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Abstract
As the end-users increasingly can provide flexibility to the power system, it is 
important to consider how this flexibility can be activated as a resource for the grid. 
Electricity network tariffs is one option that can be used to activate this flexibility. 
Therefore, by designing efficient grid tariffs, it might be possible to reduce the total 
costs in the power system by incentivizing a change in consumption patterns. This 
paper provides a methodology for optimal grid tariff design under decentralized 
decision-making and uncertainty in demand, power prices, and renewable genera-
tion. A bilevel model is formulated to adequately describe the interaction between 
the end-users and a distribution system operator. In addition, a centralized decision-
making model is provided for benchmarking purposes. The bilevel model is refor-
mulated as a mixed-integer linear problem solvable by branch-and-cut techniques. 
Results based on both deterministic and stochastic settings are presented and dis-
cussed. The findings suggest how electricity grid tariffs should be designed to pro-
vide an efficient price signal for reducing aggregate network peaks.
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1 Introduction

1.1  Background

The transition from traditional, inelastic, electricity demand to more flexible con-
sumers, means that the paradigm of demand as a passive load is no longer valid 
since demand can react to price signals. By introducing prosumers, who can both 
consume and produce electricity, the grid tariffs should provide efficient price sig-
nals to align the optimal end-user decisions with efficient utilization of the power 
system at a larger scale to avoid a sub-optimal outcome as demonstrated in [1].

Grid tariffs are mostly implemented as fixed amounts (€/consumer), volumetric 
charges (€/kWh), and possibly capacity-based (€/kW) charges. Although variations 
exist, electricity network tariffs can generally be reduced to these three fundamental 
structures [2]. A general issue regarding network tariffs is that there does not exist 
an ideal policy since it is necessary to balance efficiency with other aspects [3]. One 
principal problem of current grid tariff structures in Europe is that they primarily 
consist of fixed and volumetric charges. This is, as presented in [4–6], not a suf-
ficient proxy for the overall network costs since the main cost driver is the need for 
sufficient capacity to handle peak loads.

Capacity-based tariffs may be a prospective solution since they more accurately 
reflect the upstream grid costs than volumetric tariffs as argued in [7, 8]. However, 
a flat capacity-based tariff scheme provides incentives to stay below the maximum 
usage in all hours, regardless of the congestion in the network. Furthermore, a flat 
capacity-based tariff neglects the fact that the grid load usually is well below the 
capacity.

The overall research question we consider in this paper is: How can we, by using 
fairly simple network tariffs, incentivize flexible end-users to efficiently adapt their 
consumption patterns? We address the problems concerning flat tariffs and present 
a novel approach by formulating the electricity grid tariff design problem with a 
bilevel structure in the context of prosumers at the end-user level. Various network 
tariff structures are optimized subject to the prosumers best response in a game theo-
retical framework, which is benchmarked against a centralized system optimization.

1.2  Literature review

Overall, the existing literature modeling electricity grid tariffs can be assigned to 
two different groups. One major group focuses on the impact of various tariff struc-
tures for specific consumer types and technologies [9–12]. In general, this line of 
research is able to assess the impact of various tariff schemes on these stakeholders. 
The approach in this research area differs from our research because they treat the 
grid tariffs as exogenous parameters and do not attempt to design the tariffs opti-
mally by considering the consumers and the grid as an integrated system.

The second line of research is more closely related to our work, approaches the 
subject of electricity grid tariffs by determining an equilibrium between end-users 
and a grid entity (e.g., DSO). This means that it is necessary to consider a bilevel 
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problem. Using an equilibrium approach, [13–15] formulate a problem by defining 
the lower level as a system of optimization problems and iteratively calculating the 
tariffs until network costs equal the charges. The aforementioned approaches are 
limited to selecting the level of flat tariffs, and do not allow for consideration of dif-
ferent scenarios and determining off-peak periods since a loop-based model struc-
ture is employed.

Equilibrium models are widely applied to power market research because of the 
ability to represent various market structures and interactions between market par-
ticipants. The properties of the tariff design problem addressed in this paper are con-
sistent with Stackelberg-type games [16], which are characterized by a leader who 
moves first and one or more followers acting optimally in response to the leader’s 
decisions. Games with a Stackelberg structure can be formulated as mathematical 
problems with equilibrium constraints (MPECs) [17]. MPEC models are used for 
investigating aspects such as strategic investment decisions [18–20], strategic bid-
ding in electricity markets [21, 22] and for determining optimal generation sched-
ules and prices to minimize total consumer payments [23]

The MPEC approach has recently been used for various forms of indirect load 
control where some entity tries to induce a change in end-user behaviour through 
pricing mechanisms. In [24], the Stackelberg relationship between retailers and con-
sumers is formulated as a MPEC where the upper-level retailer tries to maximize its 
profit by choosing the price-signal subject to the response by consumers. Further-
more, [25] formulate a model of a similiar structure for the interaction between an 
EV aggregator and EV consumers.

In this paper we consider a DSO as the leader in a Stackelberg-type game. In 
this context, [26] formulates a DSO interacting with power markets to derive trading 
strategies. Furthermore the bi-level relationshop between a DSO and aggregators is 
modeled with direct contracting of the aggregator resources in [27]. The authors in 
[28] take a top-down approach by formulating a MPEC to determine the optimal 
DSO policy tailored to control feed-in to the grid. The policy mechanism is modeled 
directly as a technical limitation on each end-user rather than formulating price sig-
nals for indirect load control.

Although the MPEC formulation is increasingly being used in the context of 
decentralized energy resources, the related literature is limited and the authors have 
not identified any prior papers which formulate a MPEC approach for investigating 
indirect load control through grid tariffs to provide incentives for efficient end-user 
coordination.

1.3  Contributions

Fundamentally, grid tariffs is a price signal that comes on top of the electricity price. 
However, due to the need for simplicity, it is not possible to tailor the tariff for each 
time step. Rather, a structure where cost components are predictable for the end-user 
is needed.

In this work, we address the gap in the literature concerning tariff optimization as 
a tool for indirect load control and analyze how a fairly simple tariff scheme can be 
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used to activate end-user flexibility and efficiently reduce grid load by developing an 
MPEC. This paper provides a novel method of determining grid tariffs that can pro-
vide more efficient grid pricing and reduce total system costs. The primary contribu-
tions of this paper are as follows:

• Development of a stochastic MPEC model for optimizing electricity network 
tariffs subject to active end-users. The model formulates end-users responding 
to the tariffs determined by the DSO. Uncertainty is represented by stochastic 
demand, market prices, and PV output.

• Formulation of an electricity network tariff structure capable of incentivizing 
flexible end-users to efficiently shift their electricity consumption.

• Analyses that highlight the model features and assess how demand flexibility can 
be efficiently activated by grid tariffs in a setting with limited grid capacity and 
decentralized decision-making. The case studies are benchmarked against a sys-
tem optimal solution with centralized decision-making.

1.4  Structure of paper

The rest of this paper is structured as follows. Section 2 describes the leader and 
follower optimization problems and how these are coupled in an overall system. A 
description of both a system optimization model used for benchmarking and the 
MPEC formulation is provided. Furthermore, Sect. 3 describes reformulations and 
the computational setup used. Section 4 presents the case study results. Finally, con-
clusions are drawn in Sect. 5.

2  Model formulation

In this section, we formulate the lower-level and upper-level problems considered 
as part of the MPEC. Then, the resulting MPEC where the DSO decides the tariffs 
applied to the consumers as depicted in Fig. 1 is formulated.1 An explanation of the 
symbols used is provided in “Appendix 1”.

The variables of the lower level (end-user) problems can be adapted for each 
scenario. This means that the end-users do not consider the stochasticity since all 
their decisions are scenario-dependent. The uncertainty of the problem is considered 
in the upper level since the DSO needs to set the tariffs non-anticipatively, based 
on the different realizations of load, PV generation and power prices. Each realiza-
tion of the uncertain parameters induce a different response from the lower level. 
This forms a two-stage stochastic program within the bilevel structure of the MPEC 
model:

1 It is assumed that the DSO has detailed information about the end-users of electricity. However, this 
information might not be available in practice and an approximation of the end-user response would have 
to be formulated based on empirical data.
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• Planning stage: The DSO sets tariff levels and off-peak hours.
• Operational stage: The end-users decides how to operate flexible resources and the 

DSO decides if load needs to be curtailed.

2.1  Lower‑level formulation

The lower level comprise the end-users of electricity, which can be either consumers 
or prosumers. Lower-level decisions occur at the operational stage. The problem of the 
individual end-user is described as an optimization problem that is similar for both con-
sumers and prosumers. However, for regular consumers, many of the variables will be 
zero as there are no generation resources or flexible load. A fully passive consumer will 
simply exhibit the specified demand on the grid without any decentralized decision-
making involved. We indicate the dual variables associated with each of the constraints 
(5)–(9).

2.1.1  Objective function

We assume the objective of the end-users is to minimize their costs according to (1). 
Three scenario-dependent cost components are included: cost of purchasing power 
from the power market, CostP

c,s
 , taxes, CostT

c,s
 , and grid costs, CostG

c,s
 . Note that the 

actual grid costs are not considered at the end-user level since these costs are imposed 
indirectly through the network tariffs.

(1)Min ∶ Costc,s = CostP
c,s

+ CostT
c,s

+ CostG
c,s

Fig. 1  Structure of the modeled bilevel tariff optimization problem
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Where the components of (1) are defined in (2)–(4).

Note here the NM parameter that quantifies to which extent the electricity exports 
are subject to net metering:

• NM = 1 : The end-user only pays volumetric charge for net imports.
• NM = 0 : The end-user pays volumetric charge for all imports.
• NM = −1 : The end-user pays volumetric charge for both imports and exports.

2.1.2  Energy balance

The energy balance of the prosumer is described by (5) and states that energy imports 
subtracted exports must be equal to fixed and flexible demand subtracted generation 
from PV.

2.1.3  Flexible load

EV charging requires an amount of electric energy for each day. Therefore, (6) 
describes the total flexible load for each scenario. This means that a flexible consumer 
can choose when to consume the flexible load, as long as the total load across all hours 
in a scenario is equal to the specified amount.

The maximum flexible load during each time step is limited by (7). This is analo-
gous to EV charging capacity, which depend on the AC/DC converter.

(2)CostP
c,s

=

H∑

h=1

(eI
c,s,h

× (1 + VAT) − eE
c,s,h

) × Ps,h

(3)CostT
c,s

= (1 + VAT) × T ×

H∑

h=1

eI
c,s,h

(4)CostG
c,s

= (1 + VAT)

(
H∑

h=1

(eI
c,s,h

− NM × eE
c,s,h

) × vnt + cG
c,s

× cnt

)

(5)∀c,∀s,∀h ∶ Dc,s,h + d�+
c,s,h

− gc,s,h = eI
c,s,h

− eE
c,s,h

(�EB
c,s,h

)

(6)∀c,∀s ∶ D�−

c,s
=

H∑

h=1

d�+
c,s,h

(�FL
c,s
)

(7)∀c,∀s,∀h ∶ d�+
c,s,h

≤ U�+

c,s,h
(�FC

c,s,h
)
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2.1.4  Peak power

The capacity-based part of the grid tariff is based on the measured peak power that is 
either drawn from or injected to the grid. Therefore, the end-user has to subscribe to the 
maximum power according to (8). This determines the variable cG

c,s
 which is subjected 

to the capacity-based tariff. However, during the off-peak hours set by the DSO (if 
ops,h = 1 ), the constraint is relaxed to allow for increased grid utilization by not includ-
ing measurements during those hours in the calculation.

2.1.5  PV generation

PV generation is described by (9) and has the option of curtailing generation in the case 
of situations with an over-production.

2.2  MCP formulation of lower level

The optimization problems of the end-users are linear and with convex constraints. 
Due to these properties, the individual optimization problems can be replaced by their 
Karush–Kuhn–Tucker (KKT) optimality conditions formulated as MCP conditions in 
(10)–(19) below.

(8)∀c,∀s,∀h ∶ eI
c,s,h

+ eE
c,s,h

≤ cG
c,s

+ DMAX
c

× ops,h (�G
c,s,h

)

(9)∀c,∀s,∀h ∶ gc,s,h ≤ UPV
c

× Gc,s,h (�PV
c,s,h

)

(10)∀c,∀s,∀h ∶ (Ps,h + T + vnt) × (1 + VAT) − �EB
c,s,h

+ �G
c,s,h

≥ 0 ⟂ eI
c,s,h

≥ 0

(11)
∀c,∀s,∀h ∶ −Ps,h − NM × vnt × (1 + VAT) + �EB

c,s,h
+ �G

c,s,h
≥ 0 ⟂ eE

c,s,h
≥ 0

(12)∀c,∀s ∶ (1 + VAT) × cnt −

H∑

h=1

�G
c,s,h

≥ 0 ⟂ cG
c,s

≥ 0

(13)∀c,∀s,∀h ∶ �EB
c,s,h

− �FL
c,s

+ �FC
c,s,h

≥ 0 ⟂ d�+
c,s,h

≥ 0

(14)∀c,∀s,∀h ∶ −�EB
c,s,h

+ �PV
c,s,h

≥ 0 ⟂ gPV
c,s,h

≥ 0

(15)∀c,∀s,∀h ∶ eI
c,s,h

− eE
c,s,h

− Dc,s,h − d�+
c,s,h

+ gc,s,h = 0 ⟂ �EB
c,s,h

(16)∀c,∀s,∀h ∶ cG
c,s

+ DMAX
c

× ops,h − eI
c,s,h

− eE
c,s,h

≥ 0 ⟂ �G
c,s,h

≥ 0
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2.3  Upper‑level formulation

The upper level comprise the DSO which is responsible for connecting the end-users 
to the electricity grid. Upper-level decisions include determining the grid tariffs at the 
planning stage and curtailment of load at the operational stage.

2.3.1  DSO costs

The DSO is responsible for building and maintaining the electricity grid. The costs 
related to the DSO are network losses and load curtailment costs. These costs related to 
the DSO’s activities are described by (20).

2.3.2  Transmission of electricity

The DSO needs to transfer electricity at each time step according to the total imports or 
exports generated by the end-users described by (21).

It should be noted that due to the possibility of exports to the grid, (21) includes an 
absolute value function, which we handle as described in Sect. 3.1.1.

2.3.3  Interconnection capacity

The interconnection capacity needs to cover the electricity transferred less load cur-
tailment according to (22). It should be noted that the effect of load curtailment is 
neglected in the lower level problem because it is assumed that the curtailment cost 
considered by the DSO (VLL) represents the end-user cost of curtailment.

(17)∀c,∀s,∀h ∶ UPV
c

× Gc,s,h − gPV
c,s,h

≥ 0 ⟂ �PV
c,s,h

≥ 0

(18)∀c,∀s ∶

H∑

h=1

d�+
c,s,h

− D�−

c,s
= 0 ⟂ �FL

c,j

(19)∀c,∀s,∀h ∶ U�+

c,s,h
− d�+

c,s,h
≥ 0 ⟂ �FC

c,s,h
≥ 0

(20)CostDSO
s

=

H∑

h=1

(eG
s,h

× LG × Ps,h + lss,h × VLL)

(21)∀s,∀h ∶ eG
s,h

=

|
||
||
|

C∑

c=1

(eI
c,s,h

− eE
c,s,h

)

|||
|||

(22)∀s,∀h ∶ FG
≥ eG

s,h
− lss,h
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In the case of curtailment due to transmission arising from exports to the grid (grid 
capacity violated and eG

s,h
 is based on export), the load curtailment is interpreted as 

generation curtailment.

2.3.4  Total system costs

In the modeled system, costs occur both at the end-user and DSO levels. The total 
costs in the system are described by (23). The tariff costs are not included since these 
would be added to consumer costs and subtracted from the DSO’s costs, resulting in 
zero net contribution towards total costs. Therefore, neglecting cost recovery for the 
DSO, the grid tariffs are purely tools to incentivize end-user behavior in this model.2

2.4  System optimization model

The benchmark case is a system optimization where all decisions are made centrally. 
This would for example be the case if the DSO could directly control EV charg-
ing at the consumer level. The system optimization means that the bilevel problem 
is replaced by a linear problem which considers all costs and technical restrictions 
both at the DSO and end-user level directly. The system optimization is formulated 
below:

Subject to technical constraints (5)–(9) and (21)–(22).

2.5  Bilevel model

Similar to the system optimization, we consider that the DSO tries to maximize 
social welfare by minimizing total costs. Therefore, the DSO considers not only 
it’s own costs, but also the end-user costs. Contrary to the system optimization, the 
DSO can not directly control resources on the end-user level. Instead, the lower-
level response is included indirectly through the complementarity conditions. In this 
problem the DSO use indirect load control through tariffs to reduce the total system 
costs.

Using the previously defined equations, the bilevel model formulation becomes:

(23)TC =

S∑

s=1

A ×Ws ×

(

CostDSO
s

+

C∑

c=1

(CostP
c,s

+ CostT
c,s
)

)

(24)Min TC

(25)Min TC

2 Cost recovery for the DSO is not included. Cost recovery could be imposed through a fixed network 
tariff to collect the residual cost. Such a fixed network tariff would have no influence on our results since 
the end-users are unable to take any active measures to avoid it.
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Subject to technical constraints (21)–(22) and complementarity conditions 
(10)–(19).

Note that the objectives of the end-users and the DSO coincides. Despite this prop-
erty, it is not possible to translate the bilevel model to a single-level problem since we 
assume grid costs are passed on through grid tariffs rather than a perfect representation 
of the true DSO cost structure. Hence, the grid tariffs need to be optimized to provide 
the most efficient incentives that are possible within the boundary of the tariff design.

2.6  Limitations

This paper aims to tackle a complex issue on that span across different aggregation 
levels in the power system. The physical modeling of network and loads is simplified 
since the focus of this paper is on investigating different tariff structures to incentivize 
efficient temporal shifting of energy. Since we focus on balancing energy on an hourly 
timescale, voltage constraints are not considered. Furthermore, we consider the flex-
ibility to be represented through flexible EV charging where the specified amount of 
energy needs to be satisfied for each scenario.

Despite these limitations, the modeling results are insightful for the following 
reasons:

• The model is compatible with current pricing mechanisms that work on an hourly 
basis due to metering limitations. The model can also easily be adapted to sub-
hourly resolutions in the case of more frequent metering.

• EV charging represent a particularly flexible type of demand and should be consid-
ered when determining tariff policies.

• Realistic grid tariff structures that can potentially be implemented within existing 
regulatory frameworks are considered.

3  Solution approach

3.1  Linearization methods

The model formulated in Sect. 2.5 contain two sources of nonlinearities:

• Absolute value term in the upper-level constraint (21).
• Complementarity conditions (10)–(19) in the MPEC formulation (shown as ⟂).

The following sections will describe how the problem is reformulated to handle these 
computationally.

3.1.1  Line flow constraint

The amount of transferred electricity is described by an absolute value function 
(21) since it is the maximum of either imports or exports. However, since losses 
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have nonnegative costs with nonnegative power market prices, a cost minimizing 
DSO will select the lowest amount of grid transfer possible. Therefore, equality 
(21) can be replaced by inequalities (26)–(27), which does not include absolute 
value terms, as long as power market prices are nonnegative.

3.1.2  Complementarity conditions

The complementarity conditions on the form:

Can be replaced by:

Where � is a binary variable and M is a large enough constant. However, choosing 
an appropriate value for M is important for numerical stability, but can be a chal-
lenging task in itself [29]. To overcome the issues concerning a “big-M” formula-
tion, the complementarity conditions can also be transformed by using SOS type 1 
variables as presented in [30]. Hence, (28) can be reformulated into the following:

Where v+ , v− are SOS type 1 variables.
The SOS type 1 based approach provides a global optimal solution in a com-

putationally efficient way. In addition, we avoid having to specify an appropri-
ate value for M to ensure that the complementarity conditions are not violated. 
Therefore, complementarity conditions (10)–(19) are linearized using the SOS 
type 1 approach, forming a MILP.

(26)∀s,∀h ∶ eG
s,h

≥

C∑

c=1

(eI
c,s,h

− eE
c,s,h

)

(27)∀s,∀h ∶ eG
s,h

≥

C∑

c=1

(eE
c,s,h

− eI
c,s,h

)

(28)f (x) ≥ 0 ⟂ x ≥ 0

(29)f (x) ≥ 0, x ≥ 0, f (x) ≤ � ×M, x ≤ (1 − �) ×M

(30)f (x) ≥ 0, x ≥ 0

(31)u =
x + f (x)

2

(32)v+ − v− =
x − f (x)

2

(33)u − (v+ + v−) = 0
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3.2  Computational set‑up

The models are implemented in GAMS v27.3.0 and solved as LP for the benchmark 
case and MILP for the MPEC cases by CPLEX v12.9.0.0 on a personal computer 
with an Intel(R) Core(TM) i7-8850H 6-core CPU and 32GB of RAM.

3.2.1  System optimization

The system optimization is formulated as a linear problem which with the linearized 
line flow constraint can be solved directly by off the shelf optimization software.

3.2.2  MPEC

After the linearizations described in Sects. 3.1.1 and 3.1.2, the MPEC is reformu-
lated into a MILP with SOS1 variables to handle the complementarity conditions. 
The resulting formulation can be directly solved with commercial MILP solvers. A 
relative gap tolerance of 1% was used in all cases.

The MPEC is computationlly challenging and the tractable problem size is lim-
ited. This is mainly due to the following aspects:

• Linking of hourly problems within each scenario through the flexible charging 
constraint.

• Upper-level decisions such as tariff levels which affect all scenarios.

Despite the computational limitations, it is possible to use this framework to investi-
gate the efficiency of various tariff structures with flexible end-users.

4  Case studies

In this section, we present results for the following cases:

• SO: System optimal solution
• MPEC-F: MPEC with flat capacity based tariff ( ops,h fixed at zero).
• MPEC-P: MPEC with capacity-based tariff and scenario dependent off-peak 

period selection ( ops,h binary and decided by DSO). The off-peak periods does 
not have to be equal across all scenarios.

• MPEC-PN: MPEC with capacity-based tariff and off-peak period constrained by 
nonanticipativity ( ops,h = oph binary and decided by DSO). In this case, the off-
peak periods need to be the same in all scenarios.

MPEC-F is the case with the simplest form of a capacity-based tariff, where the 
measured peak load over all hours within a scenario determines the cost regardless 
of when it occurs. This creates an incentive for each end-user to flatten their load 
profile. In the MPEC-P and MPEC-PN case, we introduce the possibility of off-peak 
hours. Capacity usage during the off-peak hours are not measured so the end-users 
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can have a high load during these hours without incurring extra costs. Off-peak 
hours creates an incentive for load-shifting to these hours, which can be beneficial 
in the case of low-load periods or periods with high injection of renewable energy 
in the distribution grid. The difference between the MPEC-P and MPEC-PN cases is 
that in the first case the off-peak hours can be different for each scenario while in the 
latter case, the off-peak hours need to be equal across all scenarios. These cases are 
benchmarked against the system optimal model (SO) to assess the efficiency of the 
various tariff schemes.

We assume that end-users pay volumetric charges on imports, but not exports and 
that the electricity is not net metered. Hence, a parameter setting for NM of zero is 
used in this paper. This is in line with current practice in several European countries.

4.1  Deterministic example

For simplicity, we first consider a deterministic example of one scenario with a fixed 
and a flexible load and limited grid capacity. The scenario comprise one day with 
two segments which are denoted segment 1 and 2, respectively. Segment 1 comprise 
the first 12 h of the day, while segment 2 comprise the second 12 h. The fixed load is 
high in the first segment, and low in the second segment. Furthermore, the electric-
ity price is low in the first segment and high in the second segment. This means that 
we have a situation where fixed demand is high when electricity prices are low and 
opposite. Therefore, with limited grid capacity, it is beneficial for the grid if most of 
the flexible load occur in the high-price period to avoid load curtailment. An over-
view of the input data for the illustrative example is provided in Table 1.

Since we only consider one scenario, case MPEC-PN is not included in the illus-
trative example. All cases were solved in less than 1 minute. Results are provided in 
Table 2 and Fig. 2.

The benchmark case is SO, which takes a central planning approach. The MPEC 
cases can be compared to the SO case to assess the performance of the different 
tariff schemes. Regarding total costs, MPEC-P is equal to SO, while MPEC-F has 
higher total costs due to load curtailment occurring in segment 1. The load curtail-
ment can be explained by the flat tariff scheme in MPEC-F, which means that the 
prosumer has incentives to keep the maximum load as low as possible in any hour. 
Hence, the lowest peak load is obtained by dividing the total load of 70kWh by 24 
h, resulting in a flat load of 2.92kWh/h for the entire day. This operational pattern 
can be observed in Fig. 2b. Therefore, since the DSO is unable to provide any time-
dependent incentives, case MPEC-F results in load curtailment during the first seg-
ment of the day even though the load could be served in segment 2.

In contrast to MPEC-F, load curtailment is completely avoided in case 
MPEC-P since segment 2 is set as off-peak by the DSO. Hence, because of the 
off-peak period, the prosumer has incentives to shift most of the load towards 
segment 2, even though the power prices are higher in this segment. These find-
ings highlight a key problem with flat capacity-based tariffs since such tariffs 
will only incentivize each consumer to flatten their load profile individually. 
However, the peak grid load is the sum of individual loads which may not be 
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coincident with individual peaks. Another problem with a flat tariff scheme is 
that it will induce a change in end-user behaviour also when the grid has no 
need for a such flexibility, creating socio-economic losses due to the associated 
discomfort for end-users. This suggest that a flat capacity-based tariff do not 
reflect the true grid costs in an accurate way and that the incentives need to be 
more efficient. As such, introducing off-peak periods may be a prospective solu-
tion to communicate how load should be shifted in a coordinated fashion across 
multiple end-users.

Next, the aspects of decentralized generation and stochasticity concerning the 
realizations of load, generation and power prices are considered.

4.2  Stochasticity and decentralized generation

Next, we consider the case of residential load coupled with a PV generation 
and an EV charging facility. We assume consumer 1 is an inflexible residential 
load for 1000 m 2 of apartments. Furthermore, consumer 1 also has a PV system 
with an installed capacity of 50 kW. Consumer 2 is an EV charging facility who 
shares the grid connection with consumer 1. Since the grid connection is shared 
between these consumers, coordinated EV-charging can potentially be impor-
tant for the DSO, because it impacts the total load. However, the restriction on 
aggregate load can not be imposed directly on the end-users so such coordina-
tion need to be achieved through the grid tariffs.

Table 1  Input parameters for 
illustrative example

Parameter Symbol Value

Time horizon A 365 days
Fixed load in segment 1 D1,s,h 9 kWh/h
Fixed load in segment 2 D1,s,h 4 kWh/h
Flexible load D

�−
1,s
,D�−

2,s
0 kWh/day, 70 kWh/day

Transmission capacity FG 10 kW
PV generation G

c,s,h 0
Transmission losses LG 6%
Net metering coefficient NM 0
Market price in segment 1 P

s,h 0.05 EUR/kWh
Market price in segment 2 P

s,h 0.10 EUR/kWh
Electricity tax T 0.016 EUR/kWh
Flexible load limit U

�+

c,s,h
5 kW

PV capacity UPV

c
0 kW

Value-added tax VAT 25%
Load curtailment cost VLL 3 EUR/kWh
Scenario weight W

s
1
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Fig. 2  Illustrative example: operational decisions for centralized optimization and two different tariff 
structures with decentralized decision-making

Table 2  Illustrative example: 
key results

SO MPEC-F MPEC-P

Total costs (EUR) 9587 34222 9587
Cost change 0% +257% 0%
Curtailment (kWh) 0 8395 0
cnt (EUR/kW) NA 0.6 0.6
vnt (EUR/kWh) NA 0 0
Optimality gap Optimal 0.052% Optimal
CPU time < 1 min < 1 min < 1 min
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4.2.1  Input data

Input data for the stochastic cases is provided in Table 3. Demand data representing 
1000 m 2 of apartments is generated according to the methodology presented in [31]. 
We cluster the data into two representative days, or scenarios, by applying a hierar-
chical clustering algorithm. The algorithm minimizes the distance between two days 
using PV generation, demand, and electricity price for each hour of the day as obser-
vations. The scenario-dependent information, presented in Fig. 3, is: (1) load profile 
for fixed demand, (2) PV generation, and (3) power market prices. Furthermore, we 
assume that a current interconnection capacity of 25 kW exists, and that is is not 
possible to increase the interconnection capacity. Scenario 1 has an overall higher 

Table 3  Input parameters for the 
stochastic example

Parameter Symbol Value

Time horizon A 365 days
Fixed load D

c,s,h See Fig. 3
Flexible load D

�−
1,s
,D�−

2,s
0 kWh/day, 200 kWh/day

Transmission capacity FG 25 kW
PV generation G

c,s,h See Fig. 3
Transmission losses LG 6%
Net metering coefficient NM 0
Electricity price P

s,h See Fig. 3
Electricity tax T 0.016 EUR/kWh
Flexible load limit U

�+

c,s,h
20 kW

PV capacity U
PV

1
,UPV

2
50 kW, 0 kW

Value-added tax VAT 25%
Load curtailment cost VLL 3 EUR/kWh
Scenario weight W1,W2 0.493, 0.507
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Fig. 3  Input-data for the two scenarios considered in the stochastic example
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load than scenario 2 for consumer 1. Also, there is a significant variation of the fixed 
demand within the day. Therefore, to avoid load curtailment, it is preferable for the 
DSO if consumer 2 perform the EV charging when consumer 1 has a low load.

4.2.2  Results

Computationally, the main difference compared to the illustrative example is that 
more than one scenario is considered. When increasing the number of scenarios, 
the computational burden increases because some decisions at the upper level are 
nonanticipative. Hence, even though the lower-level problems are completely sce-
nario dependent, the overall bilevel problem can not be directly decomposed by the 
individual scenarios.

Figures 4 and 5 provide information about the operational decisions in scenario 
1 with a high fixed load and scenario 2 with a lower fixed load, respectively. Case 
MPEC-F, with a flat capacity-based tariff, gives a similar result as for the determin-
istic case since the flexible demand of consumer 2 is simply divided by the number 
of hours in the day to give the minimum charging capacity during each time step. 
This operational pattern can be observed in Fig. 4b, where the total load exceeds the 
interconnection capacity during some time steps. Therefore, with 200 kWh of charg-
ing during the day, the flexible load is 8.33 kWh for each hour. This results in load 
curtailment when the fixed demand is above 16.67 kWh per time step since the total 
capacity of 25kW would be exceeded. This occurs in scenario 1, but not in scenario 
2 as the fixed load of consumer 1 is low enough to allow for 8.33 kWh of charging 
during all time steps. Another observation is that during the middle of the day, the 
PV system at consumer 1 produces significant amounts of electricity by PV, which 
could be directly used for EV charging at consumer 2. However, due to the flat tariff 
structure, consumer 2 does not have any incentives to try to shift charging to these 
hours.

Some key results are provided in Table 4. It can be observed that total costs for 
cases MPEC-P and MPEC-PN comes close to the theoretically optimal result in case 
SO. The difference between MPEC-P and MPEC-PN is that in MPEC-P, the DSO 
can select off-peak hours for each scenario individually, whereas for MPEC-PN, the 
off-peak hours have to be equal for all scenarios. Similiarly to the illustrative exam-
ple, we observe that the volumetric tariff (vnt) is set to zero in all cases since the 
DSO is unable to use the volumetric tariff for providing efficient incentives. In the 
case of a cost-recovery criterion for the DSO, the volumetric tariff could be used for 
the purpose of collecting residual costs.

Operational patterns for case MPEC-P in scenario 1 is provided in Fig. 4c. We 
see that in contrast to case MPEC-F, the load for consumer 2 changes over time as 
a response to the off-peak periods set by the DSO. As a result, load curtailment is 
completely avoided since consumer 2 is incentivized to consume as much as possi-
ble when consumer 1 produce significant amounts of electricity from the PV system.

Having off-peak hours depend on the scenario might be unrealistic in practice due to 
the added complexity and need for frequently communicating the off-peak hours to the 
end-users. Therefore, Case MPEC-PN ensures that off-peak hours need to be equal for 
all scenarios by adding nonanticipativity constraints to the off-peak period selection. 
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The nonanticipativity constraint alters the operational patterns slightly as shown in 
Figs. 4d and 5d, but the overall benefit of including off-peak periods is intact. It should 
be noted that to simplify the examples, we consider the off-peak periods as a binary 
variable. In practical applications, a DSO might want to employ this in a partial way, 
by allowing a limited amount of extra capacity usage during certain hours with a low 
grid load. This way, potential issues related to rebound effects of load shifting can be 
reduced.
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Fig. 5  Stochastic example: operational decisions in scenario 2

Table 4  Case study: key results SO MPEC-F MPEC-P MPEC-PN

Total costs (EUR) 5850 10875 5949 5969
Cost change 0% +85.9% +1.7% +2.0%
Curtailment (kWh) 0 1594 0 0
cnt (EUR/kW-day) NA 0.13699 0.06743 0.07154
vnt (EUR/kWh] NA 0 0 0
Optimality gap Optimal 0.05% 1% 1%
CPU time < 1 min < 1 min 11.3 h 13.6 h
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5  Conclusions

In this paper, a methodology for optimal grid tariff design under decentralized 
decision-making is presented. The presented bilevel model include a realistic for-
mulation of the interaction between the end-user and distribution system operator. 
Uncertainty is included in the form of scenarios for fixed demand, PV generation, 
and electricity market prices. In addition, a centralized decision-making model is 
provided for benchmarking of the various tariff schemes.

An illustrative example to highlight the model features in a deterministic setting 
and a stochastic case study is presented. The case studies describes how flexible 
consumers can be incentivized to change their consumption patterns to reduce over-
all power system costs. By including off-peak periods, the flexible consumer can 
effectively be incentivized to shift the charging to off-peak hours and hours with sig-
nificant PV generation available at the local level. In contrast, a flat capacity-based 
tariff structure is not able to provide efficient incentives for load shifting.

Therefore, it can be concluded that in light of flexible end-users the electricity 
network tariff scheme should include a time-dependent capacity-based component 
such as partial or full off-peak hours to provide efficient incentives for load shifting.

The presented model is tractable, but computationally expensive. Despite this 
limitation, the model is a novel application of the MPEC formulation, tailored to 
investigating electicity grid tariffs under decentralized decision-making and uncer-
tainty. Further work is needed to speed up the calculations when increasing the 
amount of scenarios.
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Appendix: Nomenclature

This appendix defines the mathematical symbols used in the model.

Sets
c ∈ [c1,… ,C] Consumers
s ∈ [s1,… , S] Scenarios

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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h ∈ [h1,… ,H] Hours

Parameters

A  Time horizon considered (days)
Dc,s,h  Fixed load at consumer c in scenario s and time step h (kWh/h)
D�−

c,s
  Flexible load at consumer c in scenario s (kWh)

DMAX
c

  Peak electricity load at consumer c (kWh/h)
FG  Existing transmission capacity (kW)
Gc,s,h  Availability of PV at consumer c in scenario s and hour h (kWh/h/kW)
LG  Transmission losses (%)
NM  Net metering coefficient
Ps,h  Power market price in scenario s and hour h (EUR/kWh)
T  Electricity tax (EUR/kWh)
U�+

c,s,h
  Flexible load limit at consumer c in scenario s and hour h (kW)

UPV
c

  Installed capacity of PV at consumer c (kW)
VAT  Value-added tax (%)
VLL  Cost of load curtailment for DSO (EUR/kWh)
Ws  Weight for each scenario

Upper-level variables

cnt  Capacity-based network tariff (EUR/kW-day)
eG
s,h

  Total grid load in scenario s and hour h (kWh/h)
lss,h  Load curtailment in scenario s and hour h (kWh/h)
ops,h  Off-peak variable determined by DSO in scenario s and hour h
vnt  Volumetric network tariff (EUR/kWh)

Lower-level variables

cG
c,s

  Grid capacity subscribed at consumer c in scenario s (kW)
d�+
c,s,h

  Flexible load at consumer c in scenario s and hour h (kWh/h)
eI
c,s,h

  Energy imported from grid at consumer c in scenario s and hour h (kWh/h)
eE
c,s,h

  Energy exported to grid at consumer c in scenario s and hour h (kWh/h)
gc,s,h  Electricity generation from PV at consumer c in scenario s and hour h 

(kWh/h)
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