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Abstract: In carbon storage activities, and in shale oil and gas extraction (SOGE) with carbon dioxide
(CO2) as stimulation fluid, CO2 comes into contact with shale rock and its pore fluid. As a reactive
fluid, the injected CO2 displays a large potential to modify the shale’s chemical, physical, and
mechanical properties, which need to be well studied and documented. The state of the art on
shale–CO2 interactions published in several review articles does not exhaust all aspects of these
interactions, such as changes in the mechanical, petrophysical, or petrochemical properties of shales.
This review paper presents a characterization of shale rocks and reviews their possible interaction
mechanisms with different phases of CO2. The effects of these interactions on petrophysical, chemical
and mechanical properties are highlighted. In addition, a novel experimental approach is presented,
developed and used by our team to investigate mechanical properties by exposing shale to different
saturation fluids under controlled temperatures and pressures, without modifying the test exposure
conditions prior to mechanical and acoustic measurements. This paper also underlines the major
knowledge gaps that need to be filled in order to improve the safety and efficiency of SOGE and
CO2 storage.

Keywords: carbon dioxide (CO2); shale; chemical properties; petrophysical properties; mechanical
properties; sorption; physico-chemical interaction

1. Introduction

Shale rocks come in contact with carbon dioxide (CO2) when the latter is pumped underground
either for CO2 capture and storage (CCS) or for shale oil and gas extraction (SOGE) purposes [1].
In the case of CCS, the shale typically acts as a caprock (sealing) that protects the CO2 stored in a
reservoir underneath from escaping back to the atmosphere. In SOGE, the CO2 is used to enhance
natural gas production. It can be used either during the stimulation stage as a fracturing fluid or at
the secondary gas recovery stage as an extraction fluid displacing the natural gas and increasing the
extraction efficiency. In this case, the CO2 is pumped directly into the shale formations (using shale as
a reservoir).

1.1. Shale as a Caprock

Since approximately 1950, the concentration of carbon dioxide (CO2) in the atmosphere has
increased abnormally. It is widely believed that this increase is one of the main causes of current global
warming [2–4]. One of the solutions to combat this increase is to capture anthropologically emitted CO2

and store it in suitable reservoirs. Among the CO2 capture and storage (CCS) alternatives, geological
sequestration in high porosity reservoirs is currently the most mature technology to efficiently combat
climate change. The feasibility of CCS has been demonstrated in many successful projects (e.g., Sleipner
and Snøhvit in Norway and Decatur in the USA [5–9]). The injected CO2 is targeted to stay underground
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for a minimum period of 1000 years, with a leakage rate of less than 0.1% per year [10,11]. Suitable sites
are permeable reservoirs sealed by a nearly impermeable geological layer known as caprock. The role
of the caprock in CCS is to protect the stored CO2 from escaping back to the atmosphere [12]. An ideal
caprock should, therefore, be a non-porous, non-fractured, non-permeable, and non-reactive layer
that will stay intact for eternity, unperturbed by changes in the chemistry of the surrounding fluids,
the stress-field associated with injection, or tectonic movements. However, in practice, shale rocks
available as caprock, even with extremely low permeability, are sensitive to changes in temperature and
the chemical environment and remain susceptible to failure under certain stress conditions [13]. When
injected into a reservoir, CO2 first displaces the reservoir pore fluid (water or brine), some dissolves in
the pore fluid, and the rest remains as dry CO2. Through buoyancy forces, the injected CO2 migrates
upward and forms a plume underneath the caprock [14–17]. The caprock may thus come into contact
with dry or wet CO2, as well as CO2-saturated brine. The CO2-rich fluids can migrate through fractures
and faults and interact with shale via the different mechanisms described in Section 3.

1.2. Shale as a Reservoir/Source Rock

In order to extract oil and gas stored in very low permeability shale formations, stimulation is
required to increase the permeability of the rock for the faster and more efficient release of oil or gas.
This is done through induced fractures around a horizontally drilled wellbore by pumping a fracturing
fluid. Typical fracturing fluids are water-based [18]. However, due to the high water sensitivity of
many shale formations (see Section 2.3), water-free alternatives are highly recommended [19]. One of
the emerging alternatives is supercritical CO2 [20]. In this case, the CO2 is pumped directly into the
shale formations. As discussed in the literature, there are several benefits to using CO2 as a fracturing
fluid. The main advantages include: (1) elimination of harmful chemical elements, (2) mitigation
of formation damages caused by water-based fracturing fluids and rapid cleanup, (3) simultaneous
preferential CO2 adsorption over methane and thus enhanced gas recovery, and (4) storage of the
greenhouse CO2 in the shale formations [21,22]. In order to optimize CO2 stimulation and storage
processes in shale formations, a better understanding of CO2-shale interactions is needed.

1.3. CO2 Fluids in the Subsurface

Depending on the temperature and pressure in the reservoir, CO2 can occur in a gas, liquid,
or supercritical state. In subcritical conditions, i.e., those below the critical point (a temperature of
31.1 ◦C and pressure of 7.38 MPa), CO2 occurs in a gas or liquid phase [23]. CO2 in its supercritical
phase (above the supercritical point) has high diffusivity, low viscosity, a density close to that of a
liquid, high reactivity, and a higher ability to dissolve other substances compared to gaseous or liquid
CO2 [24,25].

The interactions between CO2-rich fluids and shale rock can lead to changes in the chemical
composition (mineralogy), petrophysical (e.g., porosity, permeability), and mechanical (e.g., stiffness,
strength) properties of the shale, which in turn may affect the shale’s performance as a sealing layer
and the efficiency of shale oil and gas extraction operations. The goal of this review is to present
the state of the art in research investigating the interactions between shale and CO2, to describe how
the exposure of typical shale caprocks or reservoir rocks to reactive fluids, such as dry CO2 and
CO2-saturated brine, will affect the chemical, physical, and mechanical properties of rocks. This is done
by combining different investigations on various shale rocks, including experiments and modelling,
and critically discussing the results. The recommendations are also highlighted for future studies in
this area, especially on experimental procedures for mechanical tests. This paper is divided into three
parts. The first part provides a thorough description of shale and its mineralogical, petrophysical,
and mechanical properties. The second part describes the physical and chemical mechanisms between
CO2 and shale. In the third part, the effects of these interactions on petrophysical (porosity, permeability,
etc.) and mechanical (strength, stiffness, etc.) properties are described.
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2. Shale Rock Characteristics

Shale is a laminated or fissile [26] fine-grained detrital sedimentary rock, formed by the consolidation
of clay, silt, or mud (Figure 1) [27]; it is also the most abundant sedimentary rock on Earth [28–30]. In rock
mechanics, shale can be defined as a rock where clay minerals form the load-bearing framework [31–33];
however, strictly speaking, freshly deposited clays are not shale. The lithological properties of shale
(e.g., the textural properties, elevated capillary entry pressure, and ductility) are mostly controlled by
the shale’s mineralogical composition [34]. Moreover, shales are highly inhomogeneous and anisotropic
due to their fine laminations and the constitutions of different clay minerals.
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Figure 1. Scanning electron microscope (SEM) image of a typical North Sea shale sample.

2.1. Mineralogical Properties of Shales

The complex and wide variety of composition types among shales can be attributed to their
different sources (i.e., different rocks, reliefs, and climate), the degree of weathering (decomposition from
the source rock and during transportation), the end-product of weathering and chemical interactions,
and biochemical additions [26,35]. Moreover, the alteration of some clay minerals occurs due to
chemical diagenesis with an increase in burial depth, creating greater complexity in shale composition.
The composition of shale is dominated by clay minerals, which are mostly hydrated aluminium silicate
with some replacement by iron and magnesium. Typical minerals in shale include (e.g., [26]) the
following:

• Kaolinite [Al4Si4O10(OH)8]
• Smectite/montmorillonite [(Na, Ca)0.33(Al, Mg)2Si4O10(OH)2n(H 2 O)]
• Illite [(K, H3O)(Al, Mg, Fe)2(Si, Al)4O10((OH)2 , (H2O))]
• Chlorite [~(Mg, Fe, Al)5−6(Si, Al)4O10(OH)8]
• Quartz [SiO2]
• Potassium/plagioclase feldspars [KAlSi3O8; (Na, Ca), Al (Al, Si) Si2O8].

Other minerals include biochemical carbonates (e.g., calcite, dolomite) along with iron-bearing
minerals (e.g., pyrite, siderite, and hematite). The presence of organic carbon makes certain shale
formations potential petroleum (oil/gas) sources and/or reservoirs (gas shale). The exchange of cations
in shales commonly occurs in clay minerals, which can be classified by their layered lattice structures.
Two-layer (1:1) lattice structures contain one tetrahedral and one octahedral layer (Figure 2), whereas
three-layer (2:1) lattice structures are made of one octahedral surrounded by two tetrahedral layers
(Figure 3). These layer units are linked together by water or cations. The layer charge depends upon the
substitution of cations in the tetrahedral or octahedral sheets [36]. Kaolinite group minerals generally
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have no (or very little) layer charge, whereas illite typically has a layer charge of less than 1 (0.7–0.9 per
O10(OH)4). Smectite possesses a layer charge between 0.2 and 0.6 per O10(OH)4. Kaolinite is known as
a neutral mineral, and its interlayer spaces are tightly bounded by hydrogen bonds, extending from
exposed hydroxyl ions in the octahedral sheet of one layer to the oxygen layers in the tetrahedral sheet
of the next layer. Almost no ionic replacement occurs at either the tetrahedral or the octahedral sheets
in kaolinite.
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In illite, the interlayer space is also bonded by two layers of water and large K+ ions, which are
not easy to substitute. On the other hand, the interlayer space in smectite generally contains two layers
of water and exchangeable cations (Na+, Ca+2). Due to the low layer charge in smectite, the smectite
expands when it comes in contact with fluids with higher fluid activities and is substituted by the
cation of preference (e.g., Ca+2 can be replaced by Na+). Smectite lattices shrink when native Na+ is
replaced by K+ in its interlayer space.

Therefore, the cation exchange capacity depends on the degree of layer charge and chemical
ability to exchange the cation in the interlayer space by foreign cations. The cation exchange capacity
(CEC) of clay minerals ranges from 1–10 mequ/100 g for kaolinite to 80–150 for smectites and 120–200
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for vermiculites [39]. Depending on the mineralogical composition of shale, its CEC values can differ
significantly. However, cationic substitution takes place not only in the interlayer space but also at the
tetrahedral or octahedral layer’s lattice. The transformation of clay minerals depends on the cationic
transformation/exchange in the layer’s lattice, which appears to occur with exposure to appropriate
conditions (e.g., pressure, temperature, and presence of a solution). As mentioned, shales also contain
organic carbon. Most shales contain a small percentage (typically less than 10%) of organic matter.
Organic matter is a source for a higher porous area within low porosity shales, but this porosity
depends on the maturity of the organic matter.

2.2. The Petrophysical and Mechanical Characteristics of Shale

The petrophysical properties of shale include, among others porosity, permeability, grain size and
shapes, and a specific surface area. The two most important parameters are porosity and permeability.
Pore space (intrinsic void or fractures) are the storage sites for gas/liquid. The porosity of freshly
deposited mud can be as high as 70% [40] and can be reduced to about 30% beyond a few hundred
meters depth [41] and as low as below 10% at larger depths [42,43]. The porosity of shale depends on
the depth of its burial (compaction), as well as its mineralogical composition, texture, and degree of
diagenesis. The connective pores, along with existing fractures, create the pathway for fluid migration
and thus contribute to the permeability of the rock. The physical and chemical interactions of fluids
with shale strongly depend on the shale’s porosity and permeability. Therefore, it is worthwhile
to understand permeability when analysing any effect of fluid (such as CO2) on argillaceous rocks,
such as shale. Unfortunately, it is very difficult to achieve reliable permeability measurements for
shales, given their fine pore sizes and complex structures [35,44,45]. In addition, the permeability
relative to different fluids (gas or liquids) is different for the same rock sample. Shales exhibit
very low hydraulic permeability, and this value varies widely, ranging from nanoDarcy (nD) to
microDarcy (µD) [46]. The equation derived by Kozneny [47] and later modified by Carman [48]
indicates that permeability is a function of porosity, fluid viscosity, grain size and shape, tortuosity,
the pressure gradient across a cross-section, and the specific surface area. However, for CO2 storage
integrity, scale-dependent permeability may be worthy of note. Many laboratory-derived permeability
measurements underestimate the large (reservoir) scale permeability [49], which can be attributed
to the existence of fractures and non-clay minerals [45]. Scale dependency has also been reported
by several authors (e.g., Bredehoeft et al. [50], Rudolph et al. [51], and Keller et al. [52]). However,
Neuzil [45] showed that the permeability scale-dependence in argillaceous rocks is not present at an
intermediate scale, but it may be present at very large regional scale. It is also important to study the
fracture network of the sealing material since there is field evidence (e.g., [53]) of fluid movement
through fracture networks, which may even lead fluids all the way up to surface (e.g., Bond et al. [54],
Ingram and Urai [55], and Lewicki et al. [56]).

A few more physical or mechanical characteristics of shales are worthy of mention, such as
capillary entry pressure, strength, stiffness, acoustic velocity and anisotropy [57] (acoustic and
strength), wettability, etc. As mentioned earlier, capillary entry pressure is one of the most important
properties to ensure that shale is sealed and to quantify the maximum height of the injected CO2

column that can be held in the reservoir [34,58,59]. A higher capillary entry pressure of shale restricts
the movement of the fluid (e.g., CO2), which in turn restricts the available space for the fluid to react
with the shale [59]. The potential leakage of CO2 through caprock could occur by diffusion, capillary
breakthroughs, or by fracture flow; among these mechanisms, the latter two dominate [60–62]. These
seepages could create potential available space for CO2–shale interactions inside the shale formation
(the seal), in addition to the contact area between the seal and the reservoir. The capillary entry
pressure is directly related to the permeability of the shale material, the interfacial tension between
the shale wetting fluid and the non-wetting fluid, and the cation exchange capacity [63]. The very
low permeability, very small pore throat radius, and higher cation exchange capacity of the shale
contribute to a very high capillary entry pressure for any non-wetting fluid to enter into the generally
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water-wet shale [55,63,64]. The fluid-flow and fluid-recovery efficiency in shale reservoirs can also
be affected by shale wettability [65–67]. However, the wettability of shale is still ambiguous, ranging
from oil-wet to water-wet [66]. This can be modified by the interplay of various factors, such as pH,
temperature, and surface access [67]. Since fine-grained sediments (mud/shale) are deposited in a
marine environment, the shale is expected to be water-wet [68]. However, the presence of mature
organic matter may cause local oil-wet patches [69].

Among the many characterization parameters, stiffness, strength, and acoustic velocities will be
briefly discussed in this review article. These parameters are generally related to the porosity, density,
mineralogy (mainly clay content), and heterogeneity of shale materials. Stiffness is a very important
parameter in geomechanics to understand the deformability of rock and can be obtained from static
(stress–strain) or dynamic (acoustic velocities) measurements. The stiffness parameter can bridge the
geomechanical parameters and seismic parameters (velocity). The number of stiffness parameters
needed to define a rock depends on the rock’s anisotropy. For an isotropic linear elastic material, only
two parameters are required to characterize the material: Young’s modulus and Poisson’s ratio or the
shear and bulk moduli. However, when the material is anisotropic, the number of stiffness parameters
increases significantly (to a maximum of 81). However, shale can be approximated as a transversely
isotropic (TI) material where the properties of the rock are similar in two horizontal axes (x- and y-axis)
but different from its vertical axis (z-axis) (e.g., x = y , z). The number of the stiffness parameter in
the case of TI is 5 (for more details, see Fjær et al. [31]). Very few articles have reported the effects
of CO2 on stiffness parameters. Both the Young’s modulus and Poisson’s ratio were investigated by
Agofack et al. [70] and Espinoza et al. [71], but only changes in Young’s modulus was reported by
Lyu et al. [72]. More detailed discussions on CO2‘s effect on shale stiffness are presented in Section 5.2.

The strength of the shale is very important, not only to understand how difficult the shale is to
break but also for seal integrity evaluation, well planning, wellbore stability, reservoir compaction,
and surface or sea floor subsidence, which has been found to be sensitive to the internal properties of
rock or external factors such as composition, organic content, pore pressure, and stress history (e.g.,
Dewhurst et al. [42]). The strength of shales varies with the direction of measurement (anisotropy),
e.g., shales are the strongest at 0◦ with the bedding direction (measuring the strength across the
bedding) and are the weakest at 45–60◦ with the bedding direction. Strength parameters include UCS
(unconfined compressive strength), shear strength, and tensile strength. For more discussions, with a
few examples of the effects of CO2 on shale strength, please see Section 0.

Anisotropy is one of the most widely studied properties (yet to be understood perfectly) of
shale. When a rock property (e.g., strength, acoustic velocity, or permeability) varies with the direction
of measurement (angle of measurement) with respect to a fixed orientation (e.g., bedding), the sample
is said to be anisotropic in that property (e.g., it can have velocity anisotropy or fracture anisotropy).
Shales show two types of anisotropy: intrinsic (lithological anisotropy, developed from the preferred
orientation of platy clay minerals and the development of thin lamination) and stress-induced
anisotropy (anisotropy developed with an increase in stress). There are many articles in the literature
discussing strength anisotropy (e.g., Jin et al. [73], Fjær and Nes [74]), where the variation of the
strength of the rocks with the angle creates problems, especially in inclined wells (e.g., borehole
stability). Few researchers have discussed the effects of stiffness, strength, acoustic velocity, and even
fracture anisotropy on CO2 storage or seal integrity. Bond et al. [54] discussed the influence of fracture
anisotropy on CO2 flow. Cheng et al. [75] and Armitage et al. [76] investigated the effects of permeability
anisotropy on buoyancy driven CO2 flow. Al Ismail et al. [77] investigated the effects of CO2 adsorption
on permeability anisotropy. Taheri et al. [78] made an attempt to investigate the effects of anisotropy
and heterogeneity in both the horizontal and vertical directions of layering on the CO2 dissolution in a
saturated porous medium with brine using simulation methods. Lu et al. [79] reported anisotropic
strain in response to CO2 injection, where the strain is always smaller in the direction parallel to the
bedding plane.



Energies 2020, 13, 1167 7 of 30

2.3. Water Sensitivity of Shale Rocks

The main cause of the water sensitivity of shale formations is the presence of swelling clays in
their composition. The most common type of swelling clay is smectite. Smectite’s structure consists of
2:1 layers consisting of an octahedral hydroxide sheet sandwiched between two opposing tetrahedral
silicate sheets [80]. When the fluid molecules are adsorbed into the interlayer, the interlayer distance
d001 increases and induces swelling of the material. Ferrage [80] considered four hydration states for
smectite:

- Dehydrated state (d001 ~ 9.6–10.7 Å; 0W: no complete water layer);
- Mono-hydrated state (d001 ~ 11.8–12.9 Å; 1W: one complete water layer);
- Bi-hydrated state (d001 ~ 14.5–15.8 Å; 2W: two complete water layers);
- Tri-hydrated state (d001 ~ 18.0–19.5 Å; 3W: three complete water layers);

where Å refers to Ångström (1 Å = 0.1 nanometer). The exposure of shale to fluids with
compositions even slightly different from those of in situ pore fluid induces a difference in chemical
potential and changes the swelling pressure [81]. Under constant strain conditions, the increase of
pressure due to adsorption-induced swelling can be as high as a hundred MPa up to a few GPa [82,83].
If the swelling pressure along with the pore pressure exceed the in-situ stress and particle cementation
forces, shale failure will occur.

3. Interactions between CO2 and Shale

3.1. Processes at the CO2/Brine Interface

When dry CO2 is pumped underground, it comes into contact with the reservoir brine.
Two processes take place at the brine/CO2 interface: (1) Water present in the brine evaporates to
the CO2 phase [84], and the concentration of salts in the brine increases. With the progressive
evaporation of water, the brine becomes oversaturated with salts, and salt precipitation may occur.
(2) CO2 dissolves in brine. The dissolved CO2 reacts with water to form carbonic acid, which partially
dissociates and forms carbonic (CO3

2−), bicarbinate (HCO3
−), and hydrongen (H+) ions. Due to these

dissolution and dissociation processes, the pH of CO2-rich brine drops. The pH value at equilibrium
depends on the partial pressure of CO2 and on the temperature and salinity of the brine [85–87]. These
acidic conditions of the pore fluid have the potential to affect the composition of the rock matrix.
In addition to CO2-rich brine, dry CO2 can also affect the rock microstructure and its mechanical
properties via different mechanisms. These interaction mechanisms are described below.

3.2. Shale in Contact with Dry CO2

3.2.1. Drying

At the dry CO2/brine interface, water evaporates and mixes with the CO2 phase. Under downhole
conditions, this evaporation and mixing lasts until the CO2 becomes saturated with water (i.e., reaches
equilibrium). The thermodynamics of water partitioning in equilibrium with CO2 have been described
by Spycher et al. [86,88]. The water absorption into CO2 leads to drying of the surrounding formation
fluids [89–94]. This drying may affect both the brine present in the pore matrix and the rock matrix
itself. The continueous drying of brine, filling pore spaces in the rock matrix, often leads to the
oversaturation and precipitation of different minerals in the matrix. It has been found that drying and
concommitant salt precipitation may lead to the clogging of an initially very permeable pore matrix,
which may eventually result in injectivity problems [89,95,96]. The permeability of nonfractured shale
rocks is usually very low, but, as fractures are very abundant in shale rocks, the overal permeability
of fractured shales can be significantly affected by the drying and concommitant salt precipitation
processes. More specifically, fractures serving as flow conduits may be clogged by the precipitating salts.
Nooraiepour et al. [97] studied how fractures in Draupne shale (primary caprocks for Smeaheia CO2
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storage in Norway) clog upon CO2 induced salt precipitation. The authors showed that the CO2 phase
influences the magnitude, distribution, and precipitation patterns of the salt in fractures. The injection
of gaseous CO2 resulted in larger salt precipitation compared to both the liquid and supercritical CO2.
Miri et al. [92,93] demonstrated the importance of capillary forces on salt precipitation. It has been
suggested that drying-induced salt precipitation may have fracture sealing potential [97]. However,
it remains unknown whether salt precipitation has any effect on the mechanical properties of shale
rocks close to fractures and to to what extent it influences fracture propagation.

Not only interstitial brine but also the rock matrix itself may be affected by drying. Drying may
cause rock dessication. It is known that shale dehydration will lead to structural changes like shrinkage
and cracking within the shale matrix [24]. This occurs as a consequence of the dehydration of clays,
which tends to respond, under volumetric changes (swelling or shrinkage), to changes in brine/water
content (wetting and drying) [25]. The integrity and strength of Pierre shales were found to be deterioted
by submitting the samples to successive wetting and drying cycles [26,27]. Mugridge and Young [98]
observed significant deterioration of mechanical properties, despite negligable mineralogical changes.
A reduction in size of the clay aggregates was suggested to contribute to the observed residual strength
decrease [27]. The above-described observations were made under ambient conditions. The effect of
dry CO2 on shale dessication and the possibly-induced changes in the mechanical properties of shales
under realistic downhole stress conditions seem to be neglected in the literature and are perceived by
the authors as a knowledge gap that needs to be filled in order to obtain a better understanding of
the interactions between dry CO2 and shale reservoirs or caprocks. This knowledge gap has already
been highlighted by Gaus [28], who suggested using mass balance calculations to answer the question
of whether, and under which CO2 injection conditions, the dessication of the caprock may impair
its integrity.

3.2.2. Dissolution of Organic Matter

Another physical process that may affect the microstucture, and thus the mechanical properties,
of shale is the dissolution of organic matter (i.e., kerogen) present in the shale matrix. Kerogen is
the major organic component of shale rocks and consists of a complex mixture of organic materials.
Under a supercritical state (a temperature and pressure higher than 31.1 ◦C and 7.2 MPa, respectively),
CO2 has been demonstrated to be an excellent solvent for organic compounds [99]. Supercritical
CO2 has a density and dissolving ability similar to those of liquid CO2, while its diffusivity, viscosity,
and surface tension are comparable to those of gas [100]. As such, supercritical CO2 offers the
efficient dissolution and mass transfer of dissolved components [101]. CO2 is a nonpolar solvent
and thus it dissolves readily nonpolar molecules [102]. The dissolution of polar oil components in
supercritical CO2 was, however, enhanced in the presence of polar solvent additives like methanol [102].
In addition, it has been shown that supercritical CO2 can partially dissolve the kerogen present in
shale rocks [100,103]. The supercritical extraction efficiency of kerogen was found to be related to
the mineralogical composition and microstructure of shale rocks and was higher for carbonate rich
shales [102]. The corelation between kerogen dissolution and changes in the porosity, permeability,
and mechanical properties of shale rocks has not yet been well established. It is thus unclear how the
long-term exposure of organic matter-rich shales to supercritical CO2 can affect their mechanical stability.

3.2.3. Sorption of CO2 on Shale Rocks

This phenomenon has been extensively studied both in the context of enhanced oil and gas
recovery and in the context of CO2 sequestration [20,104–110]. Heller and Zoback [111] compared the
sorption capacity of CO2 and that of methane on clay minerals (kaolinite and illite) and carbon as a
model for shale components. The authors found that the sorption capacity of CO2 on both minerals
and organic matter was 2–3 times higher compared to methane. According to Nuttall et al. [112]
and Kang et al. [105], the difference in the sorption capacity between CO2 and methane can be up
to 5–10 times depending on the shale type. Upon the adsorption and absorption of CO2, shales
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undergo volumetric changes [79,111], which are proportional to the amount of adsorbed CO2. For a
given amount of adsorbed gas, the magnitude of swelling observed for different shales and shale
components is different. The difference in swelling capacity has been attributed to the difference in
the stiffness between materials (i.e., the stiffer the material was, the smaller the volume change that
was found) [111]. The complexity of the swelling mechanisms of shales upon the adsorption of CO2

arises from the chemical diversity of shale components. Shale components can adsorb and absorb CO2

in both physical and chemical manners known as physi- and chemisorption. Figure 4 schematically
illustrates the adsorption of CO2 at mineral grain surfaces, as well as its absorption inside organic
matter and clay mineral grains under true dry conditions. The deformation of clay particles and
organic matter upon the adsorption of CO2 is probably the main contributor to global shale volumetric
changes when the shale is exposed to CO2 [111,113,114]. It has been shown that the spacing between
the crystalline structure of clay sheets increases upon adsorption of CO2 [115]. For example, for a single
hydrated Na-montmorillonite (with original spacing of d001~12.4 Å), the spacing increaed by 0.5 Å,
which resulted in a 4% expansion in the direction perpendicular to the clay sheets [116]. The expansion
determined for Na montmorillonite clays initially containing a higher fraction of water in the interlayer
region has been reported to reach 9% [117]. The magnitude of this so called “crystalline swelling” is
also dependent on the type of cation present in the interlayer [115]. Therefore, it is expected that the
magnitude of clay swelling inside the shale matrix will be a result of CO2 adsorption and possible
concomitant ion exchange processes.
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from the absorption of CO2 is depicted by arrows.

Molecular dynamic simulations show that the organic matter present in shale rocks (kerogen)
undergoes non-negligable deformation upon CO2 uptake [113,118]. Ho et al. [118] suggest that strong
chemo–mechanical coupling exists between the gas sorption and mechanical strain of a kerogen matrix.
The authors showed that the kerogen volume can expand by up to 11% upon CO2 adsorption at around
19 MPa and that gas uptake is enhanced by kerogen swelling [118]. It has also been suggested that the
CO2-induced swelling of clays and kerogen may contribute to the sealing of small fractures and thus to a
reduction in the permeability and improved sealing capacity of swelling clay-rich shale rocks [117,119].
However, this hypothesis needs to be experimentally validated. The magnitude of net shale swelling
will depend on the ratio between the total content of swelling matter (i.e., the swelling clays and
kerogen) and nonswelling matter (e.g., quartz and nonswelling clays) in the shale matrix. The effect of
CO2 sorption-induced swelling on the mechanical properties of shale is, however, unknown. The main
difficulty remaining is to decouple sorption from other physicochemical processess (such as the
dissolution of minerals) that occur within shales during their exposure to CO2 or from the processes of
pH-induced swelling.
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3.3. Shale in Contact with CO2-Saturated Brine or Wet CO2

3.3.1. Dissolution of Minerals

When shale comes in contact with CO2-saturated brine or wet CO2, the carbonic acid present in
the solution starts diffusing into the shale’s pore space. In shale’s composition, there are always some
minerals susceptible to carbonic acid’s effects. These minerals may be dissolved and eventually leach
out. Shales may have very diverse mineralogical compositions (see Section § 0), but they are most
often comprised of quartz, feldspar, clay minerals, carbonates, iron oxides, and other minerals, as well
as organic matter (kerogen) [120]. All these minerals can, to some extent, react with acid under very
different dissolution rates.

Poorly water soluble carbonates like calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3),
and siderite (FeCO3) are very susceptible to acid attack and react rapidly with carbonic acid according
to Equation (1):

MeCO3 + H+
→Me2+ + HCO−3 (1)

As a consequence of this reaction, carbonate is dissolved, protons are consumed, pH increases, and
both metal ions (Me2+) and bicarbonate ions (HCO3

−) are released into the solution. Lahann et al. [121]
showed that carbonate dissolution was one of the first responses resulting from the injection of CO2

into the New Albany Shale reservoir [121]. The dissolution rates of calcite, dolomite, and magnesite in
CO2-saturated aqueous solutions at partial CO2 pressure up to 5.5 MPa (pH between 3 and 6) have
been well described by Pokrovsky et al. [122] and Golubev et al. [123]. The dissolution rate was found
to decrease in the following order: calcite > dolomite > siderite > magnesite [123]. As the carbonate
dissolution rates are relatively fast at pH conditions relevant for storage and fracturing, the reactivity
of low permeability shales will be, in most cases, transport-controlled. The dissolution and reaction
of CO2 with water, the dissociation of acid, and the diffusion of the dissociated acid to a carbonate
substrate are the limiting factors in carbonate leaching [87]. Therefore, any increase in the porosity and
permeability of the shale matrix will facilitate carbonate leaching [124]. Carbonate leaching from shale
rocks upon exposure to CO2-saturated brine has been reported by many authors [124–127]. Armitage
et al. [128] exposed “In Salah” caprock samples to CO2 saturated brine and showed that the caprock
experienced a significant increase in porosity and permeability due to the dissolution of its siderite
and chlorite minerals. More interestingly, Sanguinito et al. [129] observed the carbonate dissolution
in Utica shale upon exposure to dry CO2. They showed that the presence of interstitial pore water
is enough for carbonation processes to occur in shale. Recently, Goodman et al. [130] showed that,
by comparing unexposed exposed outcrop Utica Shale samples, both the porosity and the surface area
(m2/cm3) significantly increased when exposed to CO2 and that this effect is higher when exposed to a
H2O + CO2 solution. Performing relatively similar experiments on Marcellus Shale samples, Kutchko
et al. [131] showed that exposure to CO2 decreases the BET surface area and porosity of a downhole
sample; the effect on the outcrop sample was also significant, but sometimes showed an opposite trend.
Thus, the physicochemical and mechanical changes in shale rocks saturated with brine exposed to
both wet and dry CO2 should continue to be addressed.

Phyllosilicate minerals are also susceptible to carbonic acid attack. They present a wide range of
chemical constituents, including smectites, kaolinite, serpentine, talc, mica, illite, and chlorite minerals,
but the common feature for all phyllosilicates is their layered nature. Due to this sheeted structure,
their specific surface area is large, which increases their reactivity. In most cases, the dissolution of
phyllosilicates is sensitive to pH and increases with a decreasing pH in an acidic environment [87].
Therefore, reactivity increases with an increase in partial CO2 pressure. The reaction of chlorite, as an
example of a phyllosilicate mineral, in the presence of water and carbonic acid is described in Equation
(2). Due to the complexity of the structures and pathways by which the dissolution of chlorite and
other phyllosilicates may proceed, only a generalized reaction is presented [132,133]:

(Fe, Mg)5Al2Si3O10(OH)8 + 8H+
→ 3SiO2(aq) + 2.5Fe2+ + 2.5Mg2+ + 8H2O + 2AlO−2 (2)
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Chlorite dissolution releases silica, iron, and/or magnesium and aluminate ions into the solution.
In contrast with other phyllosilicates, the chlorite dissolution rates were found to be independent of pH,
with a pH range between 4.2 and 5.3 [132]. Feldspar undergoes hydrolysis, as outlined in Equation (3):

2KAlSi3O8 + H2O + 2H++ CO2−
3 → 2K+ + CO2−

3 + Al2Si2O5(OH)(s) + 4SiO2(aq) (3)

The substrates of K-feldspar hydrolysis in the presence of carbonic acid are potassium carbonate,
silica dissolved in water, and solid kaolinite [134]. Thus, during the hydrolysis reaction, soluble
elements (potassium carbonate and silica) are leached out of the rock; only the insoluble kaolinite is
left behind. Similar to the reaction with carbonates, feldspar hydrolysis leads to the consumption of
acid and the neutralization of pH. The long-term reactive transport modelling of CO2 in the Nordland
Shale caprock at Sleipner, performed by Gaus et al. [135], shows that carbonate dissolution initially
dominates, but, in the long term, feldspar alteration is the dominant reaction.

In contrast to carbonates and silicates, the dissolution of quartz is a slow process under CO2

storage or fracturing conditions. According to Knauss and Wolery [136], the dissolution rates of quartz
are independent of pH for pH values lower than 6. This means that increasing CO2 pressure and thus
decreasing pH will not facilitate quartz dissolution [87]. The relatively small quartz grain surface area
compared to, for example, feldspar can further slowdown quartz’s dissolution in CO2-saturated brine.
Consequently, the effect of CO2-saturated brine on quartz is usually assumed negligible.

3.3.2. Precipitation and Reprecipitation of Minerals

The reactions of carbonates and other minerals with CO2-saturated brine leads to the consumption
of proton and thus increases the pH of brine. Along with these pH changes, metal ions are released to the
solution, as described in reactions (1)–(3). At relatively high concentrations of metal ions, this increase
of pH may lead to the reprecipitation of some minerals [135,137]. The reprecipitation of dolomite,
ankerite, siderite, and iron hydroxide was experimentally shown to take place in shales exposed
to dry CO2 or CO2-saturated brine [121,129,138]. Kampman et al. [138] examined caprock samples
recovered from a natural CO2 reservoir. This reservoir was located at a shallower depth and had a lower
pressure than that encountered in reservoirs for geological carbon storage. However, since the reactions
between the minerals and CO2-saturated brines are only slightly affected by pressure, the authors
were able to assess the long-term impacts of CO2-rich fluids on caprock integrity. The authors
showed that the caprock, at its interface with the reservoir (up to 7 cm), was depleted of hematite and
primary dolomite and that the minerals were reprecipitated in the form of ankerite–dolomite, pyrite,
and gypsum. The authors concluded that reprecipitation delays the propagation of the reaction front,
which reduces the penetration of carbonic acid into the caprock. It has been suggested that precipitation
or reprecipitation of the dissolved minerals within the shale matrix may also lead to the so-called
“self-sealing of fractures” and to caprock strengthening [139]. The effects of mineral dissolution and
reprecipitation on the pore system and permeability of shale have not yet been well described.

4. Effect of CO2 on Petrophysical Parameters of Shale

This section focuses on the changes in some selected petrophysical parameters of shale after
exposure to CO2. It is also important to recall the different states of CO2 while talking about the
interactions between CO2 and shale. Pan et al. [140] showed that supercritical CO2 has a significantly
greater effect on shale than subcritical CO2. The effects of CO2–brine–shale interactions on porosity,
permeability, pore size, and surface area have been reported by several experimental studies [141–147].
These interactions trigger dissolution, precipitation, and migration of fine clay grains, which can
open or close the pore throats [148]. On the one hand, studies have revealed an increase of total
porosity and connective porosity upon CO2 exposure [140,142,144]; on the other hand, a decrease
of porosity and connective porosity/matrix permeability was also reported [140,142,145,146,148–150].
The increase in pore volume may be related to the decrease in capillary threshold pressure [144].
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However, Lahann et al. [121], Okamoto et al. [151], and Gaus et al. [135] reported that there was no,
or very little, change in shale’s pore structure upon CO2 exposure. Wu et al. [145] explained that this
reduction in permeability was dependent on permeability’s initial value in shale and the effective
stress. Pan et al. [140] investigated a broad range of pore structure parameter changes under sub and
supercritical CO2 exposure. It is difficult to highlight a single parameter behind the mechanism that
decreases or increases the total porosity, pore diameter/width, and connective porosity under CO2

exposure (especially supercritical CO2). Dissolution and adsorption-induced expansion are the two
most important mechanisms able to alter the pore structure during the interactions between subcritical
CO2 and shales, but these mechanisms may play different roles in pore structure modification [140].
On the one hand, geochemical reactions dissolve and destroy the internal structures of minerals,
leading to nanopore enlargement; on the other hand, adsorption-induced expansion leads to volumetric
changes, which may alter the pore structure and ultimately narrow the pores [145,146,152]. Lu et al. [79]
reported the swelling of shale samples under CO2 exposure, with an increase and then a drop in stress.
This occurs mainly due to a reduction in the surface potential and an increase in the thickness of the
surface layer when free CO2 penetrates into pores or cracks. Clay swelling upon CO2 exposure, which
may be expected to increase sealing capacity, was also reported by de Jong et al. [153], Geisting et
al. [117], and Schaef et al. [154]. However, if the swelling stress exceeds the rock strength, it may
destroy the sealing capacity [155]. Pan et al. [140] noticed a difference in the changes of pore structures
for marine and terrestrial sediments and concluded that more complicated geochemical reactions may
exist between shale and CO2. Moreover, the presence of organic carbon, and its maturity, may affect
pore structure modification [156,157]. Since adsorption induced expansion is crucial, it is important to
understand the adsorption behaviour of CO2 on shale. Adsorption of CO2 can be varied with pore sizes,
temperature and pressure which may influence its induced strain in shale nanopores [107,158–161].

The specific surface area is an important parameter that may be linked to the smaller pores of
the sample, whereas larger pores are important for diffusion and gas seepage [140,162]. The specific
surface area of shale decreases after supercritical CO2 treatment [146]. The increase or decrease of total
porosity, connective porosity, number of pores, specific surface area, and permeability depends on the
mineralogical composition, the state of the CO2 fluid, and the mechanism acting during CO2 treatments.

5. The Effect of CO2 on the Mechanical Properties of Shale Rock

As presented previously, the formation of a CO2-plume at the reservoir–caprock interface is
usually followed by a pressure increase [14], which will affect the caprock’s effective stress and may lead
to fault reactivation. CO2–brine–caprock interactions can therefore cause changes in the mechanical
properties of rocks, in terms of their strength, stiffness, and fracture thresholds, which can increase the
risk of CO2 leaking from the reservoir [163–165]. These effects have been experimentally investigated
on various shale formations and under different exposure conditions in terms of temperature and
pressure [24,70,72,166–174]. The investigated parameters affected by CO2 exposure include volume
change (swelling), strength, stiffness, Poisson’s ratio, stress thresholds for crack initiation, and crack
damage, as well as the brittleness index. The available literature is summarized in Table 1. CO2–water
and CO2–brine refer to CO2 in equilibrium with water or brine, respectively. Except for some
experiments, the relevant test procedures are globally similar: After exposing the shale samples in a
pressure cell to CO2, CO2–water, or CO2–brine under a controlled pressure and temperature for a given
saturation time, the samples are brought back to ambient conditions before mechanical and acoustic
testing. It seems like the dynamic properties of shales in Al-Ameri et al. [172] were investigated before
the samples were brought to an ambient condition.
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Table 1. Available experiments on the effect of CO2 on the mechanical properties of shale.

Reference Shale Sample Size (mm)
and Bedding

Exposure
Medium Test Procedures Exposure Temperature,

Pressure, and Duration Measured Parameters

Choi et al. [173] - D:38;
L:70

Water, brine,
CO2,
CO2–water,
CO2–brine

1. Mechanical and acoustic tests on
water/brine saturated samples

2. Other samples put in containers with water
or brine

3. Container put in pressure vessel
4. CO2 injected and maintained at

desired pressure
5. Increase of temperature
6. After exposure time, samples brought

slowly to ambient conditions
7. Samples put in the oven at 105 ◦C for 24 h

to dry
8. Mechanical and acoustic tests performed

80–100 ◦C, 10 MPa
For 14 days

Swelling, UCS
(unconfined compressive
strength); Acoustic
Emission (AE) for stress
thresholds (ST) for crack
initiation and crack
damage; ultrasonic
P-wave velocity

Al-Ameri et al.
[172]

Overburden shale
samples (no
indication of the
origin and its
composition)

D:37;
L:53 scCO2

1. After coring and grinding, samples cleaned
with methanol to remove salt deposition

2. Samples dried in an oven at 80 ◦C under
a vacuum

3. Dry samples placed in the aging cells, with
a vacuum applied for 3 h.

4. Cells placed inside the oven; temperature
increased and maintained at 100 ◦C for
3 days

5. Gas CO2 injected into the aging cells and
pressure increased to 2000 psi (13.8 MPa)

6. 6. Time given for interaction; mechanical
and acoustic tests applied to samples under
different confining pressures.

100 ◦C;
13.8 MPa
For 30 days

Dynamic Young
modulus.

Lyu et al. [166]

Outcrop shale (from
Sichuan basin,
China), clay
fraction: 40%, TOC:
3.35%, initial water
content: 15%

D:38;
L:78 CO2

1. Samples placed into a pressure cell
2. CO2 injected and maintained at

desired pressure
3. Increase temperature
4. After exposure time, samples brought to

ambient conditions
5. Mechanical and acoustic tests

22 ◦C; 40 ◦C; 7 MPa
For 0, 10, and 20 days

UCS, Young modulus;
Brittleness index; AE
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Table 1. Cont.

Reference Shale Sample Size (mm)
and Bedding

Exposure
Medium Test Procedures Exposure Temperature,

Pressure, and Duration Measured Parameters

Lyu et al.
[72,169,174]

D:30;
L:60

Dry
gCO2–water
scCO2–water,
sbCO2–brine,
scCO2–brine

Procedure not clearly stated, but seems to be
similar to that of Lyu et al. [166]

40 ◦C; 7 MPa; 9 MPa
For 10, 20, and 30 days.

Zhang et al.
[168]

Outcrop shale (from
Sichuan basin,
China), TOC: 7.88%,
more than 70% of
quartz, dolomite,
calcite, 8.1% clay.

D:50
L:100

dry,
water,
brine,
CO2–brine,

1. Pressure reactor filled with brine or water
2. Samples submerged in the reactor
3. CO2 injected to increase the pressure,
4. Reactor placed into a thermostatic water

bath for temperature control
5. Samples brought to ambient conditions after

exposure time
6. Mechanical and acoustic tests

40 ◦C
6, 12 MPa
For 7 days.

Yin et al. [167]
Organic-rich shale
(from Sichuan basin,
China)

D:50
L:100
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[147] 

Lujiaping (LJP) and the 
Longmaxi (LMX) shales 
of Sichuan Basin 

D:25 
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(pH = 3.02–
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1. Core samples fixed in the CO2 tank 
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to bedding

gCO2-water
scCO2-water

1. Sample placed in the pressure cell
2. Vacuum applied
3. CO2 injected to increase the pressure,
4. Increase of temperature
5. Samples slowly brought to ambient

condition after exposure time
6. Samples put in sealed bag and filled with

helium to prevent oxidizing and
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7. Mechanical and acoustic tests

38 ◦C
4, 6, 8, 12, and 16 MPa
For 10 days

UCS; Young’s modulus,
AE

Ao et al. [171] Similar to that of
Zhang et al. [168]

D:50
L:100
and
D:50
L:25 for tensile
strength test.
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scCO2

1. Samples placed in a high-pressure and
sealed reaction cell

2. Increase in temperature for the targeted
value within 1h

3. Gas CO2 injected into pressure cell up to the
test pressure

4. Samples kept under scCO2 conditions for a
predetermined time

5. Samples carefully removed from pressure
cell for mechanical testing.

35 ◦C
15 MPa
For 1, 2, 3, 4 and 5 days.

Triaxial compressive
strength, elastic modulus,
tensile strength
measurement on treated
and untreated samples
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Table 1. Cont.

Reference Shale Sample Size (mm)
and Bedding

Exposure
Medium Test Procedures Exposure Temperature,

Pressure, and Duration Measured Parameters

Zou et al. [147]

Lujiaping (LJP) and
the Longmaxi
(LMX) shales of
Sichuan Basin

D:25
L:8

CO2–brine
(pH =
3.02–3.34)

1. Core samples fixed in the CO2 tank
2. Synthetic reservoir brine poured into

the tank
3. ScCO2 injected into the tank and

pressure increased
4. Time given for reaction

40–120 ◦C
10, 20, and 30 MPa
For 0, 1, and 7 days

Tensile strength,
Porosity,
Permeability,
Frictional coefficient.

Feng et al. [24]

Outcrop shale (from
Sichuan basin,
China), TOC: 3.8%,
moisture content:
1.8%

D:50
L:25
Different bedding
orientations

scCO2

1. Samples placed in the sealed
high-pressure container

2. Temperature slowly increased
3. Liquid CO2 slowly injected into the

container and compressed to test pressure
4. After saturation time, pressure container

slowly depressurized samples brought to
ambient condition.

5. Samples immediately submitted to
Brazilian tests

40 ◦C; 10 MPa
For 10, 30, and 60 days.

Tensile strength as a
function of saturation
time and of bedding
orientation

Agofack et al.
[70]

Draupne shale
(from Draupne
formation, Norway)
with more than 60%
clay
Porosity: 12%
TOC: 6–8%
Water content: 6.9%

D:15
L:30
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10 MPa)

3. Consolidation under constant confining and
pore pressure

4. Application of two unloading/reloading
isotropic compression cycles to measure the
undrained bulk modulus

5. Flow of CO2-saturated brine (previously
mixed in a separate setup) for 12 days

6. Application of similar isotropic cycles (as
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40 ◦C; 10 MPa
For 12 days.

Undrained bulk modulus,
Young modulus,
Poisson’s ratio, Skempton
coefficient, maximum
deviatoric stress,
ultrasonic P-wave
velocity continuously
measured
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In the experiment of Agofack et al. [70], the sample was subjected to an isotropic pressure of
20 MPa and a pore pressure of 10 MPa. The sample was first saturated with brine, and then mechanical
cycles were applied. The mechanical cycle consisted of a decrease in confining pressure from 20 MPa to
15 MPa followed by an increase from 15 MPa to 20 MPa under undrained conditions, with a loading rate
of 1 MPa/h. A solution of CO2-saturated brine (CO2–brine), prepared in a separate setup, was flooded
at the same pore pressure (10 MPa) for 12 days, and similar mechanical cycles were applied. One
should keep in mind that the test procedure can highly affect the experimental results. Indeed, it has
been demonstrated that free CO2 can emerge from a solution within a sample if the test pressure is
lower than the pressure at which the sample was saturated with CO2-rich brine. The presence of free
CO2 affects the compressibility of the pore fluid and the dynamic stiffness of the porous material [175].
These effects were not discussed in the experiments listed here and are not analyzed in this review.

The novelty of the experimental procedure proposed here, as described and used by
Agofack et al. [70], lies in the possibility it gives to expose shale rocks to different saturation fluids
(brine, dry/wet scCO2, or sbCO2) under a controlled temperature and pressure, without modifying the
test exposure conditions prior to mechanical and acoustic measurements of the rock sample. Following
that procedure, the sample is placed in a confining chamber under predefined conditions of confining
pressure, pore pressure, axial stress, and temperature. Before putting the sample into a rubber sleeve
and mounting it into the confining chamber, the lateral surface of the sample is covered by a metal
mesh. In addition, two sintered plates are placed on its two sections. The metal mesh and sintered
plates are used to enhance the pore fluid distribution across the sections and lateral surface of the
sample. A separate new design injection-setup, connected to the pore fluid system of the sample, is
used to prepare the CO2 or the mixture of CO2–fluid (water, brine, etc.) at a given temperature and
pressure. The injection-setup is then used to flow the prepared CO2 or fluid-rich CO2 into the sample
without modifying the experimental conditions of the sample and pore fluid in terms of its temperature
and pressure. Before, during, and after the flow of fluid-rich CO2, continuous acoustic measurements
of compressive and shear wave velocities, as well as some mechanical loadings, are made. Because
the only changed parameter during the experiment is the exposure environment, its effect is better
monitored. Some new experimental results using low-frequency measurements [175], which are
not presented here, revealed that the Young’s modulus of a Draupne shale sample exposed to CO2

increased by around 2%, while its Poisson ratio remained roughly unchanged.

5.1. Effect of CO2 on Shale Volume Expansion (swelling) and Brittleness Index

The swelling of shale due to CO2 adsorption has been confirmed in several investigations [79,
109,153,176]. The swelling degree depends on the shale’s initial smectite content and water saturation.
According to de Jong et al. [153], maximum expansion up to 2.46% is reached with an initial interlayer
spacing of around 11.1 Å. The largest swelling was observed when the shale samples were exposed to
CO2–water [173], probably because under the given conditions of temperature and pressure, the pH of
the CO2–water was lower than that of the CO2–brine, making the former more aggressive than the
latter [177,178]. Several sorption experiments also showed that adsorption-induced swelling reduces
the mechanical properties of the shale, including its compressive strength [79,173,179,180]. Among
the different definitions for the brittleness index, the following was chosen by Lyu et al. [166] in the
analysis of their experimental results, which are highlighted here. The brittleness index (BI) is defined
as the ratio of reversible strain over the total strain and is given in Equation (4) [181]:

BI =
Reversible strain

Total strain
=

DE
OE

(4)

The experimental data show that the swelling of shale leads either to an increase or decrease
in the brittleness index, depending on whether the shale samples are exposed to only CO2 or to
CO2–water, respectively [72,166]. According to the results of these authors, dry CO2 seems to induce
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hardening of the shale material, which is revealed by an increase in the elastic strain or an increase in
the brittleness index.

5.2. Effect of CO2 on Shale Strength, Stiffness, and Poisson’s Ratio

The combined results of the UCS (unconfined compressive strength) and Young’s modulus
determinations are presented in Figure 5 as a function of exposure time. The different shale samples
were exposed to different solutions of CO2, including scCO2, sbCO2, scCO2–brine, and sbCO2–brine
(where sc and sb refer to supercritical and subcritical, respectively). These values are normalized
by dividing the value at a given exposure time by the value obtained for the non-exposed sample.
The normalized numbers, therefore, reflect the percent of reduction. The UCS and Young’s modulus
can decrease by as much as 60% after 30 days of exposure depending of the type of the exposure fluid.
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Figure 5. Variation of the normalized UCS (a) and Young’s modulus (b) with exposure time in
CO2 and CO2–brine. The normalization is done by dividing the value at a given time by the initial
value (without CO2). The nomenclature consists of the exposure fluid followed by the references
[e.g., scCO2–brine_Zhang et al. [168] refers to the shale sample exposed to supercritical CO2–brine
investigated by Zhang et al.].
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5.2.1. Exposure to Dry CO2

After exposure to dry sub- and supercritical CO2, the experiments show a gradual decrease in the
UCS and static Young’s modulus with saturation time [168,171,173]; they also show a decrease in the
dynamic Young’s modulus [172]. An outcrop anisotropic shale from the Sichuan basin in China was
exposed for 10 and 20 days to CO2 and CO2-water at a temperature of 40 ◦C under a pressure of 9 MPa.
When exposed only to CO2, the authors reported a gradual reduction of UCS with exposure time, up to
30% after 20 days [166,169]. The Young’s modulus initially showed a reduction up to 36% during the
first 10 days of exposure and then started to increase again between 10 and 20 days of exposure [166].
The increase in the Young’s modulus after 10 days of exposure to CO2 was confirmed by the same
authors in subsequent experiments. A gradual decrease in the Young’s modulus was measured within
30 days of exposure to both sub- and supercritical CO2 [169]. The results show that after 10 days of
exposure, both the UCS and Young’s modulus decreased when CO2-saturation pressure increased from
0 to approximately 12 MPa and then started to increase at a saturation pressure from 12 to 16 MPa [167].
However, when the dry shale samples were exposed to scCO2 for 2 weeks, the Young’s modulus and
Poisson’s ratio were hardly affected. The effect of dry CO2 on the wet samples seems to be higher than
that on the dry samples. This is because, on the dry samples, as presented in the previous sections, the
effect of water evaporation and that of pH change due to exposure to CO2 are absent, so the impact of
CO2 is reduced.

5.2.2. Shale Samples Exposed to CO2–Water or CO2–Brine

All experimental tests on the mechanical properties of shales upon exposure to CO2-saturated
fluids showed reduction of their UCS, Young’s modulus, and Poisson’s ratio with exposure time,
as presented in Figure 5 [70,72,168,173]. Reductions up to 66% and 56% were, respectively, measured for
the UCS and Young’s modulus after 30 days of exposure to the CO2–water mixture [72]. On similar shale
samples exposed to gaseous CO2- and scCO2–brine for 7 days, Zhang et al. [168] found reductions up to
32% and 19% for the UCS and Young’s modulus, respectively. In the experiment of Agofack et al. [70],
a shale sample was subjected to triaxial loading conditions consisting of 20 MPa of confining pressure
and 10 MPa of pore pressure. After consolidation, and prior to the flow of CO2–brine, two isotropic
compression unloading/reloading cycles were applied. After flooding with CO2–brine for more than
12 days, similar cycles were performed. With the permeability in the range of nD, drained conditions are
very difficult to achieve, and all the cycles were considered as performed under undrained conditions.

Agofack et al. [70] also showed a reduction of the Young’s modulus and Poisson’s ratio, while
the maximum deviatoric stress (axial stress minus confining pressure) increased after exposure to
CO2–brine. A reduction of the undrained bulk modulus after exposure to CO2–brine was also
reported [70]. The cause of this reduction in the experiment of Agofack et al. [70] could be the combined
effect of change in the microstructure due to chemical reactions and that of the compressibility of the
pore fluid due to free CO2 coming out of solution when the pore pressure decreased during the applied
cycles [175].

5.3. Stress Thresholds for Crack Initiation and Crack Damage

During the unconfined compressive strength (UCS) tests, the samples were equipped with acoustic
emission sensors to record crack initiation and propagation. The signals from the sensors (of ultrasonic
frequency) were correlated with the stress state to provide stress thresholds for crack initiation and
damage [72,166–168]. The results are presented in Table 2 for different solutions of CO2 and different
times of exposure. As presented in the previous section, for a given fluid, the peak stress gradually
decreases with exposure time. For a given reaction time, it decreases when pressure is increased
between 4 and 12 MPa. For a given exposure fluid under constant temperature and pressure, the stress
thresholds for crack initiation and crack damage decrease with the exposure time [72]. For a given
exposure time, Yin et al. [167] showed that the stress for crack initiation and crack damage decrease
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with increasing pressure up to 12 MPa and then increase for pressures above 12 MPa. However,
the stress thresholds for crack initiation and damage show a decreasing trend with pressure (between 6
and 12 MPa) when exposed to CO2 or CO2–brine [168]. In other words, as the pH of a CO2-rich fluid
decreases with an increase of pressure, the solution becomes more acidic and more aggressive and
tends to weaken the shale sample by reducing its peak strength, as well as its thresholds for crack
initiation and crack damage.

Table 2. Stress thresholds for peak strength, crack initiation, and crack damage for samples saturated
with different fluids and for different reaction times.

Fluid Temp.
(◦C)

Pressure
(MPa)

Exposure
Time (Days)

Peak
Strength

(MPa)

Crack
Initiation

(MPa)

Crack
Damage
(MPa)

Reference

CO2 40

7
10 40.41 12.77 26.52

Lyu et al. [72]

20 31.33 15.76 21.93
30 25.63 19.79 22.09

9
10 39.05 18.86 31.57
20 30.71 16.40 26.48
30 19.99 14.29 19.13

CO2-water 38

4

10

184.23 104.00 167.38

Yin et al. [167]
6 141.19 101.40 148.96
8 134.69 93.80 133.82

12 132.50 64.33 128.62
16 161.39 124.24 154.50

CO2 40
6

7
209.63 151.59 176.78

Zhang et al.
[168]

12 197.99 152.92 175.13

CO2–brine 40
6

7
147.68 51.88 90.85

12 150.64 74.95 132.29

5.4. Tensile Strength and Surface Energy

Brazilian tests (or indirect tensile strength tests) are commonly used to estimate the tensile strength
of shale. For a given cylindrical sample of diameter D and thickness h, the following relation is used to
calculate the Brazilian splitting tensile strength:

σt =
2Pmax

πDh
(5)

where Pmax is the peak load (in Newton) applied to the sample.
Equations (6) and (7) show a relationship between the tensile stress and the adsorption induced

change in surface tension. These relations can be used to explain the weakening effect resulting from
the adsorption of CO2 in shale or clay minerals [164,182]:

dγ = −
∑

(Γidµi) (6)

σt =

√
2γE
πa

(7)

where σt is the tensile stress at an existing crack tip required to form a new crack surface, E is the
Young’s modulus, γ is the surface energy, a is the half crack length, and dµi is the change in the chemical
potential of the ith adsorbent component. Equations (6) and (7) refer to Gibbs’ and Griffith’s relations,
respectively. According to Equation (6), the replacement of an existing fluid by another fluid with
greater chemical potential (dµ > 0) results in a decrease of the surface energy. Equation (7) shows that
this decrease in surface energy causes a reduction in the tensile stress. In addition, the formation of a
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new crack surface, like during a Brazilian test, contributes to increasing the crack length and again
to the reducing the tensile stress. The strength of the material can then be reduced by replacing an
existing adsorbate (e.g., brine) with a more reactive fluid with a greater chemical potential (e.g., CO2).
Thus, a chemical reaction that leads to a decrease of surface energy in the adsorbate–adsorbent system
will reduce the tensile strength of the material.

Feng et al. [24] exposed several samples of anisotropic shale from Sichuan in China to scCO2 for a
time period of up to 60 days. After exposure and being returned to ambient conditions, samples with
different bedding orientations were submitted to Brazilian testing. The results show a gradual decrease
of tensile strength with exposure time, and little effect of bedding orientation was found. These results
are similar to those found by other authors [171], as presented in Figure 6. The normalized values, also
presented in previous figures, were obtained by dividing the value at a given age of exposure over the
initial value (without CO2). The results of Ao et al. [171] demonstrate a reduction of around 30% for
tensile strength after only 5 days of exposure, while the results of Feng et al. [24] show a reduction of
around 8% and 45% after 10 and 60 days, respectively. The shale samples of these two investigations
were from the same basin but with different total organic content (TOC). The reduction in tensile
strength during the first week of exposure seems to be highly correlated with the TOC. In contrast, the
results of Ojala [183] did not show any effect of CO2 on the tensile strength after exposure of Pierre
shale to water and CO2-water for one week. Based on the surface energy theory presented in Equations
(6) and (7), the results of Figure 6 seem to demonstrate that new cracks were formed within the shale
specimens upon their exposure to CO2.
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Figure 6. Variation in the normalized tensile strength with exposure time to scCO2. In addition to the
nomenclature information of Figure 5, LJP and LMX refer to different basins, as indicated in Table 1.

The Brazilian splitting modulus, which shows the ability of shale to resist elastic deformation,
was also measured; a continuous decrease with exposure time was observed, and little effect with
bedding orientation was found [24].

6. Concluding Remarks

The interactions of shale with CO2 are a complex phenomenon. This complexity arises not only
from the diversity of the mineralogical composition of shale rocks but also from their variety of possible
interaction mechanisms. A summary of the possible CO2–shale interaction mechanisms discussed in
this paper is presented in Figure 7.
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Figure 7. Processes occurring in shale rocks upon exposure to dry CO2, water-saturated CO2, and CO2-
saturated brine.

Both physical and chemical processes can affect shale’s composition, petrophysical parameters,
and mechanical behavior at different scales, from nano to macro. The main processes accompanying
the exposure of shale to wet CO2 or CO2-saturated brine include the mineral dissolution, precipitation,
and reprecipitation of some minerals, as well as volume change in clays resulting from pH and ion
concentration changes. Upon exposure to dry CO2, the main processes occurring in shale rocks
include shale dehydration, mineral precipitation, dissolution of organic matter (such as kerogen),
and the adsorption of CO2. The combination of these processes shows a significant reduction in the
mechanical properties of shales in terms of its strength, stiffness, and Poisson’s ratio, as well as the stress
threshold for crack initiation and crack damage. The largest reductions were measured on wet samples
exposed to dry supercritical CO2 or scCO2-saturated brine. The interaction mechanisms underlying
the observed changes were, however, not always experimentally addressed. Presently, the effect
of dry CO2 on shale desiccation, as well as the effect of supercritical CO2 on kerogen dissolution,
and their consequences on porosity, permeability, as well as their mechanical properties, are still not
well understood. Multidisciplinary studies are needed to link observed mechanical changes with
physicochemical changes in shales. It seems crucial that the interactions of shale with CO2-saturated
brine and dry subcritical or supercritical CO2 need to be better described to obtain a complete picture
of the potential failure mechanisms. These comprehensive studies should include both batch and
flow conditions to mimic equilibrium conditions and far-from-equilibrium conditions. To access the
mechanical effects upon exposure to CO2, the available experimental procedures need to be improved.
In the majority of investigations, the exposure conditions, in terms of their temperature and pressure,
are disturbed before any mechanical measurements, which, by affecting the microstructure of the
sample, can add errors to the resulting interpretations. In addition, sample variability should also, as far
as possible, be avoided. The experimental procedure should then be as follows: The sample should
first be put under in situ conditions in terms of temperature and pressure, and then a fluid similar to its
initial pore fluid should be used for re-saturation. After consolidation, the dry CO2 or CO2-rich pore
fluid should be flooded without modifying either the sample or the stress and temperature conditions.
During these phases, measurements should be made continuously either by using acoustic waves or by
applying mechanical cycles on the sample with a stress amplitude less than 1 MPa (to limit mechanical
cycle-induced damage).
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