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Enzyme-Constrained Models and Omics Analysis
of Streptomyces coelicolor Reveal Metabolic
Changes that Enhance Heterologous Production

Snorre Sulheim,1,2 Tja�sa Kumelj,2 Dino van Dissel,1 Ali Salehzadeh-Yazdi,3 Chao Du,4 Gilles P. van Wezel,4

Kay Nieselt,5 Eivind Almaas,2,6 Alexander Wentzel,1 and Eduard J. Kerkhoven7,8,9,*

SUMMARY

Many biosynthetic gene clusters (BGCs) require heterologous expression to
realize their genetic potential, including silent and metagenomic BGCs. Although
the engineered Streptomyces coelicolorM1152 is a widely used host for heterol-
ogous expression of BGCs, a systemic understanding of how its genetic modifica-
tions affect the metabolism is lacking and limiting further development. We per-
formed a comparative analysis of M1152 and its ancestor M145, connecting
information from proteomics, transcriptomics, and cultivation data into a
comprehensive picture of the metabolic differences between these strains.
Instrumental to this comparison was the application of an improved consensus
genome-scale metabolic model (GEM) of S. coelicolor. Although many metabolic
patterns are retained in M1152, we find that this strain suffers from oxidative
stress, possibly caused by increased oxidative metabolism. Furthermore, precur-
sor availability is likely not limiting polyketide production, implying that other
strategies could be beneficial for further development of S. coelicolor for heter-
ologous production of novel compounds.

INTRODUCTION

The bacterium Streptomyces coelicolor has been the de facto model actinomycete for the production of

antibiotics. Being known for over 100 years, the interest in this organism predates the golden age of anti-

biotic research. With its complex life cycle, featuring mycelial growth and differentiation, spore formation,

programmed cell death, and the ability to produce multiple colored secondary metabolites, it has assisted

greatly in our understanding of how streptomycetes sense their surrounding (Hahn et al., 2002; Hutchings

et al., 2004; Nothaft et al., 2010; Rigali et al., 2008; Sola-Landa et al., 2005), activate their developmental

cycle (Chandra and Chater, 2014), and regulate the production of antibiotics (Nieselt et al., 2010; Thomas

et al., 2012). Further aided by the publication of its genome sequence (Bentley et al., 2002), the antibiotic

coelimycin P1 (yellow), produced from the formerly cryptic polyketide gene cluster known as cpk, was

added to this list (Gomez-Escribano et al., 2012). Today, the widespread use of S. coelicolor continues

as a host for heterologous production of biosynthetic gene clusters (BGCs) (Castro et al., 2015; Gomez-Es-

cribano and Bibb, 2011, 2014; Kumelj et al., 2019; Thanapipatsiri et al., 2015; Yin et al., 2015). Heterologous

expression is a powerful strategy for novel compound discovery from BGCs that are either natively silent or

originate from an unculturable source (Nepal and Wang, 2019). These BGCs represent an untapped

resource of microbial biodiversity, nowadays made evident and accessible due to recent advances within

the fields of metagenomics, molecular biology, and bioinformatics (Rutledge and Challis, 2015).

The efficiency of S. coelicolor as a heterologous production host relies on a metabolism that has evolved to

provide the necessary precursors to produce a broad range of complex molecules. Many of these mole-

cules are produced when the strain is experiencing nutrient-limiting conditions that lead to growth cessa-

tion and complex re-modelling of its metabolism (Wentzel et al., 2012a). Metabolic switching in response to

phosphate and glutamate depletion has been studied in detail at a variety of metabolic levels in

S. coelicolor M145 (Nieselt et al., 2010; Thomas et al., 2012; Wentzel et al., 2012b), the most well-known

wild-type strain devoid of the two plasmids SCP1 and SCP2 present in the parent strain S. coelicolor

A3(2) (Kieser et al., 2000). This has unraveled a complex sequence of switching events that ultimately

lead to the biosynthesis of calcium-dependent antibiotic (CDA), and the colored antibiotics actinorhodin
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(Act, blue) and undecylprodigiosin (Red, red). The biosynthesis of coelimycin P1 occurs earlier than the

three other compounds in the growth cycle and appears to be independent of the major metabolic switch

(Nieselt et al., 2010).

To improve S. coelicolorM145 as a host for heterologous BGC expression, strain M1146 was created by the

sequential deletion of its four major BGCs (act, red, cda, and cpk) (Gomez-Escribano and Bibb, 2011). This

should increase precursor availability for the production of a whole range of heterologous products and

provides a cleaner chromatographic background to more easily identify novel compounds. S. coelicolor

M1152 is a derivative of M1146, which besides the deletion of the four main BGCs bears the C1298T point

mutation in the rpoB gene that encodes the beta subunit of RNA polymerase. This mutation was shown to

have strong positive effects on the production of various antibiotics (Gomez-Escribano and Bibb, 2011; Hu

et al., 2002). Up to now, M1152 is a preferred general ‘‘superhost’’ for heterologous BGC expression (Brae-

sel et al., 2019; Castro et al., 2015; Kepplinger et al., 2018; Li et al., 2013; Thanapipatsiri et al., 2015) and is

the starting point for further strain development.

Previous research on themetabolism of S. coelicolorM1152 has been confined to transcriptome profiling of

batch fermentations (Battke et al., 2010; Jager et al., 2011; Liao et al., 2014; Love et al., 2014; Mi et al., 2019),

and further development of this strain as a ‘‘superhost’’ calls for a better understanding of how the genetic

modifications have affected the regulatory system and metabolism of M1152. To this end wemeasure both

protein and transcript levels of both M1152 and its parent strain, M145, at different time steps during batch

fermentation where the metabolic switch is triggered by depletion of phosphate. As enzymes are cata-

lyzingmost metabolic transformations, assessing protein abundance provides information about themeta-

bolic capacity of the organism. Furthermore, we do not only consider the protein abundances in isolation

but also use thesemeasurements to confine fluxes predicted by a genome-scale metabolic model (GEM) of

S. coelicolor to the maximum capacity of the enzymes. By doing so we propagate differences in the abun-

dance of individual enzymes in M145 and M1152 to metabolic rearrangements on the systems level.

The metabolic network in the cell is described in a GEM (Gu et al., 2019). GEMs are valuable resources of

strain-specific knowledge, mathematical models able to predict steady-state flux distributions, and frame-

works for interpretation and integration of different ‘‘omics’’ data, e.g., transcriptomics and proteomics

(Robinson and Nielsen, 2016). The increased interest in using genome-scale models of S. coelicolor is con-

spicuous. Since the first reconstruction in 2005 (Borodina et al., 2005) five GEMs have been published (Alam

et al., 2010; Amara et al., 2018; Kim et al., 2014; Kumelj et al., 2019; Wang et al., 2018), including three in

2018: iKS1317 (Kumelj et al., 2019), Sco4 (Wang et al., 2018), and iAA1259 (Amara et al., 2018). In addition,

as a model organism for the Actinomycetes, the GEMs of S. coelicolor are frequently used as template for

model development of closely related strains (Mohite et al., 2019), such as Streptomyces clavuligerus (Toro

et al., 2018), Saccharopolyspora erythraea (Licona-Cassani et al., 2012) and Streptomyces lividans (Valverde

et al., 2018). The recent updates of the S. coelicolor GEM were developed in parallel by different research

groups: although all groups share the common interest of utilizing a high-quality model for predictions and

data analysis, the prevailing approach of independent parallel development is inefficient. In addition to

duplicating a considerable amount of work, lack of common standards for documentation of progress

and issues, evaluation of model performance, as well as the use of different annotations makes it cumber-

some to compare and merge models.

To increase the rate and quality of model reconstruction, in this study two research groups of the

S. coelicolor GEM community, responsible for two of the latest model updates (Kumelj et al., 2019;

Wang et al., 2018), have joined forces to merge existing GEMs of S. coelicolor into one consensus model

that is publicly hosted on GitHub and can be continuously updated and improved by all members of the

community. Hosting the model on GitHub has many advantages: (1) open access and contribution, (2)

version control, (3) continuous development and integrated quality control with memote (Lieven et al.,

2020), (4) new improvements released instantly (no publication lag time), and (5) complete documentation

of model reconstruction. Such an approach has historic precedents: model reconstruction as a community

effort has been a success for the human GEM (Thiele et al., 2013), baker’s yeast (Aung et al., 2013; Dobson

et al., 2010; Heavner et al., 2012, 2013; Herrgard et al., 2008; Lu et al., 2019), and Chinese hamster ovary cells

(Hefzi et al., 2016). The recent developments in S. coelicolor model and strain improvements in different

research groups prove that it is an opportune time now to join forces in the Streptomycesmodeling efforts

as well.

ll
OPEN ACCESS

2 iScience 23, 101525, September 25, 2020

iScience
Article



RESULTS

Reconstruction of the Consensus Genome-Scale Model of S. Coelicolor

We conducted a stepwise reconstruction of Sco-GEM, the consensus genome-scale metabolic model of

S. coelicolor, while tracking development using Git for version control (Figure 1A, Data S1, Table 1).

A

B

D

F G

E

C

Figure 1. Sco-GEM Development and Analysis

(A) Schematic overview of the various steps in the Sco-GEM reconstruction process.

(B) The overall memote score and number of genes, reactions, and metabolites for the seven published S. coelicolor

GEMs.

(C) Assessment of the model quality by comparing in vivo observations with in silico predictions across in total 241 tests:

accuracy = 0.80; sensitivity = 0.96; specificity = 0.48; Matthews correlation coefficient = 0.53.

(D) The change in Gibbs free energy for 770 reactions that were annotated as either reversible or forward (i.e., forward

irreversible) in the model before curation of reaction reversibility. The histogram is truncated at �105 kJ/mol, and more

negative values are assigned to the leftmost bin.

(E) Analysis and comparison of the directionality and reversibility of reactions before curation and the direction inferred

from the change in Gibbs free energy as estimated by eQuilibrator. Reactions labeled ‘‘forward’’ or ‘‘backward’’ are

irreversible.

(F) Overview of the 369 transport reactions included in Sco-GEM, whereof 42 were curated and 65 were added during this

work. The inner ring categorizes the reactions into nine different subgroups, whereas the outer ring displays the amount

of curated and added reactions within each category. In the outer ring, the sections representing curated and new

reactions are hatched and dotted, respectively.

(G) Comparison of cumulative flux variability distributions in Sco-GEM and EcSco-GEM.
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Sco-GEM is the most comprehensive and highest quality GEM of this organism (Figure 1B), comprising

1,777 genes, 2,612 reactions, 2,073metabolites, and amemote score of 77%, which is indicative of the over-

all model quality (Lieven et al., 2020). Sco-GEM features an accuracy of 96.5% and 74.5% (Figure 1C) in pre-

dicting correct phenotypes for growth environments and knockout mutants, respectively, yielding in total a

Matthews coefficient of correlation of 0.53 with the test data previously described (Kumelj et al., 2019).

With the recently published iKS1317model (Kumelj et al., 2019) as a starting point, Sco-GEMwas first devel-

oped by including genes, reactions, and metabolites from the equally recently published models iAA1259

(Amara et al., 2018) and Sco4 (Wang et al., 2018). The curations from iAA1259 were primarily related to coe-

limycin P1, butyrolactone, xylan, and cellulose pathways, whereas the 377 reactions added to Sco-GEM

from Sco4 were scattered across a large range of different subsystems, covering both primary and second-

ary metabolism (Figure S1). Subsequent to merging the existing S. coelicolor GEMs, we performed a num-

ber of further curations of the model (Figure 1A): including improvement of annotations, both in terms of

coverage and number of different databases, e.g., KEGG (Kanehisa, 2000; Kanehisa et al., 2019), BioCyC

(Karp et al., 2019), ChEBI (Hastings et al., 2016), and MetaNetX (Moretti et al., 2016). All reactions and me-

tabolites have been given identifiers according to the BiGG namespace (King et al., 2016), and all reactions

are categorized into 15 different subsystems, covering 128 different pathways.

The biomass composition was curated to reflect estimated levels of prosthetic groups that are associated

to cellular proteins. Proteomics data, as discussed later, were used to estimate protein levels, while UniProt

(The UniProt Consortium, 2019) provided annotations of proteins with prosthetic groups, which was used to

estimate overall prosthetic group levels (Data S1, Table 2).

Reaction Reversibility Updated for Almost a Third of Queried Reactions

The determination of reaction directionality and reversibility is an important step in a GEM reconstruction

(Thiele and Palsson, 2010). However, the thermodynamic consistency of reactions was not considered in

previous S. coelicolor models. We calculated Gibbs free energy changes for 770 of the 2,612 model reac-

tions (Data S1, Table 3) using eQuilibrator (Flamholz et al., 2012) and found hardly any consistency between

the calculated change in Gibbs free energy and the reversibility previously assigned to the model reactions

(Figure 1D). To address this issue we decided to reassign the reversibility of the model reactions by using a

relatively lenient threshold of �30 kJ/mol to classify a reaction as irreversible (Bar-Even et al., 2012; Feist

et al., 2007), with the intent not to over-constrain the model (Figure 1E). The proposed changes in revers-

ibility were evaluated against growth and knockout data (Kumelj et al., 2019), discarding 61 of the 332 pro-

posed reactions, and consequentially, the flux bounds of 271 reactions were modified (see Transparent

Methods). In addition, all ATP-driven reactions were manually curated and generally assumed irreversible

unless they had an estimated positive change in Gibbs free energy or were known to be reversible. Exam-

ples of this include nucleoside diphosphate kinase (Chakrabarty, 1998) and ATP synthase (Yoshida et al.,

2001). The manual curation of ATP-driven reactions led to a change in reversibility for 56 reactions.

Curation of Transport Reactions

As transport reactions have previously not been extensively curated in S. coelicolormodels, we performed

a thorough curation of transporters by querying various databases and BLAST analysis as detailed in

Methods. This culminated in adding 43 new transport reactions and updating 39 of the 262 existing reac-

tions in Sco-GEM (Figure 1F; Data S1, Table 4). The majority of the transporters comprise primary active

transport proteins and secondary carriers (46%), in accordance with previous work (Getsin et al., 2013).

Most primary active transporters are ATP-binding cassette (ABC) transporters (30%), whereas proton sym-

ports (30%) dominate the secondary carriers.

Development of the Enzyme-Constrained Model EcSco-GEM

To include explicit constraints regarding enzymes catalyzing metabolic reactions, the GECKO formalism

(Sanchez et al., 2017) was applied to consider that catalyzing capacity is constrained by enzyme turnover

rates (kcat) and abundances. The GECKO toolbox modifies the structure of an existing GEM to integrate

turnover rates and proteome data. Consequentially, this constrains the range of estimated fluxes to a bio-

logically feasible range as determined by the amount and efficiency of each enzyme. Note that this

approach regards the maximum catalytic activities but does not consider other kinetic parameters such

as affinity constants. The overall flux variability of the resulting enzyme-constrained model (EcSco-GEM)

is drastically reduced compared with the classic genome-scale model (Figure 1G), particularly due to the
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considerably reduced fraction of reactions that have very high (101) flux variability. As reactions with high

variability result in low certainty in the estimated fluxes, the observed reduction in flux variability is there-

fore a qualitative measure of the increased accuracy achieved by constraining the range of possible fluxes

to those satisfying the limitation in protein allocation.

In our endeavor to describe the metabolic differences between M145 and M1152 we generated in total 17

time- and strain-specific enzyme-constrained models by combining EcSco-GEM with estimated growth,

secretion, and uptake rates, as well as proteome data from cultivations that are detailed and analyzed later

in the article.

Framework for Further Development of Sco-GEM by the Community

The Sco-GEM model is hosted as an open repository as suggested by memote, a recently developed tool

for transparent and collaborative model development (Lieven et al., 2020). The memote tool is incorpo-

rated in the repository through Travis CI and tracks the model development on every change of the model.

Sco-GEM v1.2.0 achieved a memote score of 77%, which is superior to that achieved by any previous model

of S. coelicolor (Figure 1B; Supplemental Information).

Hosting Sco-GEM on GitHub with memote integration ensures continuous quality control and enables

public insight into all aspects of model reconstruction and curation: any user can report errors or suggest

changes through issues and pull requests. As contributions to the model development are fully trackable

and can therefore be credited fairly, Sco-GEM is positioned as a community model that we envision to be

continuously updated and widely used by the S. coelicolor research community. Although the major steps

of model reconstruction have been detailed in the preceding sections, every detail of the process and every

iteration of the model is accessible on the public model repository at https://github.com/SysBioChalmers/

Sco-GEM.

In the remaining parts of the Results section, we have applied Sco-GEM along with transcriptome and pro-

teome data, to study and compare the responses of S. coelicolorM145 andM1152 to phosphate depletion

on a systems level and for the first time provide detailed insight into the distinct physiological features of

engineered ‘‘superhost’’ strain M1152, which will be of value for its further development.

Random Sampling of Enzyme-Constrained GEMs Capture Metabolic Rearrangements in

Response to Phosphate Depletion in M145

To evaluate whether the (Ec)Sco-GEMmodels can simulate behaviors of S. coelicolormetabolism, we analyzed

time course sampled cultivations of secondary metabolite-producing strain M145 using the generated models.

For this purpose, S. coelicolor M145 was cultivated in batch fermentations using standardized protocols re-

ported earlier (Wentzel et al., 2012a). Cultures were sampled for ‘‘omics’’ data, as well as substrate utilization

and secondary metabolite measurements to identify regulatory, proteomic, and metabolic changes during

the metabolic switch. The online and offline measurements showed that phosphate depletion in the cultivation

mediumwas reached approximately 35 h after inoculation. Shortly after, the culture growth ceased, and first Red

and subsequently Act were detected in the culture medium (Figures 2A and 2B). Act levels were determined by

measuring the amount of total blue pigments because this covers both the intracellular and secreted variants of

actinorhodin, and is considered to be the preferredmethod (Bystrykh et al., 1996; Wentzel et al., 2012a). BothD-

glucose and L-glutamate were consumed concomitantly, and their consumption continued after phosphate

depletion, whereas both remained in excess until the end of cultivation. Note that Streptomyces can utilize intra-

cellular phosphate storages after themedium is phosphate depleted (Smirnov et al., 2015). The RNA sequencing

(RNA-seq) and untargeted proteomic data were analyzed in the light of previous studies (Nieselt et al., 2010;

Thomas et al., 2012) and were in good agreement with data previously obtained from microarrays or targeted

proteomics (Alam et al., 2010; Nieselt et al., 2010) (Figures 2C and S2). This confirmed the high reproducibility of

the experiments across independent cultivations and high reliability of the chosen cultivation and analytic pro-

cedures (Figure 2).

The proteome data and calculated uptake/secretion rates (Table S1) were incorporated into EcSco-GEM to

yield time-specific metabolic models of M145, giving insight on the changes occurring in the metabolic ac-

tivity of different pathways during batch cultivation. Metabolic fluxes were estimated using an unbiased

approach of random sampling, as alternative to optimization of a well-defined cellular objective used in

flux balance analysis (Orth et al., 2010). It is possible that S. coelicolor is wired to maximize its growth

ll
OPEN ACCESS

iScience 23, 101525, September 25, 2020 5

iScience
Article

https://github.com/SysBioChalmers/Sco-GEM
https://github.com/SysBioChalmers/Sco-GEM


rate before phosphate depletion, but after the metabolic switch, it is difficult to define a clear cellular

objective. We applied an approach that samples the vertices of the solution space (Bordel et al., 2010)

and used their mean values to compare themetabolic fluxes between the two strains and between different

time points. The variation in predicted fluxes through different pathways in M145 is an initial validation of

the approach (Figure 2D): the most drastic change in fluxes occur in response to phosphate depletion, in

agreement with observations in the transcriptome, metabolome, and proteome (Nieselt et al., 2010;

Thomas et al., 2012; Wentzel et al., 2012b).

The response to phosphate depletion from the medium is achieved by a set of genes, positively regulated

by PhoP, that are involved in phosphate scavenging, uptake, and saving (Martin et al., 2012; Martin-Martin
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Figure 2. Batch Cultivation of S. Coelicolor M145 and the Effect of Phosphate Depletion

(A and B) Compounds produced (A) and consumed (B) during batch fermentation of S. coelicolor M145. Time points for

sampling for transcriptome and proteome analysis are indicated with red triangles. The dashed vertical line indicates

when phosphate in the medium has been depleted. Error bars are standard deviations of three biological replicates.

CDW, cell dry weight; Red, undecylprodigiosin; TBP, total blue pigments/actinorhodins; CO2, volume-corrected

respiration; D-Glc, D-glucose; L-Glu, L-glutamate; PO4, phosphate.

(C) Comparison of previously published microarray data (Nieselt et al., 2010) and RNA-seq data (this study) for genes

previously found to respond to phosphate depletion (Nieselt et al., 2010). The transparent lines correspond to individual

genes, whereas the bold lines represent the average expression level for each dataset.

(D) Clustered heatmap of CO2-normalized Z scores for each of the top 10 varying pathways plus the pathways for the four

major BGCs in M145, as revealed by simulations with the proteomics-integrated EcSco-GEM model. The pathways are

sorted based on hierarchical clustering to facilitate visual interpretation of similarity between pathways. The dashed

vertical line indicates the time point of the metabolic switch.

(E) RNA-seq data of the four major BGCs show the onset of biosynthesis of actinorhodin (Act), calcium-dependent

antibiotic (CDA), coelimycin P1 (Cpk), and undecylprodigiosin (Red) at different time points during the batch

fermentations of M145.
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et al., 2018; Sola-Landa et al., 2003). In our cultivations the metabolic switch can be readily identified from

the RNA-seq data by the rapid upregulation of this regulon after 35 h of cultivation in M145 (Figure 2C),

thereby corroborating the model simulations (Figure 2D) and providing a more detailed picture of the un-

derlying regulation. PhoP also represses nitrogen assimilation (Martin et al., 2017), which can partly explain

the change in amino acids metabolism after phosphate depletion (Figure 2D). Indeed, from the RNA-seq

data we find that glutamate import, the glutamate sensing system gluR-gluK (Li et al., 2017), glnR (Fink

et al., 2002), and glnA are downregulated immediately subsequent to phosphate depletion (Figure S3).

As PhoP is also known to regulate negatively the biosynthesis of secondary metabolites, the switching of

its expression likely delays these pathways (Martin, 2004; Martin et al., 2017). However, after 37 h of culti-

vation the upregulation of the cda and red genes was observed, whereas that of the act genes was initiated

at 41 h (Figure 2E). Production of Red and Act was measurable in the culture medium after 41 and 49 h of

cultivation, respectively (Figure 2A). The enzyme-constrained models predict an immediate increase in

fluxes through the biosynthetic pathways for the four main compounds Act, Red, CDA, and coelimycin

P1 after the metabolic switch (Figure 2D).

The Onset of Secondary Metabolism Is Strongly Correlated with an Increase in Oxidative
Phosphorylation and a Decrease in Fatty Acid Biosynthesis in M145

The metabolic switch was shown to be correlated with an enhanced degradation of branched-chain amino

acids (valine, leucine, and isoleucine), an increase in oxidative phosphorylation, and a decrease in fatty acid

biosynthesis (Figures 2D and S4). An active oxidative phosphorylation relies on an active tricarboxylic acid

(TCA) cycle that generates reduced co-factors whose re-oxidation by the respiratory chain generates a pro-

ton gradient that drives ATP synthesis by the ATP synthase. The feeding of the TCA cycle requires acetyl-

CoA, as well as nitrogen. Nitrogen likely originates from degradation of glutamate and branched-chain

amino acids, whereas acetyl-CoA likely originates from glycolysis, as well as from the degradation of these

amino acids as previously demonstrated (Stirrett et al., 2009). Indeed, the model predicts an increased flux

through citrate synthase feeding acetyl-CoA into the TCA cycle (Figure S5A). The predicted increase in

oxidative phosphorylation is supported by the RNA-seq data showing upregulation of enzymes belonging

to the respiratory chain (Figure S5B). This is consistent with the clear correlation previously reported be-

tween high ATP/ADP ratio, resulting from an active oxidative phosphorylation, and actinorhodin produc-

tion (Esnault et al., 2017). Furthermore, the consumption of acetyl-CoA by the TCA cycle to support the

oxidative metabolism logically impairs fatty acids biosynthesis (Esnault et al., 2017).

The pentose phosphate pathway provides the main redox cofactor NADPH for polyketide biosynthesis, as

well as to combat oxidative stress, and its model-predicted flux increase upon initiation of polyketide syn-

thesis (Figure 2D) is in agreement with previous studies (Borodina et al., 2008; Jonsbu et al., 2001). A clear

positive correlation was also noticed between the biosynthesis of alanine, aspartate, and glutamate, which

are precursors for CDA and/or coelimycin P1 (Figure 2D), and the biosynthesis of these antibiotics. Similar

observations weremade in the antibiotic-producing Amycolatopsis sp. (Gallo et al., 2010). Our EcSco-GEM

model proved to be in good agreement with previously reported findings, indicating that it is able to cap-

ture S. coelicolor metabolic behavior.

Model-Assisted Characterization of Engineered S. Coelicolor M1152 and Its Responses to

Phosphate Depletion

As detailed earlier, EcSco-GEM shed a new light on the metabolic switch in secondary metabolite-produc-

ing strain M145. S. coelicolorM1152 (Gomez-Escribano and Bibb, 2011) is an M145 derivative devoid of the

four major BGCs and bearing a point mutation in the rpoB gene. A better systemic understanding of M1152

metabolism would benefit to its further development as a performing host. To do so, a comparative anal-

ysis of gene expression levels and metabolic fluxes was carried out in the strains M145 and M1152.

Batch cultivations of M1152 were performed using identical conditions and comparable sampling regimes

as for M145 reported earlier. This enabled a direct comparison of the two strains at a systems level,

revealing both expected and unexpected effects of the strains’ genetic differences (Figure 3). As antici-

pated, the products of the Cpk, CDA, Red, and Act biosynthetic pathways were undetectable in M1152

(Figure 3A). As previously observed (Gomez-Escribano and Bibb, 2011), the growth rate of M1152 is

reduced compared with M145 (0.15 h�1 versus 0.21 h�1 in the initial exponential growth phase), delaying

phosphate depletion by M1152 to 47 h after inoculation (Figure 3B), 12 h after M145 (Figure 2B).
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The sampling time points for proteome and transcriptome were adjusted accordingly (Figure 3B), enabling

pairwise comparison of measurements between the two strains. Genes responsive to phosphate depletion,

members of the PhoP regulon (Nieselt et al., 2010), were used to align the different sample datasets for

M145 or M1152 (Figure 3C). Principle-component analysis of the proteome data confirms high consistency

between corresponding biological replicates and incremental changes between sample points for both

M145 and M1152 (mainly explained by principal component 1 (PC1): 18.6% variance, Figure 3E). A clear

strain-dependent clustering of the data (PC2: 15.5% variance) indicates globally significant differences at

the protein level. EcSco-GEM was subsequently used to create time-specific metabolic models from pro-

teome data and estimated rates (Table S2) and predict metabolic changes in M1152. Interestingly we find

that most patterns in M145 are retained in M1152 (Figure 3D): fatty acid and nucleotide biosynthesis is still

downregulated after phosphate depletion, and similar trends of upregulation at later time points are

observed for oxidative phosphorylation, glycine, serine and threonine, and pyruvate metabolism. It is
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Figure 3. Batch Cultivation of S. Coelicolor M1152

(A and B) Compounds produced (A) and consumed (B) during batch fermentation of S. coelicolorM1152. Time points for

sampling for transcriptome and proteome analysis are indicated with red triangles. The dashed vertical line indicates

when phosphate in the medium has been depleted. Error bars are standard deviations of three biological replicates.

CDW, cell dry weight; Red, undecylprodigiosin; TBP, total blue pigments/actinorhodins; CO2, volume-corrected

respiration; D-Glc, D-glucose; L-Glu, L-glutamate; PO4, phosphate.

(C) Alignment of sample time points of M145 and M1152 cultivations based on the expression profiles of genes that were

earlier found to respond to phosphate depletion with respect to the metabolic switch (Nieselt et al., 2010).

(D) Principle-component analysis of the proteomics data for M145 (triangles) and M1152 (circles), for each time point and

culture. The first principal component separates the time points, whereas the second principal component separates the

two strains.

(E) CO2-normalized Z scores of pathway fluxes predicted by EcSco-GEM for 10 of the most varying pathways in M145 and

M1152. To make this heatmap comparable to the results for M145 (Figure 2D), the data are standardized for both strains

simultaneously and the row order is identical.
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striking that the upregulation of the branched-chain amino acid degradation and the alanine, aspartate,

and glutamate metabolism seen as a response to phosphate depletion in M145 are absent in M1152.

The different glutamate and glucose consumption rates of M145 andM1152 (Figures 4A and 4B) resulted in

substantial metabolic differences between the two strains before phosphate depletion. During cultivation
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Figure 4. Predicted Carbon Fluxes in M145 and M1152

(A) The ratio between estimated uptake rates of glucose and glutamate for each sample time point for M145 and M145

shows that M1152 acquires a smaller part of its carbon from glucose compared with M145.

(B) Bar chart showing CO2-normalized fluxes for the second sampling time point for M145 and M1152, i.e., after 29 and 41

h, respectively. There is a clear difference in the uptake of glucose and production of acetate, whereas the rates are

comparable for the consumption of glutamate and secretion of ammonium.

(C) Comparison of predicted fluxes for the second sampling time points shows clear differences between the two strains

in their relative utilization of the glycolysis and TCA cycle. The strength of the color of the lines corresponds to the flux

difference between the strains; green reactions have higher flux in M1152, and red reactions have higher flux in M145.
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on SSBM-P medium, where glutamate is the sole nitrogen source, glucose and glutamate are co-

consumed. M1152, as M1146 (Esnault et al., 2017), has an increased growth yield on glucose compared

with M145 (Figure S6). It thus obtains a larger share of its carbon from glutamate (Figures 4A and 4B)

and has consequently also a higher nitrogen availability than M145. The increased nitrogen availability

does, however, not increase the secretion of ammonium, indicating that the consumed nitrogen is directed

toward growth or production of secondary metabolites. A reduced flux through glycolysis has also been

reported previously for strain M1146 (Coze et al., 2013). This might be an effect of the predicted increased

concentration of ATP in M1146 compared with M145, which inhibits glucose uptake and phosphofructoki-

nase (Coze et al., 2013; Esnault et al., 2017). As Act was proposed to act as an electron acceptor reducing

the efficiency of the oxidative phosphorylation, it is suggested that the lack of Act in M1146 causes the

elevated ATP levels (Esnault et al., 2017). However, we find the largest difference in glycolytic flux at early

time points, before phosphate depletion and Act production inM145, proving that Act itself cannot explain

this observation.

The EcSco-GEM predicts the consequences of the reduced glucose uptake of M1152 on its central carbon

metabolism, as displayed by mapping relative reaction fluxes from the second sampling time point onto a

map of the central carbon metabolism in Streptomyces (Figure 4C). The map is based on the reaction

network in Sco-GEM and created using Escher (King et al., 2015). A less-active glycolysis in M1152 than

in M145 leads to a lower carbon flow toward acetyl-CoA and thus lower excretion of acetate compared

with M145 (Figure 4B). Furthermore, EcSco-GEM reveals an increased flux from glutamate to alpha-keto-

glutarate. Indeed, a fraction of the pool of oxaloacetate might be converted into alpha-ketoglutarate by

aspartate transaminase to feed the TCA cycle. The rest might be converted into phosphoenolpyruvate

(PEP) by PEP carboxykinase for gluconeogenesis because PEP carboxykinase was shown to carry higher

fluxes in M1152 than in M145 (Figure 4C).

As recent studies have demonstrated a negative correlation and a competition for common precursors be-

tween secondary metabolite and triacylglycerol (TAG) biosynthesis in S. lividans and S. coelicolor (Craney

et al., 2012; Esnault et al., 2017; Millan-Oropeza et al., 2017), one can speculate that the acetyl-CoA/ma-

lonyl-CoA units yielded by glycolysis for the biosynthesis of antibiotics in M145 are being used for

enhanced growth and/or fatty acids and TAG biosynthesis in M1152. However, this is likely not the case,

as M1152 has rather a reduced growth rate compared withM145, and fatty acid biosynthesis remains down-

regulated after the switch (Figure 5). Malonyl-CoA is predominantly shuttled toward fatty acid biosynthesis

throughmalonyl-CoA-ACP transacylase, and this consumption seems to be well balanced by the amount of

malonyl-CoA produced by acetyl-CoA carboxylase. It is noteworthy that the flux toward this acetyl-CoA/
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Figure 5. Production and Consumption of Malonyl-CoA as the Branching Point between Fatty Acid Biosynthesis

and Production of Polyketides

Both panels display CO2-normalized fluxes for both M145 and M1152 for all sampling time points as predicted by EcSco-

GEM. The left panel shows the sources of malonyl-CoA, namely, acetyl-CoA carboxylase (ACCOAT; blue) and acetyl-CoA

carboxytransferase (ACCOAT_1; orange). We observe a downregulation of the malonyl-CoA production after the

metabolic switch (between time points 3 and 4) in both strains. The right panel presents reactions consuming malonyl-

CoA. The consumption is dominated by malonyl-CoA-ACP transacylase (MCOATA) leading to biosynthesis of fatty acids.

The other drains for malonyl-CoA are the pathways encoded by the four major BGCs (Act, Cpk, Red, and CDA) in addition

to biflaviolin synthase (THYDNAPS).
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malonyl-CoA drain is 3- to 6-fold larger than the total flux going into secondary metabolite biosynthesis,

even after the metabolic switch. We thus propose that together with enhanced nitrogen availability,

acetyl-CoA made available from the deletion of these BGCs is used to feed the TCA cycle to support

the oxidative metabolism in M1152. This would generate oxidative stress whose toxic effects might be

responsible for the growth delay of this strain.

Transcriptome Analysis Reveals Differential Expression of Global Regulators

Although the proteome data are an integral part of the EcSco-GEM models, RNA-seq data were used to

both verify the trends and to gain further insights into the regulatory changes that are not captured by the

metabolic models. As the proteomic data, the RNA-seq data showed large global differences between

M1152 and M145, revealing 499 differentially expressed genes with a significance threshold of p < 0.01.

Unsupervised clustering of the significantly changed genes reveal differences in regulatory systems related

to redox regulation, signaling, and secondary metabolism. The significantly changed genes were clustered

into seven groups with K-means clustering, with clusters 1–3 containing genes that are upregulated in

M1152 compared with M145, and clusters 4–7 vice versa (Figure S7A; Data S2). A Gene Ontology (Ash-

burner et al., 2000; The Gene Ontology Consortium, 2019) enrichment analysis of the seven clusters was

conducted to identify upregulated processes in each of the two strains (Figure S8, cf. Figure S7A).

The enriched processes upregulated in M1152 point to increased oxidative stress (Figure S8): antioxidant

and peroxidase activity (SCO2633 [sodF]; SCO4834-35) in addition to biosynthesis of carotenoid

(SCO0185–SCO0188), a known antioxidant (Latifi et al., 2009; Stahl and Sies, 2003). The putative proteins

within the cytochrome-P450 family (SCO7416–SCO7422) found in cluster 1 might be linked not only to

increased oxidative stress (Zangar et al., 2004) but also to oxidation of precursors used for the synthesis

of macrolides (Lamb et al., 2003). Indeed, by comparing the time series expression levels for genes related

to oxidative stress we observe that the majority of genes related to oxidative stress are upregulated in

M1152 (Figure 6). These changes correlate to a more active oxidative metabolism, TCA cycle, and oxidative

stress as predicted by Ec-ScoGEM (Figure 4).

In cluster 2 we find scbA (SCO6266) and its downstream gene scbC (SCO6267), which stands out by being

almost 6-fold upregulated in M1152. This high expression level is likely due to the deletion of scbR2

(SCO6286), the last gene selected to be part of the cpk BGC (Bednarz et al., 2019). Besides regulation of
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Figure 6. Heatmap Displaying Log-Transformed RNA-Seq Data of Genes Associated with Oxidative Stress

The genes included are related to oxidative stress and either present in Sco-GEM or within the 499 differentially

expressed genes. These genes are categorized based on their functional annotation to distinguish differences and

similarities between these functional groups. To further enhance visual interpretation the genes are ordered based on

hierarchical clustering to align genes with similar expression profiles across M145 and M1152 next to each other.
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the cpk cluster, ScbR2 binds upstream of several global regulators of development and secondary meta-

bolism, including AfsK, SigR, NagE2, AtrA, AdpA, and ArgR (Li et al., 2015). It also acts together with ScbR

to regulate ScbA, which produces the y-butyrolactone SCB1. However, when looking at the genes regu-

lated by ScbR (Li et al., 2015), we only observe a clear difference in expression for genes regulated by

AfsR (phosphorylated by AfsK) (Horinouchi, 2003; Lee et al., 2002), whereas this is not the case for genes

regulated by ArgR, AdpA, or ScbR itself (Figures S5C-S5F).

Among the genes upregulated in M145, in cluster 4 we find genes related to the redox-regulated transcrip-

tion factor SoxR (Naseer et al., 2014), and a similar pattern is observed for the entire SoxR regulon (Fig-

ure S7B). SoxR is known to react directly to the presence of actinorhodin (Dela Cruz et al., 2010; Shin

et al., 2011), and indeed, in M145 this group of genes follows the production profile of actinorhodin,

whereas their expression remains low in M1152 as Act is not produced. The benzoquinone Act, as electron

acceptor, is thought to reduce respiration efficiency and thus energy charge, as well as to combat oxidative

stress (Esnault et al., 2017). Consistently, the RNA-seq data revealed that the ATP-synthase gene cluster

(SCO5366–SCO5374) was upregulated almost 2-fold in M1152 compared with M145, most prominently

in the stationary phase during Act production (Figure S7C). This agrees with observations in the M1146

strain (Coze et al., 2013). Cluster 4 also contains the genes directly up- and downstream of the deleted ac-

tinorhodin BGC in M1152 (SCO5071–SCO5072, encoding 3-hydroxyacyl-CoA dehydrogenase, and

SCO5091–SCO5092, encoding a two-component flavin-dependent monooxygenase system) (Valton

et al., 2008). In clusters 5, 6, and 7 we find genes with reduced expression in M1152, and the enriched pro-

cesses are related to cellular and iron ion homeostasis, development, signaling, and morphology. This cor-

responds to the delayed sporulation observed for M1152 (Gomez-Escribano and Bibb, 2011).

Elevated Expression of Ribosomal Proteins in M1152 after Phosphate Depletion

An increased transcription of genes encoding ribosomal proteins could be observed in M1152 after phosphate

depletion (Figure S7D). The rpoB mutation of the RNA polymerase present in M1152 is thought to induce a

conformational change mimicking the binding of guanosine tetraphosphate (ppGpp) to this enzyme (Hu

et al., 2002). ppGpp is synthesized in response to nutritional stress and reduces the transcription of genes related

to active growth, such as genes encoding ribosomal RNAs and ribosomal proteins (Burgos et al., 2017), whereas

it upregulates those involved in development/differentiation and antibiotic production (Hesketh et al., 2007; Sri-

vatsan and Wang, 2008). In consequence the upregulation of ribosomal proteins was unexpected in M1152,

especially because the expression of the ppGpp regulon was not found to be significantly changed in M1152

(Figure S5G and S5H). We hypothesize that the ribosomal upregulation originates from the higher ATP content

of M1152 compared with M145 post phosphate depletion, as high nucleoside triphosphate levels are known to

have a positive impact on ribosome synthesis (Gaal et al., 1997). Such difference in ribosomal protein expression

is mainly seen in the antibiotic production phase and correlated with production of Act in M145, which has a

negative impact on the energetic state of the cell (Esnault et al., 2017).

Reduced Production of the Polyketide Germicidin in M1152

One could reasonably anticipate that the production of a secondary metabolite would increase if other

drains competing for same precursor compounds were removed from the organism by gene deletion.

However, the production rate of the polyketides germicidin A and B (Chemler et al., 2012), autologous

to bothM145 andM1152, were reduced inM1152 by 92% and 82% for germicidin A and B, respectively (Fig-

ure 7). This could be explained by the more active oxidative metabolism of M1152 compared with M145, as

suggested by the enzyme-constrained model (Figure 4) and supported by the upregulation of genes asso-

ciated with oxidative stress (Figure 6). In M1152 the pool of acetyl-CoA rather feeds the TCA cycle instead

of being directed toward germicidin biosynthesis.

To further elucidate the cause of the reduced production in M1152, we also measured germicidin produc-

tion in the intermediate strain M1146 (Figures 7 and S7E), which does not feature the rpoBmutation but is

missing the four BGCs also deleted in M1152 (Gomez-Escribano and Bibb, 2011). The production rate of

germicidin A and B in M1146 was found to be reduced by 27% and 25%, respectively, compared with

M145. When compared with the strong reduction in germicidin production that can be assigned to the

rpoBmutation in M1152, removal of only the four BGCs in M1146 has a moderate effect on germicidin pro-

duction. This conforms with the minor contribution of the BGCs compared with fatty acid biosynthesis on

the total consumption of malonyl-CoA (Figure 5). Nonetheless, it remains contradictory that the removal of

polyketide precursor drains negatively impacts the production of other polyketides.
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DISCUSSION

In this work, we carried out a multi-omics study to compare the metabolic changes of Streptomyces coeli-

color M145 and the BGC deletion mutant M1152 during batch fermentation. The defined cultivation me-

dium used in this work was chosen because it supports sufficient growth and a delayed, well-defined onset

of secondary metabolism, necessary to study the metabolic switch (Wentzel et al., 2012a). We aimed at

defining the metabolic features differing between the two strains, both during exponential growth and sta-

tionary phase after phosphate depletion.

To achieve this from a systems biology perspective, we combined time course sampled cultivation and

transcriptome analysis with enzyme-constrained genome-scale models generated with proteome data.

Such genome-scale models are extensively used to connect transcriptome and proteome data to meta-

bolic fluxes. Leveraging metabolic simulations to contextualize transcriptional changes is mainly impacted

by the quality of the computational model used. Here, two teams joined efforts to improve a consensus

model of S. coelicolor, yielding a comprehensive model useful for the scientific community.

Genome-Scale Models Provide Hypothesis for Slow Growth of M1152

The reduced growth rate of M1152 is correlated with reduced glucose uptake and enhanced glutamate up-

take compared with M145. This is expected to lead to a less active glycolysis but a more active TCA cycle,

and thus, a more active oxidative metabolism in M1152 compared with M145. An active oxidative meta-

bolism is known to generate oxidative stress, and indeed, the in vivo data, as well as the genome-scale

model, predict an increased oxidative stress in M1152. The toxicity of oxidative stress might, at least in

part, be responsible for the growth delay of M1152, whereas the rpoBmutation may add to this phenotype,

because one of the functions of the ppGpp-associated RNA polymerase is to promote a growth arrest in

conditions of nutritional stress.

Further Development May Improve M1152 as Host for Heterologous Expression

The strain M1152 has several advantages as a host for heterologous production of secondary metabolites. The

deletion of the four major BGCs not only removes presumed competing drains for valuable precursors but

also generates a clean background to ease the identification of novel products by mass spectrometry. M1152

has already been proved to be more efficient than M145 and M1146 in heterologous production of the nitro-

gen-containing antibiotics chloramphenicol and congocidine, as well as Act production from reintroduction of

its BGC (Gomez-Escribano and Bibb, 2011). Strains M1146 and M1152 produce, respectively, 3- to 5-fold and

20- to 40-fold more chloramphenicol and congocidine from respective heterologous clusters thanM145, a clear

demonstration of the huge impact onproductiondue to the rpoBmutation.Although this contrastswithourdata

Figure 7. Concentrations of Germicidin A and B Produced by M145, M1146, and M1152

The concentrations are normalized by the biomass of each strain. The shaded regions display the uncertainty range (G1

standard deviation) based on three replicate cultivations. Note that the growth rate is different between the strains,

displayed by the vertical lines representing phosphate depletion at 35, 38, and 47 h for M145, M1146, and M1152,

respectively.
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showing thatM1152 has the lowest production of germicidin, it is relevant to note that chloramphenicol and con-

gocidine are non-ribosomal peptide synthases relying on amino acids rather than malonyl-CoA as precursors.

Although our data show reduced degradation of branched-chain amino acids andmetabolismof alanine, aspar-

tate, and glutamate as the clearest metabolic divergence upon phosphate depletion in M1152, as congocidine

andchloramphenicol arebasedonaromaticaminoacids the connection to increasedproductionof theseNRPs is

not obvious. Another option is that the increased oxidativemetabolism inM1152 providesmore redox cofactors

to drive the synthesis of thesemolecules. If competition for valuable precursors was rate limiting, the absence of

the polyketides actinorhodin and coelimycin P1 should at least enhance the production of germicidin, all being

dependent on malonyl-CoA. Moreover, differences in cultivation media further convolute cross-study compari-

sons: theaforementionedstudyuseacomplexgrowthmedium,whereasweusedadefinedmediumwithglucose

and glutamate, which has previously been optimized for studying the metabolic switch (Wentzel et al., 2012a).

Furthermore, (re-)introduction of a (secondary) copy of germicidin synthase gene gcs in strains M1152 and

M1317—derived from M1152 by additional removal of three type III PKS genes including gcs—gave a 7.8-

and 10.7-fold increase in germicidin production, respectively, compared with M1152 with only the native

copy of gcs (Thanapipatsiri et al., 2015). Thus, the largest increase in production is not achieved by removal

of competing precursor drains, but rather effected by the re-introduction of gcs, probably because expres-

sion of the inserted gene is not constrained by the same regulatory mechanism as the native gene.

Although earlier work has suggested a competition for common precursors between fatty acids and sec-

ondary metabolites biosynthesis (Craney et al., 2012), our results suggest that other approaches than dele-

tion of competing precursor drains may be more efficient in the development of an optimized expression

host, and it seems likely that different classes of BGCs may require different hosts for maximal production.

Our comparative analysis of M145 and M1152 supports this development, not only as a systemic descrip-

tion connecting non-trivial associations between phenotypic, genetic, and metabolic differences but also

by highlighting cellular processes that seem to be out of balance in M1152. These include upregulation of

ribosomal genes, most likely an effect of the rpoB mutation, and increased oxidative metabolism and

oxidative stress. As Act itself works as an electron acceptor one may hypothesize that its presence could

relieve some of this stress. Another approach is to reintroduce scbR2 to avoid influencing the related reg-

ulators of development and secondary metabolism.

Although S. coelicolor seems to have a complex and not fully elucidated regulatory system, several studies

have shown that manipulation of regulatory genes can affect the production of secondary metabolites

(Jones et al., 2011; Kim et al., 2003; Okamoto et al., 2003; Rodriguez et al., 2012). The complex regulation

of secondary metabolite biosynthesis makes rational strain design difficult (Liu et al., 2013), but black-box

approaches including random mutations and screening are still viable approaches for strain development

(van den Berg et al., 2008; Crook and Alper, 2012). The Sco-GEM can aid this development by predicting

the impact of these genetic alterations and to interpret ‘‘omics’’ data.

Limitations of the Study

We have performed a thorough comparison, of S. coelicolor M1145 and M1152, but to fully attribute

changes in metabolism to the different genetic modifications as well as to unravel possible epistatic inter-

actions we believe that a comprehensive analysis that also includes the intermediate strain M1146, and

possibly also an M145 strain featuring only the rpoB mutation (Xu et al., 2002), will be necessary.

Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Eduard J Kerkhoven (eduardk@chalmers.se).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

The models and scripts generated during this study are available at GitHub (https://github.com/

SysBioChalmers/Sco-GEM). Here, the latest version of the Sco-GEM is available in both YAML and
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SBML level 3 Version 1. In addition, users can contribute to further model development by posting issues or

suggest changes. The proteomics data are available from ProteomeXchange: PXD013178 via the PRIDE

partner repository (Perez-Riverol et al., 2019). Normalized proteome data are also available in Data S3.

The transcriptomics data are available from NCBI GEO: GSE132487 (M145) and GSE132488 (M1152).

Normalized counts are also found in Data S4.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplemental figures 
 

Figure S1: Reaction subsystems and origin, related to Figure 1A. The number of reactions in 

Sco-GEM in each of the 15 subsystems, and from which model they originate from. The other 

reactions (orange) are added during reconstruction of Sco-GEM.  

 

 

 

 

 

 

 

 

 

 

 

 



Figure S2: Gene clusters 

associated with metabolic 

switch, related to Figure 2C. 

RNA-seq (left column) and 

proteomics (right column) 

from M145 of the 8 gene 

clusters associated with the 

metabolic switch as previously 

identified (Nieselt et al., 2010).  

The 8 clusters are: A) genes 

related to ribosomal proteins; 

B) genes related to nitrogen 

metabolism; C) Cpk gene 

cluster; D) genes related to 

development; E) genes 

upregulated in response to 

phosphate depletion; F) genes 

involved in synthesis of 

phosphate-free polymers; G) 

Act gene cluster; H) Red gene 

cluster.   

 

 

 

 

 

 

 



 

Figure S3: Log-transformed expression levels of genes associated with nitrogen metabolism, 

related to Figure 2D. The order of the genes is determined by hierarchical clustering to align 

genes with similar expression profiles next to each other. From the log2-transformed RNA-seq 

data we observe that glutamate import (SCO5774-5777), the glutamate sensing system gluR-

gluK (SCO5778 and SCO57779), glnR (SCO4159) and glnA (SCO2198) are downregulated 

subsequent to phosphate depletion. The phosphate depletion occurs between the third and 

fourth time point, i.e. at 35 and 47 hours for M145 and M1152, respectively. We also observe 

that the first time point in M145 is very different from all other samples. 

 



 

Figure S4: Clustered heatmaps of Z-score based on CO2-normalized sum of fluxes of all 

pathways standardized within each pathway and separated into different subsystems / 

parts of the metabolism. Related to Figure 2D. A) Central carbon metabolism. B) Amino acid 

metabolism. C) Metabolism of vitamins and cofactors. D) Pathways of Biosynthetic gene 

clusters. E) Lipid metabolism. F) Oxidative stress. G) Degradation of toxic compounds. H) All 

other pathways. For all panels only pathway with a minimum flux of 1e-8 mmol (g DW)-1 h-1 

were included. 
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Figure S5: RNA-seq, proteome and flux prediction of specific gene clusters and reactions. 

Related to Figure 2, 3 and S7. A) This panel display increasing CO2-normalized flux through 

citrate synthase (CS) and isocitrate dehydrogenase (ICDHyr) at later time points in M145 as 

predicted by EcSco-GEM. These two reactions are both part of the TCA cycle, converting 

acetyl-CoA to citrate (citrate synthase) and isocitrate to alpha-ketogluterate (isocitrate 

dehydrogenase). B) Log2 normalized expression data of genes involved in oxidative 

phosphorylation for M145 (blue) and M1152 (orange). The average expression level is higher 

in M1152 than in M145 but increasing at later time points for both strains. The expression 

profiles are only partially overlapping along the x-axis (hours after inoculation) because of the 

reduced growth and therefore delayed cultivation of M1152. C-H) Comparison of log2 

normalized expression data as calculated with (log2 M145)-log2(M1152), where positive 

values indicate upregulation in M145 relative to M1152, and vice versa for negative values. C) 

Increased expression of genes of the AfsR regulon in M145, while no significant difference in 

expression is observed for (D) ScbR regulon; (E) AdpA regulon; (F) ArgR regulon; (G) genes 

induced by ppGpp; and (H) genes repressed by ppGpp. 

 

 



 

Figure S6: Biomass yield on glucose and glutamic acid, related to Figure 4. M1152 (orange) 

has a higher growth yield on glucose than M145 (blue). The yield on glutamic acid (dashed 

line) is similar between the two strains.  



 

Figure S7: Analysis of transcriptome data of genes, related to Figure 2, 3, S5 and S8, and 

cultivation data of M1146, related to Figure 7. A) The heatmap display the mean standardized 

log2 expression levels for the 7 clusters of differentially expressed genes as determined by 

unsupervised clustering (k-means). Cluster 1-3 are upregulated in M1152, while the last four 

E

RNAseq: SoxR regulon RNAseq: genes encoding ribosomal proteins



(cluster 4-7) are upregulated from the beginning or at later time points in M145. B-D) 

Comparison of log2 normalized expression data as calculated with (log2 M145)-log2(M1152), 

where positive values indicate upregulation in M145 relative to M1152, and vice versa for 

negative values. B) Genes in the SoxR regulon are reducing expression in M1152 at later time 

points. C) Almost all genes in the ATP-synthase cluster are up-regulated in M1152 after the 

first time point. D) The transcription of ribosomal protein genes after the metabolic switch is 

increased in M1152 compared to M145. E) Batch cultivation data of S. coelicolor M1146, 

showing volume corrected respiration (CO2), phosphate (PO4) and cell dry weight (CDW). Error 

bars are standard deviations of three biological replicates.  



 



Figure S8: Gene Ontology enrichment analysis of the 7 clusters identified in the 499 

differentially expressed genes, categorized by function into four clustered heatmaps. 

Related to Figure 4, 6 and S7A. Each heatmap shows the p-value for the enrichment of each 

GO-process. A) Genes related to reactive oxygen species, the ribosome or development 

process and cell wall formation. B) Oxireductase and iron / metal ion homeostasis. C) 

Regulation, biosynthesis and metabolism related to RNA and DNA. D) All other GO-

annotations. E) This color palette is the legend for the column colors on top of each heatmap 

which displays which of the seven clusters each gene belongs to. The red palette covers cluster 

1-3 (upregulated in M1152), while the blue palette covers cluster 4-7 (upregulated in M145). 

Note that no GO-processes were enriched for the genes in cluster 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S9: Comparison of normalization methods of randomly sampled fluxes, related to 

Figure 2D and 3D. Heatmap showing mean flux values normalized by A) total carbon uptake 

from glucose and glutamate, B) CO2 production, C) sum of all fluxes and D) growth rate. 

Because the mean flux values in these reactions are different by several orders of magnitude, 

we display the data as standardized values (for each reaction).  

 

 

 

 

 

 

 



 

Figure S10: Estimation of rates for M145 and M1152 from cultivation data, related to Transparent 

methods, Table S1 and S2. A and B) Exponential fit of the CO2 data to the exponential growth 

phase of M145 and M1152, respectively. C and D) Piecewise linear fit to estimate growth rates 

from the CDW measurements of M145 and M1152, respectively. E and F) Piecewise linear fit 

of glucose concentration in the cultivations of M145 and M1152, respectively.  G and H) 

Piecewise linear fit of glutamic acid concentration in the cultivations of M145 and M1152, 

respectively. I) Estimated production rate of undecylprodigiosin (Red) in M145.  

 

 



Table S1: Estimated cell dry weight (CDW) and growth, uptake and secretion rates for M145 

at the timepoints of the proteome samples, related to Figure 2D. The unit is mmol/g DW/h 

for the uptake / secretion rates.  

TAI Estimated 

CDW [g/L] 

Growth 

rate [h-1] 

Glucose Glutamic 

acid 

RED Germicidin-A Germicidin-

B 

21 0.517 0.246* -4.528§ -11.462§ 0 0 0 

29 3.007 0.103 -0.779 -1.973 0 0 0 

33 4.251 0.073 -0.551 -1.395 0 0 0 

37 5.301 0.009 -0.338 -1.116 9.60E-05 5.70E-05 8.00E-05 

41 5.487 0.008 -0.327 -1.078 9.20E-05 5.50E-05 7.80E-05 

45 5.672 0.008 -0.316 -1.043 8.90E-05 5.40E-05 7.50E-05 

49 5.845 0.003 -0.223 -0.803 8.70E-05 5.20E-05 7.30E-05 

53 5.918 0.003 -0.220 -0.793 8.60E-05 5.10E-05 7.20E-05 

57 5.991 0.003 -0.217 -0.784 8.50E-05 5.10E-05 7.10E-05 

*This is the maximal growth rate predicted from the exponential fit of the CO2 curve. The estimated 

rate from the linear fit of the CDW was unrealisticly high.  

§The values for the glucose and glutamate uptake rates are probably too high. 

Table S2: Estimated cell dry weight (CDW) and growth, uptake and secretion rates for M145 

at the timepoints of the proteome samples, related to Figure 3D. The unit is mmol/g DW/h 

for the uptake / secretion rates.  

TAI Estimated 

CDW [g/L] 

Growth rate 

[h-1] 

Glucose 
 

Glutamic 

acid 

RED Germicidin-

A 

Germicidin-

B 

33 1.379 0.140 -0.399 -3.017 0 0 0 

41 2.929 0.066 -0.188 -1.421 0 0 0 

45 3.704 0.052 -0.394 -1.415 0 0 0 

49 4.478 0.043 -0.382 -1.374 0 0 0 

53 4.835 0.007 -0.372 -1.336 0 3.00E-06 1.56E-05 

57 4.767 -0.005 -0.177 -0.772 0 3.10E-06 1.58E-05 

61 4.676 -0.005 -0.180 -0.787 0 3.10E-06 1.61E-05 

65 4.585 -0.005 -0.184 -0.803 0 3.20E-06 1.64E-05 



Transparent methods 
Sco-GEM consensus model reconstruction and development 
Sco-GEM, the community consensus model for Streptomyces coelicolor is developed, 

maintained, hosted and publicly available on GitHub 

(https://github.com/SysBioChalmers/Sco-GEM). When we refer to files in the following 

sections, we use the file names and relative to the main folder in this GitHub repository. By 

hosting the model on GitHub, we make the reconstruction transparent, the data accessible, 

provide a structure framework for further development by the community. To this end we  

also created a channel on Gitter dedicated to Sco-GEM questions and discussions 

(https://gitter.im/SysBioChalmers/Sco-GEM). The model repository was created using 

memote (Lieven et al., 2018) and we use a GitFlow structure with two main branches, the 

devel branch contains the most recent changes while the master branch contains the stable 

releases. All new features or bug fixes are performed in separate branches that are 

incorporated into the devel branch through pull requests. Semantics for branch names and 

commit messages are described in CONTRIBUTING.rst. The main script language for the model 

reconstruction is python (version > 3.6), with the exception being the feat/ecModel branch 

with the development of the enzyme-constrained model (EcSco-GEM) where Matlab (version 

> 7.3) is used.   

In terms of folder structure data files, scripts and model files are stored in 

ComplementaryData, ComplementaryScripts, and ModelFiles, respectively. In the main folder 

we find the following files: 

- .gitignore: File which describes file formats automatically ignored by git 

- .gitconfig: Git config file 

- .gitmodules: List of linked submodules 

- CONTRIBUTING.rst: Guidelines describing how to contribute 

- README.md: General information about the repository 

- HISTORY.rst: History of model version releases 

- LICENSE.md: License information 

- memote.ini: File created by memote (Lieven et al., 2018) 

- requirements.txt: List of python-packages required to run the model reconstruction 

https://github.com/SysBioChalmers/Sco-GEM
https://gitter.im/SysBioChalmers/Sco-GEM
https://nvie.com/posts/a-successful-git-branching-model/


- .travis.yml: Config file for automatization of memote with Travis (https://travis-

ci.org/) 

 

Sco-GEM can be reconstructed at any time using the python script 

ComplementaryScripts/reconstruct_scoGEM.py. Each task of the reconstruction process is 

performed in a separate script and associated with an issue on GitHub (Data Set S1, Tab 1). The 

details of each task are described in the following paragraphs.  

Curate identified issues in iKS1317 
We used iKS1317 (Kumelj et al., 2019) as the starting point for the reconstruction of Sco-GEM. 

Since the publication of iKS1317, several issues had been identified and these were curated as 

the initial step in the reconstruction pipeline. The curations include correcting the mass and 

charge balance of the reactions NOR_syn, OAADC, SEPHCHCS and DIOP5OR, and correcting 

the ec-code, KEGG annotation and gene association for the reactions 3OXCOAT, MMSYNB, 

PGMT, PPM, ME1, GLUDyi, GLUSx, GLUSy and GLUN. 

 

Curate and add reactions from Sco4 
The Sco4 GEM of S. coelicolor (Wang et al., 2018) contained additional reactions that we 

wanted to include in Sco-GEM. However, prior to adding content from Sco4 we curated issues 

that had been identified since publication. Eleven reactions were found to be either duplicated 

or wrong in Sco4, and these were removed: RXN0-5224, METHYLGLUTACONYL-COA-

HYDRATASE-RXN, GLU6PDEHYDROG-RXN, RXN-15856, 1.14.13.84-RXN_NADPH, R03998, 

R03999, R09692_NADPH, RXN-9930, 1.17.1.1-RXN_NADH, R09692_NADH. We additionally 

updated the gene annotations of the following reactions: RMPA, ABTDG, PROD2, THRPDC, 

ADCL, OXPTNDH, GLNTRS, CU2abc, CBIabc, CBL1abc, GSNt2, INSt2 and PDH. 

To enable addition of reactions from Sco4 (Wang et al., 2018) to Sco-GEM we mapped 

reactions added during the Sco4 development to reactions present in iKS1317 (Kumelj et al., 

2019). This mapping was performed semi-automatically: automatic mapping using KEGG and 

BioCyc annotations followed by manual curation. In total, 394 new reactions and 404 new 

metabolites were added from Sco4 to Sco-GEM (Data Set S1, Tab 5 and 6). Most of the 

reactions and metabolites added from Sco4 had IDs from the MetaCyc database (Caspi et al., 

https://travis-ci.org/
https://travis-ci.org/


2014), containing characters such as dash or parentheses not properly handled by the SBML 

parser in COBRApy (Ebrahim et al., 2013). Thus, the ID of all reactions and metabolites added 

from Sco4 were changed to the correct BiGG ID if possible, otherwise a new ID was created 

according to the guidelines given in BiGG (King et al., 2016). KEGG (Kanehisa, 2000) and 

MetaNetX (Moretti et al., 2016) identifiers were included as annotations when possible. Full 

lists of the IDs and annotations given to reactions and metabolites added from Sco4 are found 

in the GitHub repository folder ComplementaryData/curation as added_sco4_reactions.csv 

and added_sco4_metabolites.csv, respectively. 

 

Add gene annotations, reactions and metabolites to Sco-GEM from iAA1259 
Based on supplementary files 4 and 5 from iAA1259 (Amara et al., 2018) which list the 

reactions and metabolites added in iAA1259, we identified 44 reactions and 31 metabolites 

present in neither Sco4 or iKS1317 (Data Set S1, Tab 7 and 8). These 44 reactions were added 

from iAA1259 and were mainly related to coelimycin biosynthesis, xylan and cellulose 

degradation and butyrolactones pathway. We further incorporated the modification of 27 

reactions curated in iAA1259, associated with oxidative phosphorylation, futalosine pathway 

or chitin degradation (Data Set S1, Tab 9). These curations mainly updated gene-reaction rules 

but also updated reaction bounds and deletion of two reactions (CFL and DHFUTALS). Finally, 

we incorporated the biomass-function which was updated in iAA1259.  

Change direction of reactions that were backwards irreversible 
The pipeline for reconstruction of the enzyme-constrained model required all reactions to be 

either reversible or forward irreversible (i.e. reactions with bounds (-1000, 0) are not allowed). 

Therefore, all backward irreversible reactions were rewritten (substrates were changed to 

products and vice versa) so they could be represented as forward irreversible. 

Fix missing / wrongly annotated reactions and metabolites  
We identified several minor issues related to reaction and metabolite IDs or annotations. 

These may come from the current or previous model reconstruction efforts. These issues 

include: 

- Misspelled IDs or annotations 

- Empty annotations in SBML file 

- Wrong BioCyc annotations for metabolites and reactions in the germicidin pathway 



- Update all MetaNetX annotations 

- Exchange reactions given BioCyc annotations 

- Fix chebi annotations so they comply with the MIRIAM identifiers 

- Mixed up IDs for actACPmmy and malACPmmy 

 

Create pseudo-metabolites for NADH/NADPH and NAD+/NADP+ to use in reaction were the 
redox cofactor is not known 
For some redox reactions added from Sco4, it was not sure if NADH/NAD+ or NADPH/NADP+ 

was the participating cofactor pair. In this case, both possibilities were included in Sco4. 

However, to avoid duplicated reactions and make it explicit that the cofactor is unknown we 

changed these reactions to use pseudo-metabolites (acceptor_c and donor_c) as the cofactor 

pair. We then also included pseudo-reactions which converts NADH/NADPH and NAD+/NADP+ 

to donor_c and acceptor_c, respectively [pseudo-reaction IDs: PSEUDO_DONOR_NADH; 

PSEUDO_DONOR_NADPH; PSEUDO_ACCEPTOR_NAD; PSEUDO_ACCEPTOR_NADP). In total 17 

enzymatic reactions use these pseudo-metabolites as cofactor pair: 3OCHOCDH; OXCOADH; 

4DPCDH; 4HYDPRO; 4NITROB; AHLGAL; AHOPS; CADHX; DDALLO; DPCOX; GDP64HRD; 

HDAPMO; PHYFLUDS; HYTDES; SORBDH; ZCARDS; ZCAROTDH2. 

Add SBO terms to genes, reactions and metabolites 
SBO (Systems Biology Ontology) (Courtot et al., 2011) terms were included as annotations of 

reactions, genes and metabolites according to Data Set S1, Tab 10. 

 

 

Update the biomass reaction 
In iAA1259, the biomass reaction was curated in respect to 2-demethylmenaquinol and 

menaquinol, however, this resulted in a biomass reaction that combined described more than 

1 g per gDCW. In addition, the biomass reaction of all S. coelicolor models have described small 

molecule and protein co-factors/prosthetic groups as components, where their abundance 

was arbitrarily set to complement the remaining biomass components to reach 1 g per gDCW. 

This is likely a gross overestimation for many of these molecules, and this proved problematic 

for initial simulations with the enzyme constrained model. In contrast to enzymes of central 

carbon metabolism, enzymes involved in biosynthesis of such co-factors and prosthetic groups 



have typically lower efficiency, such that large fractions of the protein allocation would have 

to be devoted to these pathways if the abundances are overestimated. 

The availability of proteomics data has allowed us to give more reasonable estimates of 

abundance of protein-linked cofactors and prosthetic groups. The new biomass reaction was 

estimated through the following steps: 

1. By querying UniProt, a list of prosthetic groups per protein were collated 

(ComplementaryData/biomass/prosthetic_groups_uniProt.txt) and further processed 

(ComplementaryScripts/ecModel/prostheticGroups.m) as detailed below. 

2. If metal was specified as cofactor, the abundance was split over cobalt2+, cupper2+, 

iron2+, zinc2+, nickel2+, calcium2+, potassium+, magnesium2+ and manganese2+. 

3. Dipyrromethane is generated by the enzyme itself from its substrate and is therefore 

not further considered. 

4. From the M145 and M1152 cultivation data, quantitative proteomics was estimated 

as detailed below. 

5. Cofactor abundances were estimated by combining the estimated protein levels and 

the protein cofactor annotation (available at ComplementaryData/biomass/ 

prosthetic_groups_mets.txt) 

6. To simplify fitting of biomass components, the full biomass reaction was split into the 

pseudometabolites lipid, dna, rna, protein, carbohydrate, cell_wall and misc, with the 

latter containing the cofactors (ComplementaryData/biomass/standard_biomass.txt). 

7. After updating the abundances of the cofactors, the remaining misc metabolites were 

refitted to ensure that the total biomass adds up to 1 g per gDCW. 

The updated composition (ComplementaryData/biomass/biomass_scaled.txt) was 

subsequently used to modify the model stoichiometry (fix_biomass.py). A comparison of the 

updated biomass reaction and the biomass reaction in iAA1259 is presented in Data Set S1, 

Tab 2. 

 

Model reversibility 
By using the python-API (https://gitlab.com/elad.noor/equilibrator-api) of eQuilibrator 

(Flamholz et al., 2012) we calculated the change in Gibbs free energy for 770 reactions (Data 

https://gitlab.com/elad.noor/equilibrator-api


Set S1, Tab 3). eQuilibrator can only calculate the change in Gibbs free energy for intracellular 

reactions (i.e. not transport and exchange reactions) where all metabolites are mapped to 

KEGG (Kanehisa, 2000; Kanehisa et al., 2019). The calculations are based on the component 

contribution method (Noor et al., 2013). The change in Gibbs free energy was calculated at 

standard conditions (25 °C, 1 bar), pH7 and 1mM concentration of reactants, denoted ΔrG'm in 

eQuilibrator. We then applied a threshold of -30 kJ/mol to define a reaction as irreversible 

(Bar-Even et al., 2012; Feist et al., 2007), and compared the calculated reversibility with the 

reversibility of these reactions in the model prior to curation. We found that the reversibility 

was equal for 56.9% (438 / 770) of the reactions (Figure 1E). The majority of differences were 

reactions that were irreversible in the model but classified as reversible using the calculated 

values for the change in Gibbs free energy (35%; 273/770; Figure 1E). 

 Using the set of growth data and knockout data, we evaluated the effect of the suggested 

changes in reaction reversibility: by randomly applying these changes to 10 reactions at the 

time, we identified 13 single, 22 pairs and  13 triplets of reactions (consisting of 55 unique 

reactions) that reduced model accuracy when the reversibility was changed based on the 

change in Gibbs free energy (Data Set S1, Tab 11). Then we used the data set of growth and 

gene knockout phenotypes (Kumelj et al., 2019) to identify another 6 reactions that caused 

erroneous predictions if the reversibility were changed (PROD2, ARGSS, OCT, URIK1, URIK2, 

and UPPRT). These 61 reactions were discarded from having the reversibility 

changed, resulting in a total of 271 reactions with changed reversibility.  

Energetic cofactors, including ATP, NADPH, NADH, FAD and any quinone, were involved in 284 

of the 770 reactions for which the change in Gibbs free energy was calculated. Of the 114 

reactions involving ATP, 82 reactions had an estimated change in Gibbs free energy between 

±30 kJ/mol, indicating that the reactions were reversible. Because one assumes that ATP-

driven reactions in general are irreversible (Thiele and Palsson, 2010), the reversibility of these 

82 reactions were manually curated (Data Set S1, Tab 12). For the 7 quinone-associated 

reactions for which the change in Gibbs free energy was calculated (CYTBD2, NADH17b, 

NADH10b, MBCOA2, G3PD5, PDH3, NADH2r) all were defined as irreversible as previously 

suggested (Thiele and Palsson, 2010). The reversibility of reactions involving any of the other 

energetic cofactors were treated as any other reaction as previously described.  



Analysis and annotation of transport reactions 
Gene annotations, substrate and transport class information were mostly extracted from 

Transport DB 2.0 (Elbourne et al., 2017) and TCDB (Saier et al., 2016). Then, transport proteins 

were extracted from IUBMB-approved Transporter Classification (TC) System and categorized 

into 9 main classes (Figure 1F): 1) ABC transporter; 2) PTS transporter; 3) Proton symporter; 

4) Sodium symporter; 5) Other symporter; 6) Proton antiport; 7) Other antiport; 8) Facilitated 

diffusion; 9) Simple diffusion. For those transport proteins with an ambiguous substrate 

annotation in TCDB, the specific substrate annotation was obtain by extracting annotations 

from KEGG (Kanehisa, 2000; Kanehisa et al., 2019), UniProt (The UniProt Consortium, 2019) or 

through BLAST homology search (NCBI Resource Coordinators, 2017) using a similarity 

threshold of 90% (Data Set S1, Tab 4). 

Subsystem annotations 
We leveraged the KEGG and BioCyc annotations of each individual reaction to extract a draft 

subsystem and pathway annotation for each reaction. For KEGG, this was achieved by using 

the python module BioServices (Cokelaer et al., 2013) while we used PythonCyc 

(https://github.com/latendre/PythonCyc) and PathwayTools (Karp et al., 2016) to extract 

pathway annotations from BioCyc (Karp et al., 2019). 

The draft annotations were then curated, and each reaction was annotated to one out of 15 

subsystems. When no or multiple annotations were extracted from the databases we used 

adjacent reactions in the metabolic network to infer the single, most correct annotation. These 

15 subsystem categories are based on the categories of the KEGG Pathway Maps for 

metabolism (https://www.genome.jp/kegg/pathway.html) but we have included three 

additional categories to cover all aspects of the model: Biomass and maintenance functions, 

Membrane Transport, and Exchange (Figure S1). 

We also annotated 1964 of the 2552 reactions to one out of 128 different pathways. The 

remaining 588 are mostly transport and exchange reactions, or possibly reactions not fitting 

into any of these pathways.  

Export model file with alphabetical ordering 
An import feature with GitHub is the ability to easily see changes in text files after every 

commit. However, COBRApy (Ebrahim et al., 2013) doesn’t sort the list of reactions, 

metabolites and genes before the SBML-file is written and this make it look like there was a 

https://github.com/latendre/PythonCyc
https://www.genome.jp/kegg/pathway.html


lot of changes even when the model is unchanged. Thus, we now sort these lists before writing 

to file. The export function also stores the model-file in the YAML format which is more 

readable than SBML (XML). Finally, the export function creates the requirements.txt file which 

holds information about all non-standard python modules necessary to run the model 

reconstruction. 

 

Development of enzymatically constrained (EcSco-GEM) model 
An enzyme-constrained version of the Sco-GEM model (denoted EcSco-GEM) was generated 

using GECKO (Sánchez et al., 2017). The GECKO method enhances an existing GEM by explicitly 

constraining the maximum flux through each reaction by the maximum capacity of the 

corresponding enzyme, given by the product of the enzyme abundance and catalytic 

coefficient. Both reversible reactions and reactions catalysed by isoenzymes (redundant 

genes) are handled automatically by the GECKO method by splitting each occurrence into 

individual reactions. The Sco-GEM v1.1 model was modified using GECKO version 1.3.4. Kinetic 

data, in the form of kcat values (s-1), were automatically collected from BRENDA (Jeske et al., 

2019). If BRENDA did not report a kcat value for an enzyme, GECKO searched for alternative kcat 

values by reducing specificity, on the level of substrate, enzymatic activity (EC number) and 

organism.  

A total of 4753 kcat values were matched, including separate values for forward and backward 

direction for reversible reactions, of which: 

- 53 were matched with organism (S. coelicolor) and correct substrate 

- 1541 were matched with closest organism and correct substrate 

- 236 were matched with organism (S. coelicolor) and any substrate 

- 15 were matched with organism (S. coelicolor) and any substrate, reported specific 

activities instead of kcat (corrected in the model for molecular weight of the enzyme) 

- 2586 were matched with closest organism and any substrate 

- 322 were matched with any organism and any substrate, reported specific activities 

instead of kcat (corrected in the model for molecular weight of the enzyme) 

 

The algorithm first looped through these criteria above, with the full EC code. If no match 



could be found, wildcards were added (e.g. EC2.3.4.- instead of EC2.3.4.5), followed by going 

through the list of criteria above. The statistics there is: 

- 4178 were matched without any wildcards (full EC code) 

- 544 were matched after adding one wildcard 

- 21 were matched after adding two wildcards (e.g. EC2.3.-.-) 

- 10 were matched after adding three wildcards 

- 0 were matched after adding four wildcards 

 

Using the initial set of BRENDA-suggested kcat values, the model was evaluated to support 

simulation of experimentally measured growth rates. During this testing the NAD(H)/NAD(P)H 

pseudo-reactions were blocked to avoid infeasible loops. 

 The following kcat values were identified as growth limiting resulting in the stated manual 

curations: 

- Chorismate synthase (CHORS; EC4.2.3.5; SCO1496; Q9KXQ4) 

Sco-GEM uses 5-O-(1-Carboxyvinyl)-3-phosphoshikimate as name of the main 

substrate, while BRENDA uses its synonym 5-enolpyruvylshikimate 3-phosphate. This 

prevented automatically finding the substrate. Hence, the kcat was manually changed 

to 0.87 s-1, as measured from N. crassa (Rauch et al., 2008). 

- Phosphoribosylformylglycinamidine synthase (PRFGS; EC6.3.5.3; SCO4077 and 

SCO4078 and SCO4079; Q9RKK5 and Q9RKK6 and Q9RKK7) 

kcat suggested by BRENDA used NH4+ as substrate, instead of glutamine. Specific 

activity using glutamine is provided for E. coli: 2.15 μmol/min/mg protein (Schendel 

et al., 1989). Assuming molecular weight of 141 kDa, this translates to kcat = 5.05 s-1. 

 

- Methylmalonate-semialdehyde dehydrogenase (malonic semialdehyde) (MMSAD3; 

EC1.2.1.27; SCO2726; Q9L1J1) 

kcat suggested by BRENDA is from archaea, instead use kcat value of 2.2 s-1 from B. 

subtilis (Talfournier et al., 2011). 

 



- Phosphoribosyl-ATP pyrophosphatase (PRATPP; EC3.6.1.31; SCO1439; Q9EWK0) 

kcat suggested by BRENDA was calculated from specific activity in Salmonella enterica, 

but the reported value was measured in cell extract, not from purified enzyme. 

Instead, use specific activity from S. cerevisiae: 332 umol/min/mg protein (Keesey et 

al., 1979). Assuming molecular weight of 95 kDa, this translates to a kcat of 526 s-1. 

 

- Glyceraldehyde 3-phosphate dehydrogenase (Q9Z518/EC1.2.1.12) - assigned kcat from 

Corynebacterium glutamicum was highly growth limiting. Instead use specific activity 

measured of pentalenolactone sensitive gapdh in Streptomyces arenae: 112 

umol/min/mg protein (Maurer et al., 1983). 

Then, separate models were created for each strain (the gene clusters for actinorhodin, 

undecylprodigiosin, CDA and coelimycin P1 were removed to create M1152) and for each time 

point by using estimated growth, uptake rates of glutamate and glucose, secretion rates of 

undecylprodigiosin, germicidin A and B and proteome measurements. The estimated growth, 

uptake and secretion rates were estimated from raw measurements across three biological 

replicates (details provided in the last section). These time point specific models (9 time points 

for M145, 8 time points for M1152) were used to analyse the activity in individual metabolic 

pathways through random sampling (Bordel et al., 2010). We also created one EcSco-GEM 

model for each strain with a global constraint on the protein usage instead of specific protein 

usage, which were used for model quality control.  

Continuous integration and quality control with memote 
Validation and quality assessment of Sco-GEM is carried out using the test-suite in memote 

(Lieven et al., 2018). Memote provides by default a large range of tests, which we have used 

to identify issues and possible improvements. The test suite reports descriptive model 

statistics such as the number of genes, reactions and metabolites, and also checks the 

presence of SBO terms and annotations, the charge and mass balance of all reactions, the 

network topology and find energy-generating cycles (Fritzemeier et al., 2017). Additionally, 

we incorporated custom tests into the memote test-suite to automatically compare predicted 

phenotypes with experimental data in different growth media and for different knockout 

mutants. In addition to the classical binary classifiers accuracy, sensitivity and specificity we 

also report the Matthews correlation coefficient which is considered to be more reliable when 



the number of elements in each classification category is skewed (Chicco and Jurman, 2020). 

The Matthews correlation coefficient (MCC) is calculated from the true positive (TP), false 

positive (FP), true negative (TN) and false negative (FN) values as 𝑀𝑀𝑀𝑀𝑀𝑀 =

 𝑇𝑇𝑇𝑇 ⋅𝑇𝑇𝑇𝑇−𝐹𝐹𝑇𝑇⋅𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)⋅(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

. The experimental growth and knockout data are extracted 

from (Kumelj et al., 2019). As a separate evaluation, we applied another method for identifying 

internal and unrealistic energy-generating cycles (Noor, 2018) , and no such cycles were found 

in Sco-GEM. 

The simplest use of memote is generating snapshot reports showing the current state of the 

model. However, by integrating Travis CI [https://travis-ci.com/] into the gitHub repository, 

memote can be used to create a continuous report displaying how each commit affects the 

model quality. Memote version 0.9.12 was used in this work, and the memote snapshot report 

for Sco-GEM is given in the Supplemental Information. 

 

Random sampling, normalization and pathway analysis 
Because of the huge number of reactions in the EcSco-GEM, it is challenging to sample the 

solution space appropriately: we have chosen to use the method provided in the Raven 

Toolbox 2 (Bordel et al., 2010; Wang et al., 2018), which samples the vertices of the solution 

space. The drawback of this method is that it will not result in a uniform sampling of the 

solution space. However, it is more likely to span the entire solution space and also not prone 

to get stuck in extremely narrow parts of the solution space, which may happen with variants 

of the hit-and-run algorithm (Haraldsdóttir et al., 2017; Kaufman and Smith, 1998; 

Megchelenbrink et al., 2014). For each of the time points for each strain (17 different 

conditions in total) we constrained exchange reactions between 99% and 101% of the 

measured rates and generated 5000 random flux distributions with Gurobi as the solver. The 

reactions catalysed by isoenzymes were combined into the set of reactions in Sco-GEM and 

the reactions providing protein for each reaction. The mean of the 5000 flux distributions for 

each metabolic reaction was used in the following analysis.  

Finally, for each of the 17 conditions, the mean fluxes were normalized by the CO2 production 

rate. Then, the normalized mean fluxes were summarized for each metabolic pathway by using 

the curated pathway annotations, and we consider this a measure of the metabolic activity in 



each pathway. To ease visual interpretation of this data we used the function clustermap with 

default parameters in Seaborn version 0.9.0 (Michael Waskom et al., 2018) (which uses Scipy 

v1.3.1 (Virtanen et al., 2020)) to perform hierarchical clustering of pathways based on the 

metabolic activity in M145 (Figure 2D). We then kept this order in Figure 3D to enable strain 

comparison. 

Since glucose and glutamate uptake rates, as well as growth rates were significantly different 

in the two strains and at different time points, normalization of the data was necessary to 

compare flux distributions. We tested various proxies as indicators of overall metabolic activity 

for normalization, namely CO2 production; the total carbon uptake from glucose and 

glutamate; growth rate and mean flux value. As golden standard, we compared the fluxes 

through individual reactions that are well documented to change in M145 in response to the 

phosphate depletion (Figure S9). Normalization based on CO2 production was tested and gave 

similar results than the data normalized on total carbon uptake from glucose and glutamate 

(Figure S9A and S9B. The data normalized by the sum of fluxes showed similar patterns as 

those achieved by glucose/glutamate and CO2-normalized data but was noisier (Figure S9C). 

Considering the huge differences in growth rate, the growth-normalized data masked any 

other flux patterns (Figure S9D). The fact that different normalizations provided similar 

differences in metabolic fluxes proved that the inferred changes in metabolism were not 

artefacts of the normalization method but represent true metabolic activity of each strain.  

Strains, cultivation conditions, sampling procedures, and analyses of media components 
and secondary metabolites 
Experiments were performed using strain M145 of S. coelicolor A3(2) and its derivatives 

M1146 and M1152. The latter two are lacking the 4 major BGCs for actinorhodin (Act), 

undecylprodigiosin (Red), coelimycin P1 (Cpk), and calcium-dependent antibiotic (CDA), while 

M1152 is also carrying the pleiotropic, previously described antibiotic production enhancing 

mutation rpoB [S433L] (Gomez-Escribano and Bibb, 2011; Hu et al., 2002). All strains were 

kindly provided by Mervyn Bibb at John-Innes-Centre, Norwich, UK. 

Triplicate cultivations of the strains were performed based on germinated spore inoculum on 

1.8 L phosphate-limited medium SSBM-P, applying all routines of the optimized submerged 

batch fermentation strategy for S. coelicolor established and described before (Wentzel et al., 

2012). All media were based on ion-free water, and all chemicals used were of analytical grade. 



In brief, spore batches of M145, M1146 and M1152 were generated by cultivation on soy flour-

mannitol (SFM) agar plates (Kieser et al., 2000), harvesting by scraping off spores and 

suspension in 20% (v/v) glycerol, and storage in aliquots at −80 °C. 109 CFU of spores of each 

strain were germinated for 5 hours at 30 °C and 250 rpm in 250 mL baffled shake-flasks with 

2 g of 3 mm glass beads and 50 mL 2x YT medium (Claessen et al., 2003). The germinated 

spores were harvested by centrifugation (3200 x g, 15 °C, 5 min) and re-suspended in 5 mL 

ion-free water. An even dispersion of the germinated spores was achieved by vortex mixing 

(30 s), ensuring comparable inocula among biological replicas. Each bioreactor (1.8 liter 

starting volume culture medium in a 3-liter Applikon stirred tank reactor) was inoculated with 

4.5 mL germinated spore suspension (corresponding to 9x108 CFU). Phosphate-limited 

medium SSBM-P (Nieselt et al., 2010) consisted of Na-glutamate, 55.2 g/L; D-glucose, 40 g/L; 

MgSO4, 2.0 mM; phosphate, 4.6 mM; supplemented minimal medium trace element solution 

SMM-TE (Claessen et al., 2003), 8 mL/L and TMS1, 5.6 mL/L. TMS1 consisted of FeSO4 x 7 H2O, 

5 g/L; CuSO4 x 5 H2O, 390 mg/L; ZnSO4 x 7 H2O, 440 mg/L; MnSO4 x H2O, 150 mg/L; Na2MoO4 

x 2 H2O, 10 mg/L; CoCl2 x 6 H2O, 20 mg/L, and HCl, 50 mL/L. Clerol FBA 622 fermentation 

defoamer (Diamond Shamrock Scandinavia) was added to the growth medium before 

inoculation. Throughout fermentations, pH 7.0 was maintained constant by automatic 

addition of 2 M HCl. Dissolved oxygen levels were maintained at a minimum of 50% by 

automatic adjustment of the stirrer speed (minimal agitation 325 rpm). The aeration rate was 

constant 0.5 L/(L x min) sterile air. Dissolved oxygen, agitation speed and carbon dioxide 

evolution rate were measured and logged on-line, while samples for the determination of cell 

dry weight, levels of growth medium components and secondary metabolites concentrations, 

as well as for transcriptome and proteome analysis were withdrawn throughout the 

fermentation trials as indicated in Figure 2B. For transcriptome analysis, 3 × 4 ml culture 

sample were applied in parallel onto three 0.45 μm nitrocellulose filters (Millipore) connected 

to vacuum. The biomass on each filter was immediately washed twice with 4 ml double-

autoclaved ion-free water pre-heated to 30 °C, before the filters were collected in a 50 ml 

plastic tube, frozen in liquid nitrogen and stored at -80 °C until RNA isolation. For proteome 

analysis, 5 ml samples were taken and centrifuged (3200 x g, 5 min, 4 °C), and the resulting 

cell pellets frozen rapidly at -80 °C until further processing. 



Levels of phosphate were measured spectrophotometrically by using the SpectroQuant 

Phosphate test kit (Merck KGaA, Darmstadt, Germany) following the manufacturer’s 

instructions after downscaling to 96-well plate format. D-glucose and L-glutamate 

concentrations were determined by LC-MS using suitable standards, and measured 

concentrations were used to estimate specific uptake and excretion rates. Undecylprodigiosin 

(Red) levels were determined spectrophotometrically at 530 nm after acidified methanol 

extraction from the mycelium (Bystrykh et al., 1996). To determine relative amounts of 

actinorhodins (determined as total blue pigments, TBP), cell culture samples were treated with 

KOH (final concentration 1 M) and centrifuged, and the absorbance of the supernatants at 640 

nm was determined (Bystrykh et al., 1996). Quantification of germicidin A and B was 

performed using targeted LC-MS analytics. 

Proteomics 
Sample preparation and NanoUPLC-MS analysis 
Quantitative proteomics were performed using pipeline previously described (Gubbens et al., 

2012). Mycelium pellets for proteome analysis were thawed and resuspended in the 

remaining liquid. 50 μL re-suspended mycelium was withdrawn and pelleted by centrifugation. 

100 μL lysis buffer (4% SDS, 100 mM Tris-HCl pH 7.6, 50 mM EDTA) was added, and samples 

were sonicated in a water bath sonicator (Biorupter Plus, Diagenode) for 5 cycles of 30 s high 

power and 30 s off in ice water. Cell debris was pelleted and removed by centrifugation. Total 

protein was precipitated using the chloroform-methanol method described before (Wessel 

and Flügge, 1984). The pellet was dried in a vacuum centrifuge before dissolving in 0.1% 

RapiGest SF surfactant (Waters) at 95 °C. The protein concentration was measured at this 

stage using BCA method. Protein samples were then reduced by adding 5 mM DTT, followed 

by alkylation using 21.6 mM iodoacetamide. Then trypsin (recombinant, proteomics grade, 

Roche) was added at 0.1 μg per 10 μg protein. Samples were digested at 37 °C overnight. After 

digestion, trifluoroacetic acid was added to 0.5% followed by incubation at 37 °C for 30 min 

and centrifugation to remove MS interfering part of RapiGest SF. Peptide solution containing 

8 μg peptide was then cleaned and desalted using STAGE-Tipping technique (Rappsilber et al., 

2007). Final peptide concentration was adjusted to 40 ng/μL using sample solution (3% 

acetonitrile, 0.5% formic acid) for analysis. 



200 ng (5 μL) digested peptide was injected and analysed by reversed-phase liquid 

chromatography on a nanoAcquity UPLC system (Waters) equipped with HSS-T3 C18 1.8 μm, 

75 µm X 250 mm column (Waters). A gradient from 1% to 40% acetonitrile in 110 min (ending 

with a brief regeneration step to 90% for 3 min) was applied. [Glu1]-fibrinopeptide B was used 

as lock mass compound and sampled every 30 s. Online MS/MS analysis was done using Synapt 

G2-Si HDMS mass spectrometer (Waters) with an UDMSE method set up as described in 

(Distler et al., 2014). 

Data processing and label-free quantification 
Raw data from all samples were first analysed using the vender software ProteinLynx Global 

SERVER (PLGS) version 3.0.3. Generally, mass spectrum data were generated using an MSE 

processing parameter with charge 2 lock mass 785.8426, and default energy thresholds. For 

protein identification, default workflow parameters except an additional acetyl in N-terminal 

variable modification were used. Reference protein database was downloaded from GenBank 

with the accession number NC_003888.3. The resulted dataset was imported to ISOQuant 

version 1.8 (Distler et al., 2014) for label-free quantification. Default high identification 

parameters were used in the quantification process. TOP3 result was converted to PPM 

(protein weight) and send to the modelers and others involved in interpreting the data (Data 

Set S3). 

TOP3 quantification was filtered to remove identifications meet these two criteria: 1. 

identified in lower than 70% of samples of each strain and 2. sum of TOP3 value less than 1 × 

105. Cleaned quantification data was further subjected to DESeq2 package version 1.22.2 (Love 

et al., 2014) and PCA was conducted after variance stabilizing transformation (vst) of 

normalized data. 

Transcriptomics 
RNA extraction and quality control 
Bacteria were lysed using RNAprotect Bacteria (Qiagen) and following the manufacturer´s 

instruction. Briefly, filters containing bacteria were incubated with 4 ml of RNAprotect Bacteria 

reagent. After centrifugation, resulting samples were lysed using 500 µl of TE buffer (10 mM 

Tris·Cl, 1 mM EDTA, pH 8.0) containing 15 mg/ml lysozyme using 150-600 µm diameter glass 

beads (Sigma) agitated at 30 Hz for 5 minutes in the TissueLyser II (Qiagen).  



Total RNA was extracted using RNeasy mini kit (Qiagen) and 700 µl of the resulting lysate 

complemented with 470 µl of absolute ethanol. RNAase-free DNase set (Qiagen) and 

centrifugation steps were performed to prevent DNA and ethanol contamination. Elution was 

performed using 30 µl of RNase-free water and by reloading the eluate on the column to 

improve the RNA yield. The RNA concentration was measured using Qubit RNA BR Assay Kit 

(ThermoFisher Scientific), RNA purity was assessed using A260/A280 and A260/A230 ratio 

using the Nano Drop ND-1000 Spectrophotometer (PEQLAB). RNA Integrity Number was 

estimated using RNA 6000 Nano Kit (Agilent) and the Bioanalyzer 2100 (Agilent). 

Library preparation and sequencing 
A total of 1 µg of total RNA was subjected to rRNA depletion using Ribo-Zero rRNA Removal 

Kit Bacteria (Illumina). The cDNA libraries were constructed using the resulting tRNA and the 

NEBNext Ultra II Directional RNA Library Prep Kit (NEB). Libraries were sequenced as single-

reads (75 bp read length) on an Illumina NextSeq500 platform at a depth of 8–10 million reads 

each. 

RNA-seq data assessment and analysis 
Sequencing statistics including the quality per base and adapter content assessment of 

resulting transcriptome sequencing data were conducted with FastQC v0.11.5 (Andrews, 

2016). All reads mappings were performed against the reference strain of Streptomyces 

coelicolor A3(2) (RefSeq ID NC_003888.3). The mappings of all samples were conducted with 

HISAT2 v2.1.0 (Kim et al., 2015). As parameters, spliced alignment of reads was disabled, and 

strand-specific information was set to reverse complemented (HISAT2 parameter --no-spliced-

alignment and --rna-strandness "R"). The resulting mapping files in SAM format were 

converted to BAM format using SAMtools v1.6 (Li et al., 2009). Mapping statistics, including 

strand specificity estimation, percentage of mapped reads and fraction exonic region 

coverage, were conducted with the RNA-seq module of QualiMap2 v2.2.2-dev (Okonechnikov 

et al., 2016). Gene counts for all samples were computed with featureCounts v1.6.0 (Liao et 

al., 2014) based on the annotation of the respective reference genome, where the selected 

feature type was set to transcript records (featureCounts parameter -t transcript). 

Normalization and differential gene expression  
Raw count files were imported into Mayday SeaSight (Battke and Nieselt, 2011) for common, 

time-series-wide normalization. For this, the raw counts of all biological replicates of one strain 



across the time-series were log2-transformed (with pseudocount of +1 for the genes with zero 

counts) and then quantile-normalized. To make the two normalized time-series data of M154 

and M1152 comparable, they were again quantile-normalized against each other. The 

normalized RNA-seq data are provided in Data Set S4. 

Differentially expressed genes were identified by ANOVA using Orange (v3.2) and the 

bioinformatic toolkit (v), with FDR of <0.01 and a minimal fold enrichment >1 for at least one 

aligned time point. Genes with low expression (log2 < 5 for both strains and time points) were 

not considered for further analysis. The differentially expressed genes were subsequently 

scaled to the expression average and clustered by K-means. Visualization of genes and clusters 

were performed in python (v3.7) with matplotlib (v3.1.1). For this, the time-series of M145 

and M1152 were aligned such that in the visual representation, the expression profiles of the 

two strains are aligned relative to the time point of phosphate depletion. Both DAVID (Huang 

et al., 2009a, 2009b) and the string database (Szklarczyk et al., 2019) was used to evaluate the 

function of each cluster, identifying overrepresentation of function groups based on GO 

annotation or text mining. Identified differential clusters or regulons were extracted from 

literature and plotted (Data Set S2; Figure S8). When we display the RNA-seq data as 

heatmaps (Figure 6 and S3) the order of genes is determined by hierarchical clustering using 

methods as previously described for the clustering of pathways based on metabolic activity. 

Estimation of growth, uptake and production rates for Streptomyces coelicolor M145 
and M1152 from batch fermentation data 
The estimated growth, uptake and secretion rates are based on average values of online and 

offline measurements of batch fermentation from three parallel bioreactors for each strain.  

Growth rate estimation 
Both the CDW (cell dry weight) measurements and CO2 measurements can in principle be used 

to estimate growth rates, as there should be a linear relationship between the CO2 

concentration and cell mass. The CO2 concentration is measured online on a high-resolution 

timescale (5 min) while CDW is measured offline with a four-hour resolution starting from 18 

hours after inoculation.  

To estimate growth rates, we separated the growth into 5 different phases:  

1. Lag phase - immediate phase after inoculation with no / low growth 

2. Exponential growth - rapid growth after the initial lag phase 



3. First linear growth rate - until phosphate depletion 

4. Second linear growth rate – immediate phase after phosphate where there is still 

growth 

5. Third linear growth rate – no or very low growth 

From both Figure 2A and 3A we find a clear discrepancy between the CO2 curve and the CDW 

measurements after phosphate depletion. Thus, despite the lower resolution we decided to 

use the CDW measurements for the growth rate estimation except for the exponential growth 

phase. 

Exponential growth rate from CO2 

The exponential growth rate was estimated by fitting an exponential curve on the form  

𝑋𝑋(𝑡𝑡) = 𝑋𝑋0𝑒𝑒𝜇𝜇𝜇𝜇 

 to the selected region of the CO2 measurements (Figure S10A and S10B), leading to an 

estimated growth rate of 0.25 h-1 ± 0.06 h-1 and 0.18 h-1 ± 0.02 h-1 for M145 and M1152, 

respectively. The uncertainty is estimated in a heuristic approach by observing the minimum 

and maximum values observed when changing the boundaries for the fitted function. 

Linear growth rates from CDW 
The growth rate is estimated by fitting linear slopes to the three different linear phases of 

growth (Figure S10C and S10D). The specific growth rate is then calculated using the following 

equation 

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑋𝑋 →   𝜇𝜇 =
1
𝑋𝑋

 ⋅
𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

 

where µ is the growth rate, X the CDW and 𝑑𝑑𝑑𝑑
𝑑𝑑𝜇𝜇

 is the slope of the linear fit. Because the inverse 

of the CDW the rates can become very large when the cell mass is low, but we use the 

estimated growth rate in the exponential phase as an upper bound. Predicted growth rates 

and CDW estimates at the timepoints for the proteome samples are given for M145 and 

M1152 in Table S1 and Table S2, respectively.  

Uptake rates of glucose and glutamic acid 
The uptake rates for glucose and glutamate were also fitted using a piecewise linear function 

(Figure S10E-H). Using the same time intervals as for the CDW estimates gave a very poor fit 



for M1152 and we therefore decided to use different time intervals. From the fitted slopes we 

estimated the uptake rates using the equation given below: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝜇𝜇𝑠𝑠𝑋𝑋 

where S is the substrate, 𝜇𝜇𝑠𝑠 the uptake rate and X the CDW at the given time. The uptake rates 

at 21 hours after inoculation seems to be too low for M145 and is caused by a too low estimate 

of the CDW. The uptake rates for glucose and given for M145 and M1152 in Table S1 and Table 

S2, respectively.  

Undecylprodigiosin (RED) production rate 
We used the same method as for the uptake rates of glucose and glutamic acid to estimate 

the production rate of undecylprodigiosin (RED). The M1152 did not produce any RED (as 

expected). However, for the M145 the amount of undecylprodigiosin was measured both 

using MS (mass spectrometry) and OD (optical density). From the MS data it looks like the 

production of RED stops after approximately 53 hours, but from the OD measurements we 

observe a continuous increase until the end of the experiment. The hypothesis is that RED is 

continuously degraded into derivatives which are still measurable using OD but not using MS 

because of the different masses of the derivatives. Therefore, we have extrapolated the 

production rate of RED using the timepoints between 40 and 53 hours to estimate the 

production rate of RED at 57 hours (Figure S10I) .  

Germicidin A and B production rates 
Production rates of germicidin A and B were fitted using linear regression of the last 6 data 

points across all three biological replicates for M145 (Table S1). For M1152, only the measured 

concentrations at 45 and 65 hours after inoculation were used to estimate the production rate 

of germicidin A and B (Table S2).  

 

memote snapshot report of Sco-GEM 
The following report (next page) was prepared by running memote version 0.9.12 in the command-
line from the directory of the cloned Sco-GEM repository with the command: memote report 
snapshot –custom-tests ComplementaryScripts/tests 
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