘 − 𝑟𝑏𝑢𝑙𝑘,𝑖𝑗|

𝑟𝑏𝑢𝑙𝑘,𝑖𝑗

𝑚𝑖𝑗

𝑘

3

𝑗

.

𝑁

𝑖

 (6) 

Here, the 
1

2
 factor prevents double counting, 𝑟𝑖𝑗𝑘  is the distance between the ith and kth atom and 

𝑟𝑏𝑢𝑙𝑘,𝑖𝑗   the bulk distance between atom type i and atom type j. For example, for the Ba-O bond, 

𝑟𝑏𝑢𝑙𝑘,𝑖𝑗 = 𝑎0
√2

2
, where 𝑎0 is the lattice parameter. Atoms located very close or very far from each 

other yields a high |𝑟𝑖𝑗𝑘 − 𝑟𝑏𝑢𝑙𝑘,𝑖𝑗| value, increasing the BLR coefficient. Figure 5 provides an 

illustration of how the BLR coefficient is calculated. 

 

Figure 5. Illustration of the distances going into the BLR coefficient, for a (210) GB whose left grain is shifted 0.27 unit 

cell lengths in the x-direction. The interatomic distances differ significantly at the GB core compared to those at the bulk, 

illustrated by the length of the arrows. Colors as in Figure 1. The black dotted line shows the grain boundary, the 

horizontal lines mark the supercell edges. 

The selective sampling procedure 

The selective sampling procedure follows these steps: 

a) Initialize the GP model by calculating Nrand random points from the grid 

b) Select the next grid point to calculate 

c) Calculate the next grid point, and update the GP model. Repeat b) and c) until convergence. 

The initialization is straightforward: DFT calculations are performed on Nrand random grid points, and 

the resulting energies are used to initiate the GP model. To set Nrand one has to consider a trade-off 

between convergence rate and robustness: low Nrand values typically lead to faster convergence, but 

also a higher chance of convergence at a local rather than global minimum. In this work, 𝑁rand = 10 

was found to be a suitable compromise. 
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When selecting the next grid point to calculate, we balance the tradeoff between exploration and 

exploitation. On one hand, we exploit the low PE region by spending most of our computational 

resources there. On the other hand, we also explore by calculating the high PE region with at least 

some precision, to be confident that we do not miss the global minimum. 

To achieve a suitable balance, the expected improvement method from the Bayesian optimization 

literature was applied [20]. Specifically, we want to calculate the expected improvement relative to 

the minimum value of the t sampled data points, 𝐸− = min
𝑖∈𝑡

{𝐸𝑖}. The approach is to calculate the 

expected improvement for each grid point and select the “best” (here: the most negative) expected 

improvement for the next grid point to calculate. The expected improvement EI(𝝌𝑖) for grid point i is 

[20] 

 EI(𝝌𝑖) = (𝜇(𝝌𝑖) − 𝐸−)(1 − Φ(𝑍𝑖)) − σ(𝛘i)𝜙(𝑍𝑖). (7) 

 

Here, Φ(𝑍𝑖) is the cumulative distribution function and 𝜙(𝑍𝑖) the probability density function of the 

standard normal distribution, with Zi being the usual standardized value given as 𝑍𝑖 =
𝜇(𝝌𝑖)−𝐸−

𝜎(𝝌𝑖)
. 

Equation (7) reveals the balance between exploration and exploitation: the second term explores and 

may dominate when σ(𝛘i) is large; the first term exploits and usually dominates when 𝜇(𝝌𝑖) < 𝐸−. 

Calculating the expected improvement for all grid points, its most negative value is selected as the 

next grid point 𝑖𝑡+1 to calculate: 

 𝑖𝑡+1 ∶= arg min
𝑖∈𝑁

EI(𝝌𝑖) . (8) 

 

After grid point 𝑖𝑡+1 is calculated with DFT, the selection procedure is repeated until convergence. 

Our convergence criterion is based on the probability of improvement. As more grid points are 

calculated, the absolute value of the expected improvement will approach zero. This is because most 

or all grid points in the low PE region will already be calculated, and any improvement is unlikely. In 

this work, the sampling was terminated when min
𝑖∈𝑁

|EI(𝝌𝑖)| < 10−15, under the condition that 

𝐸𝑖  ~ 𝒩(𝜇𝑖 , 𝜎𝑖
2) was standardized when applied in the GP model. The standardization sets the mean 

to zero and the variance to unity, and is commonly used as preprocessing to enhance performance of 

machine learning algorithms. Our convergence criterion was compared to the false negative rate 

convergence criterion in [12], and they performed similarly. 

Figure 6 provides an example of how the procedure works by showing the first eleven steps of a 

demonstration calculation where all values on a dense grid were calculated from before.  For simple 

visualization, only the x descriptor is applied in a one-dimensional model. Both exploration and 



11 
 

exploitation are balanced, step 6 being an example of the former, and step 4 an example of the latter. 

After 11 steps, it is clear that the selective sampling procedure focuses the computational effort on 

the low PE region. Since the goal of the procedure is to identify the lowest PE, this is an effective way 

to spend computational resources. For our purpose, there is nothing particularly interesting about 

the high PE region, other than knowing that it is in fact a high PE region. To be sufficiently confident 

of this, only a few calculations are needed there. 

 

Figure 6. Example of how the GP algorithm identifies the lowest energy of a one-dimensional PES. Data points are the 

calculated potential energies from the entire grid; Calculated data points are the potential energies the GP model is 

based on; GP model prediction is the predicted expected energy given by equation (4); GP model uncertainty is the 

predicted standard deviation given by equation (5); Last calculated data point is the last selected data point based on the 

GP model from the previous step. For clearer visualization, five (not ten) initial random grid points are selected in this 

demonstration. A GP model based on those five initial points is made. Note that the GP model uncertainty is lowest close 

to the selected points. For steps 1-11, the algorithm selects the next grid point to calculate based on the expected 

improvement approach. In step 4, the lowest PE is actually identified, but we cannot know at that point. In step 6, one of 
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the highest PE are calculated, and after that, the algorithm can focus on other areas. Due to the applied energy filtering, 

all the highest PEs have the same constant value. The data in the figure are from Dataset I in Table 2. 

Energy filtering 

Sometimes the sampling procedure will select GB structures whose DFT calculations will either not 

converge or have a very large energy. These very large energies pose a problem for the algorithm, 

which is addressed by filtering out the largest energies. The energy filter can be seen in in Figure 6 for 

0.59 < 𝑥 < 0.78. Defining Δ𝐸𝑓 as the energy filter, it is applied on the t calculated energies by 

 𝐸𝑖 ∶= arg min {min
𝑖∈𝑡

(𝐸) + Δ𝐸𝑓 , 𝐸𝑖}. (9) 

With the energy filter, the largest and the non-converged energies are set to a fixed value, improving 

the GP model performance. By optimizing with respect to the convergence time of the sampling 

procedure, Δ𝐸𝑓 was set to 10 eV. The prePES and 6steps descriptors were filtered in a similar 

way. Since fast, inaccurate DFT calculations have a higher variance in the calculated energy, the 

magnitude of the energy filters must differ. By optimization, Δ𝐸𝑓
prePES

= 3.0 ⋅ Δ𝐸𝑓 and Δ𝐸𝑓
6steps

=

1.2 ⋅ Δ𝐸𝑓. 

Computational details 

To construct the grain boundary supercells, the Python package Atomic Simulation Environment (ASE) 

was applied [22]. The DFT calculations were performed using the projected augmented wave method 

[23] implemented in VASP [24, 25] employing the generalized gradient approximation [26], with key 

parameters shown in Table 3.  

Table 3. Key parameters of the DFT calculations, where the plane wave cut off energies in the ordinary calculations had 

numerical precisions better than 0.5 meV for relative total electronic energies. In the ordinary calculations, k-point 

densities according to the Monkhorst-Pack scheme were applied; the prePES calculations were gamma-centered. 

GB Calculation Plane wave cut-

off energy / eV 

k-point 

density 

Convergence criterion, 

residual forces / eV Å-1 

(210)[001] Ordinary 500 3 × 6 × 1i 0.02 

(210)[001] prePES 300 2 × 3 × 1 N/A 

(111)[11̅0] Ordinary 500 5 × 5 × 1 0.02 

(111)[11̅0] prePES 300 2 × 2 × 1 N/A 

 
i The first relaxation was performed with the k-point density 2 × 3 × 1 before 3 × 6 × 1 was applied, to reduce 
the overall computational cost. 

 

The GB supercells were relaxed in two steps. In the first step, the atoms and the supercell were only 
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allowed to move and expand in the z-direction perpendicular to the GB. The selective sampling 

procedure was applied only on calculated potential energies from the first step. In the second step, 

we performed an unconstrained relaxation, where both the atoms and the supercell were allowed to 

move and expand in all directions. This unconstrained volume relaxation is computationally costly 

and was only performed on GB structures located at a local minimum after the first step. The GB 

structure with the lowest energy after the second step was then defined as the most energetically 

favorable structure. 

Results and discussion 

Lowest grain boundary energy 

Table 4 shows the GB energy of the most energetically favorable configurations, found by 

unconstrained volume relaxations. The GB energy is defined as 𝛾gb = (𝐸gb − 𝐸bulk)/2𝐴, where Egb is 

the energy of the GB supercell, Ebulk the energy of the bulk supercell and A the GB interface area. 

Notably, the most energetically favorable (210) GB is the same GB that Lindman et al. identified 

when applying the brute force method on a coarse mesh of 5x2 grid points [17]. 

Table 4. The most energetically favourable grain boundary energies displayed for both GBs. 

Grain boundary x shift y shift 𝜸𝐠𝐛 [𝐉/𝐦𝟐] 

(210)[001] 32/80 1/2 1.13 

(111)[11̅0] 0 0 0.51 

Descriptor performance 

To assess the descriptor performance, we first found the PES by performing DFT calculations on the 

entire grid. With a known PES, we could test if the selective sampling procedure indeed converged at 

the global energy minimum. This was done by simulating the sampling procedure with six different 

combinations of descriptors, on all three datasets. For each descriptor combination, the sampling 

procedure was simulated 500 times with different random seeds, to eliminate any effect from the 

random initialization. We assessed the descriptors by three defined parameters: the accuracy 𝛼, the 

fraction of the grid calculated at convergence β, and the fractional CPU cost. The accuracy is defined 

as 

 α =
𝑛success

𝑛tot
, (10) 

where 𝑛success is the number of simulations where the actual lowest PE was identified at 

convergence, and 𝑛tot is the total number of simulations, set to 500 in this work. Occasionally, the 

sampling procedure converged at a local rather than global minimum, for example at the local 
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minimum around 𝑥 = 0.2 in Figure 6. Such deviation from optimal performance is captured by the 𝛼 

parameter. The fraction of the grid calculated at convergence is defined as 

 
𝛽 =

1

𝑛tot
∑

𝑡conv,𝑗

𝑁

𝑛tot

𝑗=1

, (11) 

where 𝑡conv,𝑗  is the number of calculated grid points at convergence in the j-th simulation, and N 

again is the total number of grid points. Finally, the fractional CPU cost is defined as 

 
𝐶𝑃𝑈 =

1

𝑛tot
∑

𝜅𝑗

𝜅tot

𝑛tot

𝑗=1

, (12) 

where 𝜅𝑗  is the CPU cost of the j-th simulation and 𝜅tot is the total CPU cost of calculating the entire 

grid with the brute force method. The goal is to achieve a high accuracy while calculating as few data 

points as possible, that is, maximize 𝛼, and minimize 𝛽 and 𝐶𝑃𝑈.  

Figure 7 shows how six different descriptor combinations performes on the (210) and the (111) GBs. 

Overall, the sampling procedure reduces the computational cost in the range of 65-85%, largely 

dependant on the descriptor combination in use. Notably, the procedure performs better on the 

(111) GB both in terms of accuracy and computational cost. 



15 
 

 

Figure 7. Performance of six different descriptor combinations, with 𝜶, 𝜷, and 𝑪𝑷𝑼 defined in equations (10), (11), and 

(12). Each descriptor combination has been simulated 500 times for all three datasets. The results for the (210) GB (part a) 

are the average from Dataset I and II, with datasets being defined in Table 2. Note that since y is fixed in the (210) GB 

calculations, the y descriptor does not affect the results in part a). 

Figure 7a) shows performance on the (210) GB, with the displayed data being the average from 

Datasets I and II. The results serve as an example of the challenge in understanding descriptor 

performance. Both the prePES and the 6steps descriptors lower the accuracy when applied only 

with the x descriptor. This is surprising in itself since these descriptors are highly correlated with the 

potential energy. When applying these descriptors simultaneously in the x+prePES+6steps 

combination, the accuracy somehow improves and is similar to the case of only applying the x 

descriptor. Choosing the optimal descriptor combination involves a trade-off. Applying all descriptors 

gives the highest accuracy (99.3%) but has also a relatively high CPU cost (29.8%). A better choice 

may be the x+BLR descriptor combination, with 𝛼 = 99.1% and 𝐶𝑃𝑈 = 24.3%.  

In the (111) GB the picture is more clear and easier to explain intuitively, shown in Figure 7b). All 

descriptor combinations have 100% accuracy, meaning that the true global minimum was found in all 

simulations. The xy+6steps descriptor combination reached convergence with fewest steps. 
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However, the computational cost of acquiring the 6steps descriptor is high. The best performing 

descriptor combination in terms of computational cost is xy+prePES, with 𝐶𝑃𝑈 = 14.4%.  

The 6steps descriptor performs differently on the two GBs. Although the complete causes of 

varying descriptor performance are hard to provide, it can partly be explained by differences in 

complexity between the two GBs. The (111) GB is simpler, with fewer ionic steps needed to obtain 

full relaxation. This means that relaxing with six ionic steps may yield a structure close to the fully 

relaxed structure. On the contrary, the (210) GB has a more complex structure, meaning that the 

structure obtained after the first six ionic steps may differ substantially from the fully relaxed 

structure. This difference becomes evident when considering the computational cost of acquiring the 

6steps descriptor. In the (111) GB, the first six steps consumes on average 19.0 % of the total CPU 

cost from a full relaxation, compared to only 6.2 % for the (210) GB. The 6steps descriptor is hence 

expected to describe the PES better in the (111) GB than in the (210) GB, which normally would lead 

to a better performance in the (111) GB.  

In both GBs, it is clear that adding more descriptors does not always help. The BLR descriptor 

performs poorly on the (111) GB, and adding it worsens the performance even in the case where 

BLR is combined with four other effective descriptors. Increasing the number of descriptors does not 

necessarily result in efficient prediction.  
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For future work on other GBs, one has to choose descriptors without prior knowledge of the energy 

landscape. Since the descriptors perform much differently on the two GBs this study is not clear on 

how to choose appropriate descriptors, but some careful recommendations can be made. The spatial 

x and y descriptors are certainly a good choice. In addition, the prePES descriptor seems to work 

well to balance accuracy with computational cost. It has by far the best performance in the (111) GB 

among the descriptors. The 6steps descriptor is probably too costly to acquire, and although it 

performs well in the (111) GB, it has a surprisingly poor performance in the (210) GB. The BLR 

descriptor performs very differently on the two GBs, and more results from other GBs are needed to 

assess this descriptor. In summary, we recommend using the x, y and prePES descriptors for other 

GBs. 

Finally, a note should be made about the convergence criterion. Here, there is an optimization trade-

off: with a stricter criterion, all three parameters 𝛼, 𝛽 and 𝐶𝑃𝑈 will increase. Applying a convergence 

criterion lower than 1e-15 used in this work will push the accuracy in the (210) GB closer to 100%, 

but comes with a higher compuational cost. 

Finding the optimal grid size 

When choosing the grid size, there is a trade-off between accuracy and computational cost. A finer 

grid increases the probability of finding the global energy minimum, but also increases the 

computational cost. At one point, however, improving the grid resolution does not improve the 

accuracy any further. This is when two neighboring structures on the grid relax into the same 

structure during DFT relaxation. For example, as shown in Figure 2, the y = 0.3 shift for the (210) GB 

will relax into either y = 0.0 or y = 0.5, and hence a fine grid in the y-direction is not necessary. 

To find the optimal grid size in the x-direction, we performed unconstrained volume relaxations on 

the entire Dataset I. By visually inspecting the 80 relaxed supercells, eight distinct structures were 

found. Quantitatively, the distinct structures can be identified by their relative grain shift and 

potential energy: if two relaxed GB structures are equivalent, their grain shift and their potential 

energy should be roughly similar. Figure 8a) shows the post-relaxation grain shift and potential 

energy as a function of pre-relaxation grain shift in the x-direction, where the eight distinct structures 

are marked with dotted lines. Figure 8b) visualizes these eight GB structures. 
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Figure 8. a) Post-relaxation grain shift and potential energy as a function of pre-relaxation grain shift in the x-direction. 

The post-relaxation grain shift is the x component-distance between to equivalent atoms in the middle of each grain. The 

DFT relaxations of the structures 𝟎. 𝟓𝟕𝟓 ≤ 𝒙 ≤ 𝟎. 𝟕𝟓 did not converge, and their potential energies are outside the range 

of this plot. b) Grain boundary structures, corresponding to the eight distinct structures in part a). The supercell edges 

are marked with horizontal lines; the grain boundaries are marked with a vertical line. Colors same as in Figure 1. 

To find the optimal grid size, we observe that the narrowest distinct regions in Figure 8a) have a 

width of 0.36 Å, serving as an upper bound for the grid size. Based on this, we suggest that a grid size 

of 0.3 Å is sufficient to include all distinct GB configurations in the dataset. This yields a mesh of 32 x 

2 grid points for the (210) GB, thereby reducing the computational cost of the brute force method 

with around 60%.  

If a grid size of 0.3 Å is sufficient for other GBs than the (210) GB remains an open question. The 

optimal grid size should be related to density of chemical bonds that can form across the grain 

boundary, which in turn is related to the atomic density at the grain boundary. Although the various 

GBs have different atomic densities at the GB core plane, the densities are rather similar when also 

neighboring planes are included – and the neighboring planes do also contribute to chemical bonding 

across the grain boundary. Hence, we suggest that a grid size of 0.3 Å is generally reasonable for 

BaZrO3 GBs. 

A grid size of 0.3 Å implies a very large number of possible configurations for more complex GBs. For 

example, the BaZrO3 (211) and (311) GBs, supercells will have 640 and 900 configurations, 

respectively. The computational cost of the brute force method is hence very large for these GBs and 

applying the proposed selective sampling procedure is probably a better choice. 

Conclusions 

1) The selective sampling procedure allows us to identify low energy grain boundary structures 

at a significantly reduced CPU cost. In the (210) GB, the CPU cost is reduced by around 75% 
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compared to the brute force method; in the (111) GB, the CPU cost is reduced by around 

85%. 

2) Adding sophisticated descriptors usually improves the accuracy of the procedure, but 

sometimes with a high computational cost. The prePES descriptor is the most promising 

descriptor as it may improve the convergence rate substantially at a low computational cost. 

3) As a general rule, a grain shift grid size of 0.3 Å in each direction should be applied to ensure 

that the GB with lowest potential energy is found. For structures with a simpler symmetry in 

certain directions, such as the y-direction in the (210) GB, a coarser grid may be applied. 
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