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A B S T R A C T

Although the space charge model is commonly used to explain the high grain boundary resistance in proton conducting yttrium-substituted BaZrO3, it fails in its
simplest forms with factors 10–40 to fit experimental data with respect to the characteristic frequency of the grain boundary impedance. We suggest modifications to
the model, somewhat improving its fit. Including trapping effects of protons near yttrium substituents reduces the error only by factors less than 1.6. Increasing the
width of the grain boundary core reduces the error with factors of 1.5–3. Discretizing the space charge layer, such that protons can only reside on specific, discrete
sites, reduces the error with another factor of around 2. Considering reduced proton mobility in the GB by reducing its effective area may give a reduction in the
fitting error of a factor of 2. Varying the dielectric constant in the GB does not affect the error considerably. Neither each single modification, nor their combined
effect, can, however, account for the majority of the discrepancy between the space charge model and experimental data.

1. Introduction

Impedance spectroscopy consistently shows that proton conducting
yttrium-substituted BaZrO3 (BZY) grain boundaries (GBs) exhibit a
lower conductivity than the bulk region [1–7]. As no secondary phases
are observed at the GBs, the low conductivity is commonly attributed to
an intrinsic space charge effect: positively charged defects segregate to
the GB core, leading to a depletion of positive charge carriers in space
charge layers (SCLs) adjacent to the core. This is in line with the results
and conclusions also for other ceramic proton conductors, such as Y-
substituted BaCeO3 [8,9], alkaline-earth substituted LaNbO4 [10], as
well as a range of oxide ion conductors [11–15]. Moreover, similar
space charge properties have been reported for BZY surfaces and het-
erointerfaces [16–18].

Space charge modelling has largely rationalized the electrical
properties of BZY grain boundaries on a macroscopic scale
[1,2,11,19–22]. Notably, the ratio between the GB and bulk con-
ductivity (σgb/σ∞) decreases with increasing temperature [1,2]. Such
GB conductivity would be characteristic of a space charge layer, where
the charge carrier depletion becomes less prominent at higher tem-
peratures. While this temperature dependence may be a result of re-
duced mobility in the GB core, two experimental observations point in
the direction that space charge contribution, i.e., an effect of con-
centration rather than mobility, indeed is dominant. First, there is an
inverse correlation between yttrium concentration and the SCL width
[2]. According to the space charge model, higher yttrium concentration

reduces the screening length in the SCL. Second, impedance spectro-
scopy shows an inverse correlation between applied bias and GB ca-
pacitance [3,7]. Such behavior agrees with a space charge description,
and is difficult to explain if reduced mobility was the cause of the in-
creased GB resistance – the GB capacitance should then have remained
largely unchanged under applied bias [7]. Computationally, density
functional theory calculations consistently show segregation of effec-
tively positive point defects to the GB core [23–27]. Hence, there are
strong arguments for SCLs being responsible for a significant part of the
increased GB resistance in BZY. If this is the case, it should be possible
to model the aggregated GB impedance with a bottom-up approach by
summation of the impedances from individual SCLs, and fit such a
model to experimental data.

In this work, we show that the characteristic frequency of the im-
pedance predicted by the space charge model is not consistent with
experimental data, with a mismatch larger than one order of magni-
tude. Impedance spectroscopy data from the present work and previous
reports, as well as data from density functional theory calculations, are
utilized in the analysis. We discuss modifications in the space charge
model that may improve the fit. Specifically, we consider the effect of
1) proton trapping next to the yttrium dopant; 2) discretized SCL con-
centration profiles; 3) varying width of the GB core; 4) reduced mobility
of the GB core; and 5) varying dielectric constant in the SCL.
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2. Theoretical background

2.1. Derivation of the basic space charge model

For simplicity, we assume protons to be the dominant charge carrier
BZY throughout the paper, although oxygen vacancies also contribute
to the conductivity at higher temperatures and/or low water vapor
partial pressures [28]. Furthermore, we assume constant proton mobi-
lity in the GB region. With these two assumptions, the resistivity be-
comes inversely proportional to the proton concentration.

Fig. 1 shows the three distinct regions considered in the basic space
charge model. Due to structural distortions, point defects such as pro-
tons may be energetically more stable at the GB core, leading to defect
segregation and, consequently, charge accumulation, at the core. While
the GB core thereby acts as a trap for the excess protons, it can be
expected to exhibit negligible resistance due to its narrow width and
high proton concentration. To preserve the global charge neutrality of
the material, the positive core is charge compensated by the depletion
of protons in negatively charged SCLs adjacent to the core. The low
proton concentrations gives a high effective resistivity (ρgb), defined as
the average of the local resistivity, ρ(x), in the SCL. The bulk regions
adjacent to SCLs are charge neutral, with high, constant proton con-
centration, yielding high and constant proton conductivity (low re-
sistivity ρ∞).

The first step in the derivation is to find an expression for ρ(x) in the
SCL. Fig. 2 shows the relations between the quantities in the SCL model
for a positively charged GB core. By assuming electrochemical equili-
brium in the GB region, the local resistivity ratio in the SCL can be
taken as [2].

= =x c
c x

e x
k T

( )
( )

exp ( ) ,H

H B (1)

where Δϕ(x) ≡ ϕ(x) − ϕ∞ is the electrostatic potential relative to the
bulk potential, cH the bulk proton concentration, cH(x) the SCL proton
concentration, e the elementary charge, and kBT the thermal energy. An
expression for Δϕ(x) can be found by solving Poisson's equation. The
one-dimensional Poisson's equation in the SCL is

=x Q x( ) ( ) , (2)

where Q(x) is the charge density in the SCL. Assuming constant yttrium
concentration in the GB region (Mott-Schottky approximation) and that
the SCL is fully depleted of protons yields

=Q x e c x c x e( ) ( ( ) ( )) c .H Y Y (3)

With a constant charge in the SCL, Poisson's equation can be solved
analytically. Applying the boundary conditions Δϕ(λ∗) = Δϕ′(λ∗) = 0

gives its solution for 0 ≤ x ≤ λ∗ [1],
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From the above equations, we observe that the local resistivity ρ(x)
in the SCL is a function of the potential at the GB core, Δϕ(0). To de-
termine Δϕ(0), we assume that the entire GB resistance stems only from
SCLs. Furthermore, we assume that all GBs in the material have equal
resistance. With these assumptions, the basic space charge model can be
fitted to the experimental data in two different ways.

2.2. Fitting impedance data based on intrinsic or geometric parameters

The high GB resistance of BZY depends on both intrinsic and geo-
metric parameters, both of which can be extracted from impedance
spectroscopy measurements. The characteristic frequency describes the
intrinsic electrical properties of a material, and is found experimentally
as the peak frequency of a Nyquist plot. The ratio between the GB and
bulk characteristic frequency is

Fig. 1. Schematic of the GB region, with a positive GB core charge compensated by two adjacent SCLs. x = λ∗ marks the edge of the SCL region in the Mott-Schottky
approximation.

Fig. 2. The relations between the potential, the local resistivity and the effec-
tive resistivity in the SCL layer region. x = λ∗ marks the edge of the SCL region
in the Mott-Schottky approximation. To obtain the above plot, Eq. (1) is solved,
with Δϕ(0) = 0.5 V, T = 423 K, ϵr = 58 and 20 mol% yttrium substitution.

T. Bondevik, et al. Solid State Ionics 353 (2020) 115369

2



= = =R C
R C

,0,gb

0, gb gb gb gb gb (6)

where R is the resistance, C the capacitance, and ϵ the dielectric con-
stant. In the last step, we assume constant permittivity in the GB region.
The relevant geometric parameters appear in the expression for the GB
resistance,

=R
d

L,gb gb
gb

grain (7)

where δgb is the width of the GB region, dgrain the average grain size and
L the sample thickness. Here and throughout the paper the area of the
sample and electrodes is set to unity for simplicity. An acceptable model
describing the electrical response of a GB should satisfy both Eqs. (6)
and (7) simultaneously.

To fit the experimental data to the basic space charge model, our
first option is to fit with respect to intrinsic experimental parameters.
The left hand side of Eq. (6), ω0,gb,expt/ω0,∞,expt, is found experimen-
tally, where expt denotes experimental parameters. To fit the basic
space charge model to intrinsic parameters, we substitute the resistivity
expression on the right hand side of Eq. (6) with the resistivity ex-
pression from the basic space charge model (Eq. (1)), yielding

= e x
k T

x1 exp ( ) d ,0,gb,expt

0, ,expt 0 B

1

(8)

where we have used that = x x( )dgb
1

0 . The above equation can
be solved numerically by approximating the integral to Riemann sums;
its solution gives the modelled potential profile Δϕ(x) in the SCL. With
Δϕ(x) known, the local SCL resistivity ρ(x) can be found from Eq. (1).
This method is sometimes referred to as the resistivity ratio method
[29], used extensively in literature to extract GB potentials [1–3,12,13].

The second option is to fit the basic space charge model with respect
to the experimental geometric parameters. First, the left hand side of
Eq. (7), Rgb,expt, is found experimentally. Second, we insert the re-
sistivity expression from the basic space charge model (Eq. (1)) into the
right hand side of Eq. (7), yielding

=R
L

d
e x

k T
x

2
· exp ( ) d ,gb,expt

grain 0 B (9)

where the factor 2 is included to account for SCLs on both sides of the
GB core. This equation is solved similarly as Eq. (8), yielding Δϕ(x) and,
subsequently, ρ(x), in the SCL. To our knowledge, this method of ex-
tracting the GB potential has not been used in the literature. Eqs. (8)
and (9) do not necessarily give the same, or even similar, potential

profiles. As we will see, the subjective choice of fitting to either intrinsic
or geometric parameters may greatly affect the modelled impedance.

Using ρ(x) obtained either from Eqs. (8) or (9), the modelled im-
pedance from a single space charge layer can be found as [30].

=
+

Z x
j x
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d .gb
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The above equation can be solved numerically by approximating the
integral to Riemann sums. It is necessary to consider whether it is
reasonable to calculate the SCL impedance from a continuous resistivity
function, as done in Eq. (10). Our justification is based on our experi-
mental data, laid out in Supplementary information A.

3. Disagreement between experimental data and the space charge
model

3.1. Impedance comparison at a fixed temperature

First, we compare the modelled impedance with the experimental
impedance at a fixed temperature. The experimental data was obtained
from an impedance spectroscopy measurement on a BZY15 sample,
acquired at T = 423 K. Fig. 3a shows a Nyquist plot, comparing the
experimental data with the basic space charge model (subscript basic).
A fit with a constant phase element [31] and a resistor in parallel (also
shown) has been used to set Rgb,expt, and geometric parameters (Eq. (9))
have been used to find ρ(x). At first glance, the basic space charge
model seems to fit experimental data fairly well, as both datasets yield
similar, depressed semicircles. However, the frequency dependence of
the modelled impedance (Fig. 3b) is off by more than one order of
magnitude compared to the experimental data.

One possible source of error is that the exact experimental value
ω0,gb,expt is hard to retrieve, due to the impedance contribution from the
electrode at low frequencies. Note, however, that the frequency de-
pendency of the impedance from the electrode is quite separated from
the GB contribution (Fig. 3b), meaning that we can retrieve ω0,gb,expt

fairly close to its true value. Critically, the uncertainty in ω0,gb,expt is
much smaller than the difference between ω0,gb,expt and ω0,gb,basic.
Hence, we conclude that the basic space charge model does not re-
produce the experimental GB impedance at this temperature.

3.2. Characteristic frequency comparison as a function of temperature

Fig. 4a compares the basic space charge model with experimental
data as a function of temperature, where the relative fitting error
ω0,gb,basic/ω0,gb,expt is plotted. The basic space charge model was fitted

Fig. 3. Impedance spectroscopy results from the BZY15 sample at T = 423 K, comparing the basic space charge model with experimental results in a (a) Nyquist
(−Z″ vs Z′) plot, and (b) –Z″ vs ω plot, where CPE and el denotes constant phase element and electrode, respectively.
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with both approaches, i.e., based on intrinsic and geometric experi-
mental parameters. An overview of the experimental data is given in
Table 1.

When the SCL model is fitted to intrinsic data by Eq. (8), ω0,gb,basic is
too low by a factor of roughly 10–15. The value for ω0,gb,basic was de-
termined according to the following steps. First, Δϕ(0) was obtained by
fitting the basic space charge model to intrinsic parameters using Eq.
(8). Second, ρ(x) was obtained by inserting Δϕ(0) into the expression
for the local resistivity in Eq. (1). Third, ρ(x) was inserted into the ex-
pression for the modelled impedance in Eq. (10); the impedance was
modelled and the characteristic frequency extracted for comparison
with the experimental value. The large error in the ω0,gb,basic/ω0,gb,expt

ratio can be understood by considering the effective resistivity ρgb. The
local resistivity ρ(x) is very different from ρgb in most of the space
charge region (Fig. 2), with a high contribution from the innermost
atomic layers. Noting that ω0~1/ρ, we should expect a low ω0,gb,basic,
due to the dominance of the highly resistive innermost layers. Hence,
fitting the effective resistivity ρgb to the basic space charge model by Eq.
(8) will inevitably give a large error in the characteristic frequency.

Fig. 4b shows that the modelled GB resistance, Rgb, basic, is a factor
of 2–3 lower than the experimental value, when fitting to intrinsic
parameters. This error was calculated from two steps. First, the effective
resistivity ρgb was obtained using Eq. (8). Second, ρgb was inserted into
Eq. (7), and the modelled GB resistance was extracted for comparison
with the experimental value. Fitting to intrinsic experimental para-
meters gives significant errors in the basic space charge model in both
ratios, ω0,gb,basic/ω0,gb,expt and Rgb,basic/Rgb,expt. The discrepancy holds
for different doping levels and across a wide temperature range.

By fitting the basic space charge model to geometric parameters

using Eq. (9) it is possible to model Rgb,basic accurately, simply by ad-
justing Δϕ(0) until the right hand side of Eq. (9) equals Rgb,expt. While
this removes the error in Rgb,basic, it increases the error in ω0,gb,basic.
Fig. 4a shows errors of factors 20–40 when geometric parameters are
used for the fitting.

Hence, fitting to either intrinsic or geometric parameters yields
space charge models that poorly match experimental data. In the fol-
lowing section, we discuss how the poor fit can be explained by lim-
itations in the space charge model.

In the literature, fitting the model to intrinsic parameters with Eq.
(8) is the common choice; in this work from now on, we will rather fit
the model to geometric parameters through Eq. (9), for two reasons.
First, getting a correct Rgb,basic is then trivial, leaving ω0, gb,basic as the
single fitting parameter where the model should reproduce the ex-
perimental value. Second, one avoids using the somewhat arbitrarily
defined effective resistivity. In the SCL, ρ(x) varies with typically five
orders of magnitude, so using the average ρgb for impedance calcula-
tions is questionable. By instead fitting experimental data to geometric
parameters, this problem is bypassed.

4. Possible explanations for the disagreement

The basic space charge model presented until this point contains
several simplifications and does not take into account several phe-
nomena which may affect the GB impedance. We will now increase the
complexity of the model by introducing additional physical aspects at
the GB and different modelling approaches, and evaluate possible im-
provements in the fit to the experimental data.

4.1. Proton trapping

Experimental studies [32] and our DFT calculations in this work
suggest that it is energetically favorable for protons to associate next to
yttrium, described by the reaction (in Kröger-Vink notation)

+ +(Y O ) OH (Y OH ) O ,Zr O O
•

Zr O
x

O
x (11)

with corresponding equilibrium constant

Fig. 4. Space charge model performance as a function of temperature and doping concentration for (a) ω0,gb,basic/ω0,gb,expt ratio using intrinsic and geometric
parameters, and (b) Rgb,basic/Rgb,expt ratio using intrinsic parameters. Details about the samples are given in Table 1. The code used for the modelling is provided at
GitHub: https://github.uio.no/tarjeibo/bondevik-phd-thesis

Table 1
Details about the samples used in the modelling. The sample name refers to the
amount of yttrium doping in mol%.

Sample ϵ∞ dgrain [μm] δgb [nm] Reference

BZY5 66 0.24 12.4 Chen et al. [2]
BZY8 85 0.09 8.5 Chen et al. [2]
BZY20 58 0.40 4.9 Chen et al. [2]
BZY15 60 N/A N/A This work
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where ΔEt is the cluster binding energy, and cY, c(Y−H) and cO are the
bulk concentrations of unassociated yttrium, yttrium-proton clusters
and oxide ions, respectively. The above bulk concentrations are found
by imposing charge neutrality, cY = cH, and mass balance,
A = cY + c(Y−H), where A is the acceptor doping level.

By considering proton trapping, the concentration of unassociated
yttrium is reduced, leading to a less negative charge density in the SCL.
This will affect the modelled SCL impedance, as one would need a wider
SCL to compensate a given positive core charge. Most of the effect from
proton trapping, however, vanishes due to the positive GB potential.
With a positive potential, protons are strongly depleted, shifting the
equilibrium (Eq. (11)) to the left-hand side. As the charge density can
no longer be assumed to be constant in the SCL due to varying YZr′
concentration, Poisson's equation cannot be solved analytically. Pois-
son's equation was therefore solved numerically as a first order system
of ordinary differential equations (ODEs), applying the two boundary
conditions Δϕ(0) = Φ0 and Δϕ′(∞) = 0, where Φ0 is an initial guess of
the GB core potential. Φ0 was updated iteratively with small steps, until
convergence was reached. The convergence criterion is the same as in
Eq. (9), that is, when the modelled resistance equals the experimental
GB resistance (Rgb,expt). At each new Φ0, an additional iterative loop
was used to calculate cY(x), cH(x) and Δϕ(x) in the SCL, as these vari-
ables are interdependent through Eqs. (1), (2) and (12). Usually, five
iterations were sufficient to achieve convergence of this additional
loop. The trapping model is denoted trap, and basic* denotes a slightly
modified basic space charge model, solved as a system of ODEs with
varying proton concentration in the SCL. This modification is done to
enable valid comparison with the trapping model, and has a small effect
on the modelled characteristic frequency (ω0,gb,basic∗/ω0,gb,basic = 1.05).

Fig. 5 compares the basic space charge model with two cases where
trapping is considered, with cluster binding energies ΔEt = − 0.14 eV,
found from our DFT calculations (dilute limit), and ΔEt = − 0.30 eV,
found experimentally by Yamazaki et al. [32]. The comparison is done
by fitting the models to experimental data from the BZY20 sample, at
T = 423 K (see Table 1). Even though the bulk concentration of un-
associated yttrium varies substantially as a function of cluster binding
energy, they all approach the doping level of 20 mol% in the inner parts
of SCL due to the strong positive potential in this region. Consequently,
the proton concentrations in the inner parts of the SCLs are similar, and
the modelled characteristic frequency remains largely unchanged.

Using our computational binding energy ΔEt = − 0.14 eV yields
= 1.040,gb,trap

0,gb,basic
, and the experimental value from Yamazaki [32]

ΔEt = − 0.30 eV yields = 1.600,gb,trap

0,gb,basic
. Hence, considering trapping

only slightly affects the modelled characteristic frequency. It gives a
minor improvement by shifting the model somewhat closer to the ex-
perimental data, but not nearly enough to explain the discrepancy of
factors 20–30 for the BZY20 sample.

4.2. Discretization of the space charge layer

In the basic space charge model, a potential profile is determined,
and the proton concentration is evaluated as a continuous functional,
infinitely close to the GB core. In a real material, protons are located at
specific sites, and considering the proton concentration as a continuous
function infinitely close to the GB core can be considered unphysical. In
this modification of the space charge model, we discretize the SCL such
that protons are only allowed to be located a specific distances n · d
from the GB core, where d is the distance between the proton sites, and

…{ }( )n 1, 2, , nint d , with nint(x) being a function returning the
nearest integer to x. In such a model, the integral giving the impedance
in Eq. (10) is replaced by a sum with n elements. To determine a
plausible value for d, we note that the proton jump distance between
oxygen sites in BZY is roughly 1.6 Å ≈ a0/3. Hence, a reasonable value
for d can be around a0/3, or perhaps slightly lower, as the proton may
jump in directions not perpendicular to the GB plane.

By discretizing the SCL, the highly resistive region closest to the GB
core in the basic space charge model is omitted from the calculation of
the resistance. Thus, a larger Δϕ(x) is needed to satisfy our convergence
criteria in Eq. (9) that requires the modelled and experimental re-
sistances to be equal. Fig. 6a shows the potential and the proton con-
centration when discretizing the SCL using d = a0/3. The larger po-
tential in the discretized model yields a lower proton concentration in
most of the SCL. However, the minimum proton concentration is
roughly 4 times larger in the discretized model compared to the basic
model. Since c x( )0

1
H and the most resistive regions dominate

the contribution to the characteristic frequency, the discretized model
exhibits a higher characteristic frequency than the basic space charge
model (Fig. 6b).

Fig. 7 compares the characteristic frequency of the discretized
model with the basic space charge model as a function of temperature
for various plausible values of d. For d = a0/3, the ω0,gb,discrete/

Fig. 5. The effect of trapping on found by fitting the model against experimental data from the BZY20 sample at T = 423 K, showing (a) proton concentration as a
function of cluster binding energy and distance from the GB core, and (b) the imaginary impedance as a function of cluster binding energy and frequency. Note that
the proton concentrations in (a) are given relative to their bulk values, hence they approach 1 at the end of the SCL.

T. Bondevik, et al. Solid State Ionics 353 (2020) 115369

5



ω0,gb,basic ratio is around 2; for smaller d values, the effect diminishes as
the model becomes closer to the continuous basic space charge model.
Discretization also gives increased GB potentials, and the increase be-
comes larger for larger values of d. Although discretization does bring
the model closer to experimental values, the effect is modest, and not
nearly enough to explain the discrepancy of factors 20–30.

4.3. Widening the GB core

In the basic space charge model, the GB core and the SCL have been
treated separately: the GB core is simply defined as a very thin, posi-
tively charged region, and the SCL reaches infinitely close to the core,
with bulk structural properties all the way up to the core. In reality the
interface may not be as abrupt, and the transition between bulk and
core should most probably be more gradual. Our DFT calculated proton
segregation energies in the (210)[001] grain boundary suggest that
protons segregate towards multiple atomic planes in the GB region (see
Fig. 8a), with a range of different segregation energies. This means that
a segregation region wider than a single atomic plane, with varying
segregation energy [24], should be considered in a space charge model.
In this section, we will show how widening the GB core by applying
different segregation energy functions affects the modelled character-
istic frequency.

Our approach is to fit the segregation energy profile given in Fig. 8a
as a Gaussian function with the Python scipy library [33]. This function,
labelled Gaussian Fit A, can be written

=E x a
x µ

( ) exp
( )

2
.seg,A A

A
2

A
2 (13)

To study the GB width as a parameter, we introduce two additional
Gaussian functions to represent the segregation energy. Gaussian Fit B
has standard deviation σB = 2σA, expectation value μB = μA, with aB set
to satisfy

=
E x

k T
x

E x
k T

xexp
( )

d exp
( )

d .seg,B

B

seg,A

B (14)

Gaussian Fit C has standard deviation σC = 3σA, fitted to the same

constraints as Fit B. All three functions are shown together with the
segregation energy profile in Fig. 8a.

To assess the effect of the GB width, we applied the above segre-
gation energy functions in a space charge model hereafter referred to as
the Gaussian space charge model. The fitted segregation energy profiles
were used to numerically solve Poisson's equation with the Jacobi
method with the charge density

= =
+

Q x c x c c
E x x

k T
c( ) ( ) ·exp

( ) ( )
H A H,

seg

B
A

(15)

used throughout the entire GB region. Note that the artificial distinction
between the GB core and the SCL is no longer applied. Using the
boundary conditions Δϕ(−∞) = Δϕ(∞) = 0, Eqs. (2) and (15) can be
solved iteratively until convergence is reached when the system is
charge neutral.

Fig. 8b shows the resulting potential profile from the three different
segregation energy functions, modelled at T= 423 K. A larger standard
deviation in the segregation energy function gives a wider potential
profile, although the difference between Gaussian Fit B and C is small.
Notably, Fig. 8c shows the concentration of protons throughout the GB
region. Gaussian Fit A exhibits a small spread in the segregation en-
ergies. This gives a narrow charge profile, with the positively charged
GB core being less than 0.2 nm wide, and a strongly depleted region
next to the GB core. Gaussian Fit C has, in contrast, a wider segregation
energy profile, yielding a wider but less depleted SCL.

To assess the effect of the three segregation energy profiles, we
modelled the characteristic frequency (ω0,gb,wide) as a function of tem-
perature, where subscript wide denotes the Gaussian space charge
model. The space charge model with wide core due to a Gaussian
segregation profile was compared with the basic space charge model,
where Δϕ(x) was found by demanding equal GB resistances in the two
compared models, satisfying the condition

=
c

c x
x e x

k T
x

( )
d 2· exp ( ) d ,H,

H 0 B (16)

where the left- and right-hand sides represent Rgb,wide and Rgb,basic,

Fig. 6. The effect of discretizing the SCL, where d= a0/3 have been used to fit the models to experimental data from the BZY20 sample at T= 423 K, showing (a) the
potential and proton concentrations in the SCL, and (b) the imaginary impedance as a function of frequency.
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respectively. As shown in Fig. 9, the resulting ω0,gb,wide/ω0,gb,basic ratio
is in the range of 1.5–3, implying that widening the GB core improves
the fit with experimental data. Furthermore, the match with experi-
mental data improves with increasing width of the segregation energy
function. Still, ω0,gb,wide/ω0,gb,basic is fairly close to unity: widening the
GB core brings the space charge model in the right direction, but is still
far from explaining the discrepancy with experimental data.

Although considering a wider GB core probably more closely re-
sembles the physical properties of a GB, it has several disadvantages.
First, applying a Gaussian fit to the segregation energies requires – in
the case of Fit B and C – subjective user input in setting the standard
deviation parameter. Second, the model complexity is severely in-
creased, limiting its availability.

One could consider widening the segregation energy profile even
further than what we have done in Gaussian Fit C. This would have
reduced the discrepancy between the space charge model and the ex-
perimental data. However, transmission electron microscopy imaging
suggests that the GB core is around 1 nm wide [34], meaning that the
region of non-zero segregation energy should be roughly the same.
Hence, significantly wider segregation energy profiles than Gaussian Fit
C are probably not physically justifiable.

Importantly, the widening of the GB core and the discretization of
the SCL are not fully independent modifications. In both cases, the most
strongly depleted region close to the core is omitted from the resistance
calculation, and the effect on ω0,gb is expectedly similar. Hence, if ap-
plied simultaneously, their combined effect on ω0,gb is less than the

product of the individual effects.

4.4. Reduced GB core proton mobility

Up to this point we have neglected any impedance contribution
from the GB core. With the assumption of constant proton mobility μH
in the entire GB region, the impedance in the GB core becomes negli-
gible. This is seen from the expression for proton resistivity,

=
ec µ

1 ,
H H (17)

where cH is very large in the GB core, leading to a negligible GB core
impedance. When looking more closely, however, assuming constant
mobility in the GB region is a somewhat crude assumption.

The GB core is by definition a reduction in crystal symmetry, shown
experimentally to be an important parameter for proton mobility in
perovskites [28]. Furthermore, several computational studies show that
structural distortions give significantly reduced proton mobility across
the BaZrO3 GB core [26,27]. The remaining question is whether the
reduced mobility at the GB core can be visible in an impedance spec-
troscopy measurement. Even a very low GB mobility can be compen-
sated by a large proton concentration or a very thin GB core, and hence
have negligible contribution to the measured impedance.

In its simplest way, the reduced mobility can be described by
splitting the GB into a conducting part with bulk mobility, and a
blocking part with zero mobility. Considering the exponential

Fig. 7. The effect of the discretized model on the characteristic frequency (a) and the GB core potential (b) as a function of temperature, where the data was obtained
by fitting the models to the BZY20 sample.
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dependence on migration barrier (see Eq. (19) below), a region of es-
sentially zero mobility can be rationalized based on the large migration
barriers (and trapping/segregation energies) obtained computationally.
Letting Aeff,gb be the area of the conducting part, and A the total GB
area, Eq. (9) can be updated to

=R
L

d
e x

k T
x A

A
2

· exp ( ) d · .gb,expt
grain 0 B eff,gb (18)

A low conducting GB area Aeff,gb constraints the current and in-
creases the GB resistance for a given resistivity. This means that a lower
potential barrier Δϕ(0) is needed to fit the experimental data, reducing
the resistivity and thus increasing the characteristic frequency. Fig. 10a
shows ω0,gb,area/ω0,gb,basic as a function of Aeff,gb/A, where subscript
area denotes a space charge model with reduced effective area. As the
area with zero mobility increases, ω0,gb,area approaches the experi-
mentally measured value; at Aeff,gb/A= 0.5, the error in the basic space

Fig. 8. Part (a) shows DFT calculated segregation energies, with three segregation energy functions, where SD in the legend indicates different standard deviations
for the Gaussian functions. Parts (b) and (c) show the potential and proton concentration, respectively, for the different segregation energy functions, acquired at
T = 423 K.

Fig. 9. Comparing the Gaussian space charge model with the basic space charge model, showing (a) GB characteristic frequencies, and (b) the imaginary impedance
as a function of frequency, at T = 423 K.
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charge model is reduced with a factor of 2. The exact value of Aeff,gb/A
remains uncertain. In order to match the experimental data, however,
Aeff,gb/A has to be less than 0.05, which seems unreasonably low.

A second approach is to rather treat the proton mobility explicitly in
the impedance calculations. Let us define the ratio between the GB core
and bulk mobility as

=
( )
( )

µ
µ

µ

µ
E

k T

·exp

·exp
exp

E
k T

E
k T

core 0,core

0,

A

B

A

A

,core
B

,
B (19)

where μ0 is a pre-exponential constant involving proton hopping dis-
tance and jump frequency, assumed to be equal in bulk and core for
simplicity, and EA is the activation energy, with ΔEA ≡ EA,core − EA,∞.
By considering the total GB resistance as a series connection between
resistances from two SCLs and a GB core, Eq. (9) becomes

= +
+

R
L

d
e x

k T
x E

k T
2

· exp ( ) d
2

·exp .gb,expt
grain 0 B

core
2

core

A

B (20)

A derivation of the second term in the above expression shown in
Supplementary information B. Applying the expression yields the
characteristic frequency as a function of ΔEA (Fig. 10b), where subscript
mobility denotes a space charge model with reduced proton mobility
for three different GB core widths. The discontinuity in the plot occurs
because the core contributes to a second semicircle in the Nyquist im-
pedance plot. With increasing activation energy, the core semicircle
starts to dominate at some threshold, leading to a discontinuous shift in
the peak frequency ω0. At activation energies above this threshold we
no longer have a space charge model, as the total resistance is com-
pletely dominated by the GB core resistance, with Δϕ(0) = 0 (the
second term in the right hand side of Eq. (20) becomes larger than
Rgb,expt, yielding Δϕ(0) = 0). Hence, we can only consider activation
energies below that threshold within the framework of a space charge
model. With that, reducing the proton mobility only gives a minor
improvement (up to a factor of 1.5) on the modelled characteristic
frequency ratio.

One possible way to solve this discontinuity problem could be to
add inhomogeneity into the model, allowing different GB potentials
within the same sample. This would lead to a smearing of the Nyquist
plot, and possibly remove the discontinuity. However, introducing such
inhomogeneities is beyond the scope of this the present work, and
comes with its own problems, as it requires using even more fitting
parameters. Furthermore, it is reasonable to assume that the main

conclusion – that the modelled ω0 becomes too small because of the
highly resistive inner parts of the SCLs – will remain in such a model.

4.5. Dielectric constant

Strong lattice distortions close to the GB core is a good argument for
questioning the usual assumption of ϵgb = ϵbulk. Fig. 10c shows
ω0,gb,dielectric/ω0,basic as a function of dielectric constant in the GB re-
gion, where subscript dielectric refers to this model, where the di-
electric constant in the space charge layer, ϵgb, is varied relative to its
bulk value. Even with significant changes in ϵgb, the modelled ω0,gb,

dielectric remains largely unchanged, far from the experimental value.
Hence, any deviation from the ϵgb = ϵbulk assumption is not expected to
explain much of the discrepancy between the basic space charge model
and experimental data.

4.6. Gouy-Chapman approximation

Finally, we will briefly discuss the effect of the Gouy-Chapman
approximation, where the yttrium dopants are considered mobile. With
a positively charged GB core, negatively charged yttrium will accu-
mulate according to the SCL potential profile. It may be noted that a
frozen-in Y-profile may be more reasonable to consider for lower tem-
peratures. The Gouy-Chapman approximation gives a sharper potential
profile close to the GB core (Supplementary information C).
Consequently, the depletion of protons close to the core increases,
which leads to a reduction in the modelled characteristic frequency,
and an increase in the error compared to the basic space charge model
of up to a factor of 2.

Yttrium segregation towards the GB core may lead to reduced
proton mobility due to trapping effects, and may therefore affect the
characteristic frequency in the impedance data. The role of decreased
proton mobility in the SCL may be considered similar to widening of the
core and reduced core mobility, as covered in Sections 4.3 and 4.4.

5. Summary and conclusions

There is a large disagreement between the basic space charge model
and experimental data. Specifically, the characteristic frequency of the
basic space charge model deviates from experimental data with a factor
of 10–40, due to the dominant contributions from the highly resistive
innermost atomic layers closest to the GB core in the space charge
model. This implies that the basic space charge model is not able to

Fig. 10. The effect of (a) reduced effective GB area, (b) reduced GB proton mobility, and (c) varying dielectric constant on the modelled characteristic frequency and
GB potential, on the BZY20 sample at T = 423 K.
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correctly describe the impedance of a GB.
Even when we introduce additional free parameters and conduct a

targeted effort to improve the fit of the space charge model, we end up
with only minor improvements. Including proton trapping reduces the
fitting error of ω0, gb by a factor of 1–1.6. The effect of trapping is
modest because the cluster concentration is low in the SCL. Widening
the GB core reduces the fitting error of ω0,gb by a factor of 1.5–3.
Discretizing the SCL by only allowing the protons to be located at
specific sites reduces the fitting error of ω0,gb by a factor of around 2.
Considering lower GB core mobility by reducing the effective area of
the GB, reduces the fitting error of ω0,gb by a factor of around 2 if
Aeff,gb/A = 0.5; an appreciable fit was obtain only for a miniscule ef-
fective area of Aeff,gb/A = 0.05. Explicitly considering lower GB core
mobility in the impedance calculations gives a negligible reduction in
fitting error. Finally, setting ϵgb ≠ ϵbulk has a negligible effect on the
modelled ω0,gb.

Other modifications to the space charge model not included in this
work may, possibly, explain parts of the remaining discrepancy. One
option is to apply so-called Poisson-Cahn theory that includes para-
metrizations of defect-defect interactions when solving Poisson's
equation [35,36]. Another possibility could be to include current con-
straints on the atomic scale into the model. Since the GB core is highly
asymmetric, some proton migration paths are likely to have very low
mobility, which will lead to current constraints in the proximity of the
GB core. Previously, current constraint due to resistive GBs has been
modelled on the microscopic scale [37–39], and a similar approach on
the atomic scale may be fruitful.

By combining our independent modifications we arrive at a max-
imum improvement of a factor of roughly 10, meaning that the majority
of the initial discrepancy remains unexplained. We propose three pos-
sible outcomes. There exist other physically justifiable modifications of
the basic space charge model that aligns the model with experimental
data; one or several of the assumptions in our impedance calculations
from the basic space charge model are inaccurate or not correct and the
present results are hence not valid; or the basic space charge model
does not accurately describe GB impedance at the level of individual
GBs.

6. Methodology

The BZY15 sample was commercially produced by NORECS
(Norway), sintered with the SSRS method with 1 wt% NiO. The sample
diameter was 20 mm, with an electrode diameter of 10 mm and a
sample thickness 1.0 mm. For the impedance spectroscopy measure-
ments we applied a frequency range 0.1 Hz to 5 MHz in wet inert at-
mosphere, using a ProboStat sample holder cell produced by NORECS.

The DFT calculations were performed with the VASP code [40,41],
employing the generalized gradient approximation (GGA-PBE) [42] and
projected augmented wave method (PAW) [43] potentials. The calcu-
lations on the (210)[001] GB supercell, with dimensions

× ×a a a5 2 4 50 0 0, were performed in two steps. First, a defect free
GB supercell was relaxed with no volume constraints. Second, protons
were introduced to the relaxed supercell, and the energy was minimized
under constant volume conditions. The plane wave cut-off energy was
600 eV for volume relaxations and 470 eV for constant volume calcu-
lations, and the ionic relaxations was considered to be converged when
the residual forces were smaller than 0.03 eV Å−1. For the proton
calculations, a homogeneous background charge with opposite sign was
added to retain charge neutrality. We applied k-point densities of
3 × 3 × 1 according to the Monkhorst-Pack scheme. To find the cluster
binding energy, ΔEt, a bulk (5 × 5 × 5) cubic supercell was used with
defects far apart in the same cell, with a gamma centered k-point
density of 1 × 1 × 1.
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