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Neural networks with physical governing equations as constraints have recently created a new trend in machine 

learning research. In this context, a review of related research is first presented and discussed. The potential 

offered by such physics-informed deep learning models for computations in geomechanics is demonstrated by 

application to one-dimensional (1D) consolidation. The governing equation for 1D problems is applied as a 

constraint in the deep learning model. The deep learning model relies on automatic differentiation for applying 

the governing equation as a constraint, based on the mathematical approximations established by the neural 

network. The total loss is measured as a combination of the training loss (based on analytical and model 

predicted solutions) and the constraint loss (a requirement to satisfy the governing equation). Two classes of 

problems are considered: forward and inverse problems. The forward problems demonstrate the performance of 

a physically constrained neural network model in predicting solutions for 1D consolidation problems. Inverse 

problems show prediction of the coefficient of consolidation. Terzaghi’s problem, with varying boundary 

conditions, is used as a numerical example and the deep learning model shows a remarkable performance in 

both the forward and inverse problems. While the application demonstrated here is a simple 1D consolidation 

problem, such a deep learning model integrated with a physical law has significant implications for use in, such 

as, faster real-time numerical prediction for digital twins, numerical model reproducibility and constitutive 

model parameter optimization. 

© 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier 

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction 
     

Machine learning has been a fast-growing field of research over the 

last years with ever growing areas of application outside pure 

computer science. Deep learning, a particular subset of machine 

learning which uses artificial neural networks (ANNs), is being 

applied in various disciplines of science and engineering with usually 

surprising levels of success. Recently, the application of deep learning 

related to partial differential equations (PDEs) has been picking up 

pace. Several researchers are contributing to this effort where 

different names are given to the use of deep learning associated with 

physical systems governed by PDEs. Some of the commonly 

encountered labels include physics-informed neural networks, 

physics-based deep learning, theory-guided data science, and deep 

hidden physics models, to name a few. In general, the aims of these 

applications include improving the efficiency, accuracy and 

generalization capability of numerical methods for the solution of 

PDEs. 

Data-driven solution of PDEs was recently presented by Raissi 

et al. (2019a). The authors investigated various differential equations 

and demonstrated how deep learning models can be applied in 

forward and inverse problem settings. Some of the PDEs studied 

include Burgers’ and Navier-Stokes equations. The forward problems 

demonstrated how deep learning models can be trained based on 

sample data from exact solutions while optimizing an embedded 

governing PDE. In the inverse problems, deep learning models were 

trained to identify the coefficients of the PDEs. For practical problems 

in science and engineering, this is equivalent to identifying material 

parameters based on given exact or numerical solutions. The neural 

network models for both the forward and inverse problems showed 

astonishing levels of accuracy. Bar-Sinai et al. (2019) presented a 

similar study where the emphasis was on learning data-driven 

discretizations that are best suited to a PDE with certain boundary 
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conditions. A related study combining deep learning and PDEs was 

presented by Sirignano and Spiliopoulos (2018) where the authors 

introduced a so-called deep Galerkin method (DGM). The proposed 

method was applied to different PDEs. This method was also applied 

to application problems such as in quantitative finance and statistical 

mechanics, governed by the Black-Scholes and Focker-Planck PDEs, 

respectively (Al-Aradi et al., 2018). The application areas are 

increasing rapidly with different variations in the general 

methodology. A deep learning-based solution of the Euler equations 

for modeling high-speed flows was presented by Mao et al. (2020) 

where physics-informed neural networks were used for forward and 

inverse problems. Deep learning for computational fluid dynamics, in 

particular for vortex-induced vibrations, was presented by Raissi et 

al. (2019b). A related work for predictive large-eddy-simulation wall 

modeling was presented by Yang et al. (2019). The solution of time-

dependent stochastic PDEs using physics-informed neural networks 

by learning in the modal space was demonstrated by Zhang et al. 

(2019a). A conceptual framework for theory-guided deep learning 

was presented by Karpatne et al. (2017). Application of deep 

learning, with physics-informed recurrent neural networks, to fleet 

prognosis was presented by Nascimento and Viana (2019). Bending 

analysis of Kirchhoff plates using a deep learning approach was 

shown by Guo et al. (2019). Deep learning-based study of linear and 

nonlinear diffusion equations to learn parameters and unknown 

constitutive relationships was presented by Tartakovsky et al. 

(2018). Other recent and related studies are those by Huang et al. 

(2019), Tipireddy et al. (2019), Yang and Perdikaris (2019), Zhang et 

al. (2019b), Zheng et al. (2019), Jia et al. (2020), Meng and 

Karniadakis (2020), Sun et al. (2020), and Xu and Darve (2020). 

While the neural network architecture used in many studies is a feed-

forward network with the desired number of layers and hidden units, 

a recent study applied convolutional neural networks for the solution 

of the Poisson equation with varying meshes and Dirichlet boundary 

conditions (Özbay et al., 2019).  

Soil consolidation coupled with equilibrium equations constitutes 
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the foundation of numerical modeling in geomechanics. One of the 

greatest challenges in numerical modeling in geotechnical 

engineering is the optimization of material and model parameters 

and faster inverse analyses for parameter determination. This is 

especially significant when performing large-scale simulations with 

complex constitutive models. Physics-informed deep learning models 

can be used to enhance such simulations where they can be applied in 

both forward and inverse problem settings. Another important 

application of physics-informed deep learning models is faster 

numerical prediction for digital twins where examples in 

geotechnical engineering include monitored foundations of critical 

infrastructure, geotechnical large-scale experiments and monitored 

slopes. To this end, the potential offered by physics-informed deep 

learning models can be demonstrated through application to one-

dimensional (1D) consolidation, one of the most ubiquitous problems 

in geomechanics. Even though 1D consolidation involves only a single 

governing equation and only one material parameter (the coefficient 

of consolidation), the concept can be upscaled for problems in 

geomechanics involving coupled governing differential equations 

with several material and model parameters. Analysis of soil 

consolidation and settlement is an important problem in geotechnical 

engineering. The theory of consolidation describes fluid flow and 

excess pore water pressure dissipation in porous media, or 

particularly soils in geotechnics. The pioneering works of Terzaghi 

and Biot have contributed the most to the theory (Biot, 1941; 

Terzaghi et al., 1996), from first formulation for a 1D case to later 

generalization for three-dimensional cases. Analytical solutions exist 

for the solution of the governing equation for 1D cases (Verruijt, 

2013). For complex materials or higher-dimensional problems, 

numerical methods such as the finite difference method and the finite 

element method are applied (Schrefler, 1987). For a soil layer or 

layers sustaining loads in initially undrained conditions, the process 

of consolidation determines how long it takes for excess pore 

pressures to dissipate and how much settlement will occur. Good 

estimates on the degree of consolidation and settlement highly 

depend on the accuracy of the material parameters determined from 

laboratory tests and the solution method used, whether analytically 

or numerically. 

This paper presents a study on the application of physics-informed 

deep learning model for 1D consolidation. The governing equation for 

the problem is first discussed briefly. The deep learning model for the 

governing PDE is then described. The problem is studied both for 

forward and inverse problems and the results from these are 

presented subsequently. Resources related to this work can be found 

on the author’s GitHub page here. 
 
2. Governing equation 

 

The theory of consolidation describes the dissipation of fluid from 

a porous medium under compressive loading, thereby causing delay 

of the eventual deformation of the porous medium. The governing 

equation for 1D consolidation is given by  
2
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where p is the pore fluid pressure, α is the Biot coefficient, S is the 

storativity of the pore space, mv is the confined compressibility of the 

porous medium, σzz is the vertical effective stress, and cv is the 

coefficient of consolidation. The classical 1D consolidation problem is 

that at time t = 0, a compressive load in the direction of fluid flow is 

applied and the load is maintained for t > 0 (Verruijt, 2013). This 

implies that, for t > 0, the stress σzz is constant, i.e. with a magnitude 

q. Thus, we can reduce the general governing equation in Eq. (1) as 

v
o 2

v

2

v 2

   ( 0)

0   ( 0)

m
p p q t

S m

p p
c t

t z

α
α

= = = + 


∂ ∂ − = > ∂ ∂ 

                                           (2) 

The first equation in Eq. (2) establishes the initial condition for the 

1D consolidation problem where at t = 0, the total vertical load is 

carried by the pore fluid and any fluid dissipation does not yet occur 

from the porous medium. The second equation governs the 

dissipation rate of the pore fluid as a function of both time and spatial 

dimension. This equation may be solved for various drainage 

boundary conditions (Fig. 1) at the top and bottom of the porous 

medium through either analytical or numerical methods. We consider 

an analytical solution here for two different drainage boundary 

conditions, which are described in a later section. 
 

 
Fig. 1. One-dimensional consolidation. 

 
3. Deep learning model 

 

In this section, the neural network architecture is first discussed 

and the approach for applying a physical constraint, based on the 

governing 1D consolidation equation, is then presented. Automatic 

differentiation is briefly discussed. The model training procedure and 

the hyper-parameters that are controlled during training are also 

presented. 

3.1. Neural network architecture 

A fully-connected deep neural network with the desired number of 

hidden layers and hidden units is used as a model to be trained with 

the 1D consolidation problem. An illustration of the neural network 

architecture is shown in Fig. 2. For the 1D consolidation problem 

herein, the input layer provides inputs of (z, t) values from the 

training data, which usually include initial and boundary condition 

data. The details are discussed in forward and inverse numerical 

example sections later. The neural network with the desired number 

of hidden layers and hidden units predicts the excess pore pressure, 

which is then used to compute the loss based on the excess pore 

pressure training data. The neural network also includes a physical 

constraint based on the governing 1D consolidation equation, where 

the constraint is evaluated using automatic differentiation, briefly 

discussed in a sub-section below. The neural network is designed to 

optimize both the training loss and the physical constraint. 

3.2. Automatic differentiation 

A key part of the deep learning model for the problem here is 

automatic differentiation. It is important to not confuse automatic 

differentiation with other methods of computing derivatives in 

computer programs. There are four ways of computing derivatives 
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using computers (Baydin et al., 2017): (i) manually obtaining the 

derivatives and coding them; (ii) numerical differentiation using 

finite difference approximations; (iii) computer-based symbolic 

differentiation and subsequent evaluation based on the algebraic 

expressions; and (iv) automatic differentiation, which is used herein. 

Like the other methods, automatic differentiation provides numerical 

values of derivatives obtained using the rules of symbolic 

differentiation but keeping track of derivative values instead of 

obtaining the final expressions. This approach of tracking derivative 

values makes automatic differentiation superior to the two most 

commonly used methods of computing derivatives, namely numerical 

differentiation and symbolic differentiation. Automatic differentiation 

exploits the fact that any derivative computation, no matter how 

complex, is composed of a sequence of elementary arithmetic 

operations and elementary function evaluations. It applies the chain 

rule repeatedly to these operations until the desired derivative is 

computed. Such an approach for computation makes automatic 

differentiation to be accurate at machine precision and 

computationally less demanding than other methods. Once a deep 

neural network is constructed for 1D consolidation with the pore 

pressure as the output variable and the spatial and temporal 

coordinates as inputs, automatic differentiation is used to estimate 

the derivatives involved in the governing equation based on the 

universal mathematical expression established by the neural 

network. For this purpose, the automatic differentiation capability in 

TensorFlow is utilized. TensorFlow is an open-

source software developed by the Google Brain team at Google and it 

is a symbolic math library that can be used for different tasks such as 

data flow, differentiable programming and machine learning (Abadi et 

al., 2016a, b). It provides an application programming interface (API) 

for automatic differentiation by recording all operations and 

computing the gradients of the recorded computations using reverse 

mode differentiation. The Python-based open-source library for 

neural networks called Keras, which has been integrated in 

TensorFlow in the latest versions, is used for implementation of the 

deep learning model here. The advantage of Keras with TensorFlow 

as the back-end is that it is user-friendly, modular, extensible, and 

allows for a faster experimentation for deep learning (Gulli and Pal, 

2017). 

3.3. Model training and hyper-parameters 

The deep learning model training is performed in slightly different 

ways for forward and inverse problems. However, the model hyper-

parameters in both cases are adjusted in a similar way. For forward 

problems, the training data involve initial and boundary condition 

data, i.e. a pair of initial and boundary (z, t) values and the 

corresponding excess pore pressure values p(z, t). The model predicts 

the excess pore pressure value p̂  for a given data point. The training 

loss is calculated as a mean squared error from: 

2
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where N is the number of training data, and (zk, tk) represents the 

training data point. The physical constraint based on the governing 

PDE is applied at randomly generated collocation points (zc, tc). The 

collocation points are generated using a Latin hypercube sampling 

strategy where the bounds of the original training data are taken into 

consideration. The physical constraint is evaluated at the collocation 

points based on the predicted excess pore pressure using automatic 

differentiation: 
2
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The constraint loss is calculated as a mean squared error from the 

following equation: 
c
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where Nc is the number of collocation points, and (zc,k, tc,k) represents 

a data point from the collocation points. The total loss from training 

and the physical constraint is defined as 

p cMSE MSE MSE= +                                                                             (6) 

 

 
Fig. 2. Illustration of the neural network architecture with input, hidden and output layers. The activation function used at the hidden units is tanh(x), where x denotes the total 

weighted and bias-added input to the hidden unit. Automatic differentiation is used to determine the partial derivatives in the governing equation and is used as a physical 

constraint to optimize together with the prediction error based on training data. The number of hidden layers and hidden units in this figure is for illustration only, and the 

actual number of hidden layers and hidden units used for different cases are discussed in a later section.  
which is minimized by the model optimizer. For inverse problems, the training procedure and loss evaluation are mostly similar with some 
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differences. A larger size of (z, t) training data is used and collocation 

points are not generated in this case. This implies that automatic 

differentiation for the physical constraint is evaluated at the original 

training data points and the coefficient of consolidation is defined as a 

trainable parameter: 
2

c vt 2

ˆ ˆp p
f c

t z

∂ ∂= −
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                                                                                   (7) 

where cvt is the trained value of the coefficient of consolidation 

updated during each step. An additional trainable model variable or 

weight wcv, associated with the coefficient of consolidation, is 

introduced in the neural network and is used to evaluate cvt based on 

an exponential function to always guarantee positive values during 

training: 

vt cvexp( )c w=                                                                                       (8) 

The hyper-parameters tuned during training, both for forward and 

inverse problems, include the number of hidden layers, number of 

hidden units, batch size and learning rate. The batch size is adjusted 

to control the number of samples from the training data that are 

passed into the model before updating the trainable model 

parameters. The total loss here is minimized using the Adam 

optimizer where its associated learning rate is tuned during the 

training process. After training, the model is used to predict the pore 

pressures (and the coefficient of consolidation for inverse problems) 

for given input data. The model is improved by making the necessary 

adjustments for bias-variance tradeoff. If the model is observed to 

have high bias, the neural network architecture (numbers of hidden 

layers and hidden units) is adjusted and/or the model is trained 

longer. In case of high variance, the amount of training data is 

increased and/or the neural network architecture is adjusted. 

Regularization techniques can also be used for decreasing variance, 

but for the models trained in this paper, no regularization is used. 
 
4. Forward problems 

 

The problem considered here is a classical 1D consolidation 

problem, usually referred to as Terzaghi’s problem, as illustrated in 

Fig. 3. The problem examines the dissipation of excess pore pressure 

with time from the soil column due to the application of a surcharge 

load of magnitude po at the top boundary. This numerical example is 

studied for two drainage boundary conditions: with only the top 

boundary drained and with both the top and bottom boundaries 

drained. The training data for forward problems are selected to 

include initial and boundary condition data, as shown in Fig. 4. The 

nodes shown in the figure are for illustration only and the actual 

numbers of nodes and time steps depend on the spatial and temporal 

discretization used to obtain the analytical solution to the problem. 

The total number of training points is divided into batches during 

training by using a specified batch size. The results from this 

numerical example for the two different boundary conditions are 

presented in the following sub-sections. 

4.1. Consolidation with a drained top boundary 

The first case considered is a variation of Terzaghi’s problem 

where excess pore pressure dissipation is allowed at the top 

boundary only, i.e. the bottom boundary is considered impermeable. 

These boundary conditions are expressed mathematically as 
 

 
Fig. 3. Example for one-dimensional consolidation. 

 

 
Fig. 4. Initial and boundary condition training data for forward problems. The total 

number N of training data points (z, t) depends on the spatial and temporal 

discretization used to obtain the exact solution. The training data are shuffled and 

divided into batches according to a specified batch size during training. 
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The initial condition is p = po for t = 0. The analytical solution for 

the excess pore pressure as a ratio of the initial value is given by 

(Verruijt, 2013): 
1 2
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where h is the so-called drainage path which in this case is equal to 

the total height of the domain, i.e. h = H. The spatial coordinate z can 

be chosen to have its origin either at the top or at the bottom with 

positive coordinates in the domain. For the boundary conditions in 

this case, we have 0 ≤ z ≤ H. 

For a numerical example, let us consider the height of the 1D 

domain to be H = 1 m and the coefficient of consolidation of the soil as 

cv = 0.6 m2/a. The exact solution based on the analytical solution is 

obtained for t = 1 a using a spatial discretization with Nz = 100 and a 

temporal discretization with Nt = 100. As illustrated in Fig. 4, the 

initial and boundary data, z, t, and p, are extracted from the exact 

solution as training data. The inputs to the neural network are the 

values of (z, t) where the model predicts a pore pressure value p̂  as 

an output, which is then used to calculate the training loss. 

A neural network with 10 hidden layers and 20 hidden units at 

each layer is used as the model to be trained. The spatial and 

temporal derivatives of the predicted pore pressure, as they appear 

in the constraint equation, are determined at selected collocation 

points using automatic differentiation in TensorFlow. The collocation 

points are generated using the Latin hypercube sampling strategy 

and for example here Nc = 10,000 collocation points are generated. 

After the derivatives of p̂  with respect to the collocation points are 

determined, the constraint loss is calculated. A combination of 

training and constraint losses, as defined in Eq. (6), is minimized 

Jo
urn

al 
Pre-

pro
of



using the Adam optimizer for the desired number of epochs. The 

learning rate for the optimizer and the batch size used for training are 

0.001 and 100, respectively. The model training was performed on an 

NVIDIA Tesla K80 GPU and for the hyper-parameter combinations 

used here, the model training time for 10,000 epochs was about 12 

min. Models with lower numbers of hidden layers, hidden units and 

epochs take lesser time for training. 

The final model trained using the initial and boundary data, and 

constrained at the collocation points according to the governing 

equation, is used to predict the excess pore pressure for spatial and 

temporal points of the model domain. Prediction based on a trained 

model takes only a fraction of a second. The results obtained from the 

analytical solution and model prediction are shown in Fig. 5 in terms 

of color plots on a two-dimensional grid from the (z, t) data. The color 

plot is obtained by interpolation of the nearest excess pore pressure 

values from the actual grid points and is chosen here only for 

visualization convenience. As can be seen from the color plots of the 

analytical solution and model prediction, the deep learning model 

predicts the excess pore pressure values at the interior grid points 

reasonably well just based on initial and boundary training data. This 

demonstrates the remarkable accuracy of the physical constraint 

enforced through automatic differentiation in the deep learning 

model. A closer comparison of the analytical solution and model 

prediction is shown for selected time steps in the plot in Fig. 6a. The 

time steps used for comparison are shown in the top plot in Fig. 5. 

The results show a remarkably good agreement. The L2 norm of the 

relative error is expressed as follows: 

2

2

ˆ|| | |

| | | |

p p L
e

p L

−=                                                                                    (11) 

In this case, e was found to be 4.462 × 10−3. A plot of the mean 

squared errors versus number of epochs is shown in Fig. 6b. The plot 

shows the total mean squared error as well as the mean squared 

errors of the training and constraint losses. Mean squared error 

values in the order of 10−5 are obtained near the end of the training. 

To show how the performance of the model varies and for 

comparison purposes, different combinations of number of hidden 

layers and number of hidden units are analyzed. The results are 

presented in Table 1. The results show that a shallower network with 

smaller number of hidden units per layer performs poorly compared 

to deeper networks in terms of model performance as measured by 

the relative L2 error in the predicted pore pressure. The results 

obtained for a network with 10 hidden layers and 20 hidden units at 

each layer are considered satisfactory. 
 

Table 1. Relative L2 error in the model predicted pore pressure for different 

combinations of number of layers and number of hidden units. 

Number of hidden layers Number of hidden units Relative L2 error 
2 10 2.379×10-2 

20 1.212×10-2 
5 10 1.085×10-2 

20 7.677×10-3 
10 10 6.295×10-3 

20 4.642×10-3 

 

4.2. Consolidation with drained top and bottom boundaries 

When both the top and bottom boundaries are permeable, excess 

pore pressure can dissipate through both boundaries. 

Mathematically, this boundary condition is expressed as 
 

 
Fig. 5. Results from analytical solution and model prediction in terms of color plots on (z, t) grid for a drained top boundary. The color plots are obtained using interpolation 

with the nearest available values. The batch size used for training the model is 100. 
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                                                                    (a)                                                                                                       (b) 
Fig. 6. (a) Comparison of the excess pore pressure ratio between analytical solution (solid blue lines) and model prediction (red dashed lines) for selected time steps, for a 

drained top boundary. The time steps for comparison are those shown using vertical lines in the top plot in Fig. 5. (b) Mean squared error versus number of epochs used for 

training. 

 

t b0   ( ,  0)p tΓ Γ= ∪ >                                                                         (12) 

The analytical solution to Eq. (10) still holds in this case where the 

drainage path is half of the height of the sample, i.e. h = H/2, as the 

pore fluid is allowed to dissipate through both the top and bottom 

boundaries. This case is equivalent to stating that there is no pore 

fluid flow at the center of the sample. Thus, the origin of the spatial 

coordinate is defined at the mid-height of the domain and we have –

H/2 ≤ z ≤ H/2. 

The numerical example in the previous section is considered here 

again with the same model geometry but with different boundary 

conditions, i.e. with drained top and bottom boundaries. In addition, 

the coefficient of consolidation in this case is assumed to be cv = 0.1 

m2/a for the same model height, considering the faster consolidation 

as a result of both boundaries being drained. The analytical solution 

is again obtained using Nz = 100 and Nt = 100. The initial and 

boundary data are extracted in a similar way as in the previous case 

for training the model. The hyper-parameters of the neural network 

model are set to be similar as well. A deep network with 10 layers 

and 20 hidden units at each layer is used. The number of collocation 

points and the learning rate for the optimizer (Adam) are 10,000 and 

0.001, respectively. A batch size of 100 is used here as well. 

Grid color plots comparing the analytical and model predicted 

solutions are shown in Fig. 7. We again observe a good performance 

by the deep learning model in predicting the excess pore pressure at 

the interior grid points. A closer comparison of the excess pore 

pressure for selected time steps is shown in Fig. 8a. The time steps 

selected for comparison are shown in the top color plot in Fig. 7. We 

see a very good agreement between the analytical solution and the 

deep learning model prediction. The L2 norm of the relative error 

between the analytical and predicted solutions in this case is found to 

be 2.62 × 10−3. Fig. 8b shows the evolution of the mean squared error 

with the number of epochs for the total mean squared error as well as 

the mean squared errors for the training and constraint losses. 
 

5. Inverse problems 

 

The second class of problems considered are inverse problems 

where we aim to find material/model parameters used in analysis 

based on a given solution to the problems. For our problem described 

herein, the aim is to determine the coefficient of consolidation used in 

an analytical solution given the excess pore pressure as a function of 

space and time, i.e. p(z, t). The deep learning model is trained based 

on training data randomly selected from the whole analytical 

solution, as shown in Fig. 9. The size of the training data may be 

adjusted as desired but a limited sample size is usually sufficient for 

training to obtain good model prediction capabilities. Before training, 

the training data are shuffled and divided into batches based on a 

specified batch size. The main feature that differentiates inverse 

models from forward models, in the context of our problem here, is 

the fact that a trainable variable in addition to the default model 

variables is required to keep track of the coefficient of consolidation. 

Thus, a trainable weight is added to the deep learning model to 

update the coefficient of consolidation after initialization using a 

random weight. The constraint function based on the governing 

equation, with the trainable coefficient of consolidation, is 

continuously optimized together with the training loss. The following 

examples demonstrate this procedure numerically. It is worthwhile 

to mention that even though we are dealing with a simple 

demonstration using a 1D problem here, the approach has important 

implications in numerical modeling in science and engineering. Some 

of the potential applications of the methodology that could be 

mentioned are improved model reproducibility (given a certain 

numerical solution for a physical problem) and optimization of 

constitutive model parameters for complicated numerical 

simulations. Such important problems and applications may be 

addressed in a later study. 

5.1. Consolidation with a drained top boundary 

The first example in the forward problems in Section 4 is 

considered here in an inverse setting with the same geometry and 

material/model parameters, i.e. a 1D model with a drained top 

boundary, a model height of H = 1 m and a coefficient of consolidation 

of cv = 0.6 m2/a is analyzed. The analytical solution is again obtained 

using Nz = 100 and Nt = 100. This implies that the number of (z, t, p) 

points in the exact solution is equal to 10,000. The neural network 

architecture is set up to have 10 hidden layers with 20 hidden units at 

each layer. A random sample of 2000 points is selected from the 

analytical solution data (with 10,000 available points) for training the 

neural network. 
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Fig. 7. Results from analytical solution and model prediction in terms of color plots on (z, t) grid for drained top and bottom boundaries. The color plots are obtained using 

interpolation with the nearest available values. The batch size used for training the model is 100. 

 

 
                                                                       (a)                                                                                                      (b) 
Fig. 8. (a) Comparison of the excess pore pressure ratio between analytical solution (solid blue lines) and model prediction (red dashed lines) for selected time steps, for 

drained top and bottom boundaries. The time steps for comparison are those shown using vertical lines in the top plot in Fig. 7. (b) Mean squared error versus number of 

epochs used for training. 

 

 
Fig. 9. Randomly selected training data for inverse problems. The total number of 

training data points (z, t) is chosen depending on the specific problem under 

consideration. The training data are shuffled and divided into batches according to 

the specified batch size during training. 

The training data are shuffled and divided into batches using a 

batch size of 200. The trainable weight corresponding to the 

coefficient of consolidation is initialized as wcv = 0, implying an initial 

coefficient of consolidation of 1 m2/a. Adam optimizer is used to 

minimize the training and constraint losses with a learning rate of 

0.0001. The model training for 10,000 epochs and for the 

combination of hyper-parameters described here takes 

approximately 8 min. The training was performed on an NVIDIA 

Tesla K80 GPU. 

The results for inverse analysis of the problem with a drained top 

boundary are shown in Fig. 10. The randomly selected training data 

points are shown in the top color plot as white dots. As in the case of 

the forward problem, the deep learning model predicts the excess 

pore pressure well from a limited training sample data and prediction 
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takes only a fraction of a second. This again shows the remarkable 

performance of the physical constraint obtained using automatic 

differentiation. Fig. 11a presents the evolution of the predicted 

coefficient of consolidation as the training progresses, as a function of 

the number of epochs. The final predicted value of the coefficient of 

consolidation is cv = 0.597 m2/a, which is close to the expected value 

of cv = 0.6 m2/a with an absolute error of 3 × 10−3. Fig. 11b shows the 

evolution of the mean squared errors as a function of the training 

epochs. 

In a similar way as shown for forward problems, the model 

performance of different combinations of number of hidden layers 

and number of hidden units is investigated for inverse problems. The 

results are presented in Table 2. The results show that a shallower 

network with smaller number of hidden units per layer performs 

poorly compared to deeper networks in terms of model performance 

as measured by the absolute error in the predicted coefficient of 

consolidation. The result obtained for a network with 10 hidden 

layers with 20 hidden units at each layer is considered satisfactory. 

5.2. Consolidation with drained top and bottom boundaries 

We consider again the numerical example in the previous section 

where both the top and bottom boundaries are drained. The model 

geometry remains similar but the analytical solution here is obtained 

using a coefficient of consolidation of cv = 0.1 m2/a, which we aim to 

predict using the inverse deep learning model. We have 10,000 data 

points from the analytical solution based on Nz = 100 and Nt = 100, 

from where a training sample size of 2000 is randomly selected. The 

neural network has a similar architecture with 10 hidden layers and 

20 hidden units at each layer. The other model hyper-parameters 

remain similar: the batch size is 200 and Adam optimizer is used with 

a learning rate of 0.0001. 

 
Table 2. Absolute error in the predicted coefficient of consolidation for different 

combinations of number of hidden layers and number of hidden units per layer. 

Number of hidden layers Number of hidden units Absolute error 
2 10 1.201×10-2 

20 1.527×10-2 
5 10 1.085×10-2 

20 7.72×10-3 
10 10 6.46×10-3 

20 3×10-3 

 

The results for inverse analysis for drained top and bottom 

boundaries are shown in Fig. 12. With a limited training sample, the 

model predicts the excess pore pressures throughout the grid with a 

good accuracy. The coefficient of consolidation predicted by the deep 

learning model is cv = 0.0994 m2/a, which compared to the expected 

value of cv = 0.1 m2/a implies an absolute error of 6 × 10−4. These 

results are shown in Fig. 13a, which presents the evolution of the 

predicted coefficient of consolidation as a function of the number of 

training epochs. Fig. 13b shows the mean squared errors (total, 

training and constraint) as a function of the number of training 

epochs. 
 
6. Summary and conclusions 

 

A deep learning model for 1D consolidation is presented where the 

governing PDE is used as a constraint in the model. Research on 

physics constrained neural networks has been gaining traction 

recently in the machine learning research community and the work 

presented here adds to that effort. Various application areas where 

the idea has been applied were briefly reviewed, indicating the 

potential in diverse science and engineering disciplines. 

 

 
Fig. 10. Inverse analysis results from analytical solution and model prediction in terms of color plots on (z, t) grid for a drained top boundary. The color plots are obtained using 

interpolation with the nearest available values. The white dots represent the randomly selected training data points and the sample size used is 2000. The batch size used for 

training is 200. 

Jo
urn

al 
Pre-

pro
of



 
                                                                         (a)                                                                                               (b) 
Fig. 11. (a) Evolution of the predicted coefficient of consolidation as a function of the number of training epochs, for a drained top boundary; and (b) Mean squared error versus 

number of epochs used for training. 

 

 
Fig. 12. Inverse analysis results from analytical solution and model prediction in terms of color plots on (z, t) grid for drained top and bottom boundaries. The color plots are 

obtained using interpolation with the nearest available values. The white dots represent the randomly selected training data points and the sample size used is 2000. The batch 

size used for training is 200. 

 

 
                                                                          (a)                                                                                               (b) 
Fig. 13. (a) Evolution of the predicted coefficient of consolidation as a function of the number of training epochs, for drained top and bottom boundaries; and (b) Mean squared 

error versus number of epochs used for training.  
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The deep learning model used here is a fully-connected sequential 

neural network. The neural network is designed to take the spatial 

and temporal coordinates as inputs and predict the excess pore 

pressure, which is a function of these parameters. A key feature of the 

neural network architecture here is automatic differentiation which 

makes physical constraint of the system possible, using the governing 

equation of 1D consolidation. The spatial and temporal derivatives of 

the predicted excess pore pressure are evaluated using the automatic 

differentiation capability in TensorFlow. Two classes of problems are 

considered: forward and inverse problems. For forward problems, 

the derivatives are evaluated at a certain number of collocation 

points which are generated using the Latin hypercube sampling 

strategy, with the spatial and temporal bounds of the actual model 

taken into consideration. This approach made training of the neural 

network using just the initial and boundary condition data possible 

with a remarkable degree of accuracy. For inverse problems, a larger 

size of randomly selected data is used for training the neural network 

and the derivatives according to the governing equation are 

evaluated at the training data points. The coefficient of consolidation 

is used directly for forward problems while it is left as a trainable 

parameter for inverse problems. For both forward and inverse 

problems, the total training loss is defined as a combination of the 

training and constraint losses. The mean squared error for the 

training loss is evaluated based on the model predicted excess pore 

pressure and the corresponding exact analytical solution. The mean 

squared error for the constraint loss is evaluated according to the 

governing PDE based on the derivatives evaluated using automatic 

differentiation. A model optimizer (Adam) is used to minimize the 

total mean squared error during training. For both classes of 

problems, the model hyper-parameters that are tuned include the 

number of hidden layers, number of hidden units at each layer, the 

batch size for training and the learning rate for the optimizer. The 

potential of the model is demonstrated using Terzaghi’s 1D 

consolidation problem with two variations: with only a drained top 

boundary and with drained top and bottom boundaries. The model 

resulted in remarkable prediction accuracy for both classes of 

problems; the pore pressure throughout the model’s spatial and 

temporal bounds was predicted well for forward problems and the 

coefficient of consolidation was predicted with a very good accuracy 

for inverse problems. 

While the application presented here is a simple 1D consolidation 

problem, the implications of such a deep learning model are far 

greater. Even though 1D consolidation involves only a single 

governing equation and only one material parameter (the coefficient 

of consolidation), the concept can be upscaled for problems in 

geomechanics involving coupled governing differential equations 

with several material and model parameters. The efficiency 

demonstrated for forward problems indicates the potential for 

predicting numerical solutions faster using deep learning models 

trained using a very limited amount of data but with a very good 

accuracy because of the physical constraint. This could have a huge 

potential for digital twins where faster real-time numerical 

prediction is desirable. The potential for predicting material 

parameters, as demonstrated using inverse problems, could be very 

useful in numerical model reproducibility and optimization of 

constitutive material and model parameters for complex numerical 

models. A faster and efficient design optimization can be achieved in 

computational geomechanics by exploiting this advantage of physics-

informed deep learning models. 
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