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Abstract— This paper explores the possibilities of shifting certain 
household consumer-based loads in time, to reduce unnecessary 
load peaks to the grid which again can cause challenges for 
Distribution System Operators (DSOs). Historical measured data 
on household consumption and the consumption profile of certain 
household appliances (dishwashers, washing machines and 
dryers) that can be shiftable in time are being used in an 
optimization model to investigate the potential that shifting these 
loads may have on the overall grid consumption of aggregated 
groups of households. The results indicate that such a model is a 
viable approach to effectively lower the peak load with respect to 
these appliances, even with consumer behavior and the 
inconvenience to perform these shifts accounted for. However, the 
contribution of the considered household appliances is arguably 
modest with respect to the total load of the household.  

Index Terms-- household flexibility, consumer demand, shiftable 
atomic loads, smart grid, optimization model 

I. INTRODUCTION 
Distribution System Operators (DSOs) face increasing 
challenges maintaining a balanced and sustainable grid 
network due to a number of reasons, such as the introduction 
of non-dispatchable renewable production, volatile consumer 
consumption patterns and new appliances causing the peak 
load (the hour of the day with the highest load) to increase more 
than the energy consumption. The objective of this work is to 
assess the load smoothing potentials from shiftable atomic 
loads, such as washing machines, dryers and dishwashers. 
Atomic loads can be shifted in time, but once running they 
need to finish the process before they can stop. Consequently, 
their load profiles are fixed and cannot be interrupted after they 
start operating. 

Based on empirical data on timing and load consumption of 
atomic loads, atomic load profiles and operation patterns are 
characterized in [1]. They describe a method for estimation of 
load shifting potential from the atomic loads of 100 households 
independent of the overall household loads. All atomic loads 
within a given time interval are jointly delayed to the same 
succeeding time interval, showing a load smoothing potential 
but at the risk of a rebound effect. Several studies address more 
general load scheduling problems, such as [2] who address 

scheduling of residential appliances including atomic loads. 
They emphasis that load scheduling are influenced by multiple 
incentives: minimization of electricity cost, peak load 
reduction and consumer behavioral preferences. An 
optimization model is used to assess how the balancing of 
these incentives affect load scheduling of 1-3 households. 

The study presented in this paper uses an optimization model 
to schedule the atomic loads as part of the total load of 102 
households. We estimate the load smoothing potential from 
atomic loads relative to the overall household loads in high 
load periods and assess how consumer preferences affect this 
potential. After the nomenclature, the following section 
describes the method used, including the data and optimization 
model. Next, the case study and the results are described, 
discussed and concluded upon. 

II. NOMENCLATURE 

TABLE I - INDICIES TABLE II – SETS AND RANGES 

𝒂 Atomic load a ∀𝑎 ∈ 𝐴 𝐴 Set of atomic 
loads 

𝐴 = 1, . . , |𝐴| 

𝒄 Consumer c ∀𝑐 ∈ 𝐶 𝐶 Set of consumers 𝐶 = 1, . . , |𝐶| 

𝒉 Hour h ∀ℎ ∈ 𝐻 𝐻 Range of hours 𝐻 = 1, . . , |𝐻| 

𝒅 Day d ∀𝑑 ∈ 𝐷 𝐷 Set of days 𝐷 = 1, . . , |𝐷| 

𝒚 Year y ∀𝑦 ∈ 𝑌 𝑌 Set of years 𝑌 = 1, . . , |𝑌| 

𝒔 Time step s of 
atomic load a 

∀𝑠 ∈ 𝑆! 𝑆! Duration of 
atomic load a [h] 

∀𝑎 ∈ 𝐴,	𝑆! = 1, . . , |𝑆!| 

TABLE III - VARIABLES 

𝒍𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒄,𝒉,𝒅,𝒚  The new shifted load in hour h, day d, year y 

 
kWh 

𝒍𝒕𝒐𝒕𝒂𝒍
𝒄,𝒉,𝒅,𝒚 The total load in hour h 

 
kWh 

𝒍𝒑𝒆𝒂𝒌
𝒅,𝒚  The peak load hour for all h in H, day d, year y 

 
kWh 

𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,𝒉,𝒅,𝒚 A binary indicator of atomic load a from consumer c 

shifted to start in new time step h, day d, year y 
 

{0,1} 

𝒑𝒊𝒏𝒄𝒐𝒏𝒗𝒆𝒏𝒊𝒆𝒏𝒄𝒆
𝒅,𝒚  The penalty on the inconvenience of shifting atomic load 

for all atomic loads by all consumers in day d, year y 
 

- 

𝒍𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒄,𝒉,𝒅,𝒚  The new shifted load in hour h, day d, year y kWh 

"© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 

This is the accepted version of an article published in 2020 17th International Conference on the European Energy Market - EEM 
http://dx.doi.org/10.1109/EEM49802.2020.9221872



 

TABLE IV - PARAMETERS 

𝐿34353!6
7,8,9,:  The initial load in hour h, day d, year y 

 
kWh 

𝑳𝒇𝒊𝒙𝒆𝒅
𝒄,𝒉,𝒅,𝒚 The fixed part of the initial load in hour, h, day d, year y kWh 

𝑳𝒂𝒕𝒐𝒎𝒊𝒄
𝒂,𝒔  Atomic load a in period s 

 
kWh 

𝑨𝒊𝒏𝒊𝒕𝒊𝒂𝒍
𝒂,𝒄,𝒉,𝒅,𝒚 Number of initial starts of atomic load a by consumer c 

in hour h, day d, year y 
 

ℤ 

𝑯𝒂𝒍𝒍𝒐𝒘𝒆𝒅
𝒉  A binary indicator of allowed hours to start atomic loads 

 
{0,1} 

𝑷𝒊𝒏𝒄𝒐𝒏𝒗𝒆𝒏𝒊𝒆𝒏𝒄𝒆
𝒂,𝒄,𝒉  A constructed penalty on the inconvenience of shifting 

atomic load a for consumer c in hour h 
- 

III. METHOD 

A. Data 
1) Historical household consumption data 

Electricity consumption at more than 100 individual 
consumers in a town in Mid Norway has been metered on an 
hourly basis, for a duration of six years (from 2007-2012). 
After removal of consumers where measurement errors could 
be suspected or where the patterns were clearly not in line with 
the electricity consumption of households, 102 time series 
constitute the household data used in this study. We believe 
this provide an extensive and trustworthy representation of the 
usage of power from households both individually but also as 
an aggregated group in the same regional area. As the study 
focus on peak load reduction, we have used the workdays from 
the week with the highest average aggregated consumption 
from each of the years, corresponding to 30 days. See Fig. 10 
in the appendix for a graphical overview of this data. 

2) Household appliance data 
Based on the same empirical data set on atomic loads 
(dishwashers, washing machines and dryers) as presented in 
[1] the daily and hourly probability of start for each of the 
atomic loads are calculated, see Fig. 1. 

   
Fig. 1 - Daily and hourly probability distributions of household appliances 

[3] and [4] have conducted comprehensive studies of consumer 
behavior for cloth washing and drying and dishwashing, 
respectively, based on surveys in selected European countries. 
[3] find that the average number of washing cycles per week 
in Sweden, which we assume is most closely comparable with 
Norway, is 3.5. During winter, 31% of the drying cycles are 
done with tumble dryer, giving 1.1 drying cycles per week. [4] 
find the number of dishwashing cycles per week to depend on 
the number of persons in the household. Interpolating from 
their numbers using the average household size in Norway, 
which is 2.16 according to [5], gives 4.2 dishwashing cycles 
per week. We use the average load profiles of atomic loads in 

Table V, which are taken from [1] and aggregated to hourly 
resolution. 

TABLE V - AVERAGED HOURLY CONSUMPTION DATA OF ATOMIC LOADS 

Hour Atomic load [kWh] 
Dishwasher Washing machine Dryer 

1 0.801117 0.63815 1.044 
2 0.26815 0.142133 0.32375 

 
B. Sampling and identifying atomic loads from data 
One of the motivations for investigating the potential of 
reducing aggregated household’s peak load by shifting atomic 
loads is illustrated in Fig. 2, where we see a clear correlation 
between the peaks of load consumption for aggregated 
household scenarios and the distribution of probabilities for 
starting the atomic household appliances.  

 
Fig. 2 - Normalized aggregated household loads vs. hourly probability 

distribution of household appliances 

We use the data on household appliance use patterns to 
randomly sample an initial state of atomic load starts that yield 
a possibly shiftable load. The initial load is then divided into a 
fixed part and a shiftable part, the latter to which the 
optimization model can change to another hour or not. 
C. Consumer behaviour assumptions 
In a DSO perspective, with the incentive to minimize the peak 
to average load ratio, the optimal load shifting could be found 
by an automated, central dispatch planner. In order to model a 
real-life environment however, we need to introduce certain 
assumptions regarding consumer behavior.  

1) Unavailable hours 
Firstly, [4] find some reluctance to run dishwashers during 
night due to disturbance. This observation can also be found 
for all appliances in Fig. 1. We conclude that hours 2-6 are 
considered as too inconvenient to shift load onto, thus we mark 
them as unavailable.  The sampled initial atomic starts are also 
highly unlikely to be allocated to this period due to the 
probability of start close to zero 

2) Inconvenience as a function of initial start deviation 
Secondly, we also assume a certain inconvenience factor for 
the consumer for shifting their loads. [2] represent this with an 
inconvenience index counting the number shifted loads. We 
use a similar idea, but assume the inconvenience not only 
depends on whether a shift is taken, but also how many hours 
the load is shifted. We model a linear inconvenience function 
where the inconvenience to shift the load increases linearly 
with a factor of 0.1 per hour away from the initial start hour.  
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D. Mathematical formulation of optimization model 
The optimization model that follows is generically defined in 
order to iterate over 𝑑𝑦 scenarios, where d is the number of 
weekdays consisting of H hours, and y the number of years 
consisting of D days. This means it is applicable for both a 
single instance of one day, but also able to produce aggregated 
results. We will utilize both aspects of this when analyzing the 
results. 
 

𝐦𝐢𝐧 𝒍𝒑𝒆𝒂𝒌
𝒅,𝒚

+ H 𝑷𝒊𝒏𝒄𝒐𝒏𝒗𝒆𝒏𝒊𝒆𝒏𝒄𝒆
𝒂,𝒄,𝒉

∀𝒂∈𝑨,∀𝒄∈𝑪,∀𝒉∈𝑯

𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,𝒉,𝒅,𝒚 

∀𝒅 ∈ 𝑫, ∀𝒚 ∈ 𝒀 (1) 

The objective function (1) aims to minimize the peak load of 
the aggregated load by all consumers for each daily scenario, 
taking a penalty on the consumer's inconvenience load shifting 
into account. 
 

𝒍𝒕𝒐𝒕𝒂𝒍
𝒄,𝒉,𝒅,𝒚 =	𝑳𝒇𝒊𝒙𝒆𝒅

𝒄,𝒉,𝒅,𝒚 +	𝒍𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒄,𝒉,𝒅,𝒚 		 ∀𝒄 ∈ 𝑪,	∀𝒉 ∈ 𝑯,		

∀𝒅 ∈ 𝑫,	∀𝒚 ∈ 𝒀		
(2) 

Equation (2) makes sure not to alter the total load during the 
day, summing up the pre-calculated fixed part of the initial 
load with the new, optimized shifted atomic loads. 
 
𝒍𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒄,𝒉,𝒅,𝒚 =	 H 𝑳𝒂𝒕𝒐𝒎𝒊𝒄

𝒂,𝒔

𝒂∈𝑨,∀𝒔∈𝑺𝒂

𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,(𝒉E𝒔F𝟏),𝒅,𝒚	 ∀𝒄 ∈ 𝑪,	∀𝒉 = 𝑺𝒂, . . , 𝑯,	

∀𝒅 ∈ 𝑫,	∀𝒚 ∈ 𝒀	
(3) 

(3) ensures that the atomic load is distributed correctly over its 
two-hour period. 
 
𝒍𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒄,𝒉,𝒅,𝒚 =	 H 𝑳𝒂𝒕𝒐𝒎𝒊𝒄

𝒂,𝒔

𝒂∈𝑨,𝒔I𝟏,..,|𝑯|

𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,(𝒉E𝒔F𝟏),𝒅,𝒚 

+ H 𝑳𝒂𝒕𝒐𝒎𝒊𝒄
𝒂,|𝑺𝒂|

𝒂∈𝑨,𝒔I𝟏,..,|𝑯|

𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,|𝑯|,𝒅,𝒚	

∀𝒄 ∈ 𝑪,	𝒉 = 𝟏,	
	∀𝒅 ∈ 𝑫,	∀𝒚 ∈ 𝒀	

(4) 

Because we consider a 24-hour time period but we have atomic 
loads that lasts two hours with the possibility of starting the 
load at hour 24, (4) creates a cyclic link that places the second 
hour of the atomic load in hour 1, should it be defined to start 
in the last hour of the day. 
 

H 𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,𝒉,𝒅,𝒚

∀𝒉∈𝑯

= H 𝑨𝒊𝒏𝒊𝒕𝒊𝒂𝒍
𝒂,𝒄,𝒉,𝒅,𝒚

∀𝒉∈𝑯

	 ∀𝒂 ∈ 𝑨,	∀𝒄 ∈ 𝑪,	
∀𝒅 ∈ 𝑫,	∀𝒚 ∈ 𝒀	

(5) 

Equation (5) ensures that there is exactly the same amount of 
atomic loads between the initial sampling and the optimized 
results for each household appliance, consumer, hour, day and 
year. 

𝒍𝒑𝒆𝒂𝒌
𝒅,𝒚 ≥ H 𝒍𝒕𝒐𝒕𝒂𝒍

𝒄,𝒉,𝒅,𝒚	
∀𝒄∈𝑪

	 ∀𝒉 ∈ 𝑯,	∀𝒅 ∈ 𝑫,	∀𝒚 ∈ 𝒀		 (6) 

(6) enforces the variable in the objective function, declaring 
that the total load for each hour should be considered as a 
possible peak load. 
 

𝜷𝒔𝒉𝒊𝒇𝒕𝒆𝒅
𝒂,𝒄,𝒉,𝒅,𝒚 ≤ 𝑯𝒂𝒍𝒍𝒐𝒘𝒆𝒅

𝒉  ∀𝒂 ∈ 𝑨,	∀𝒄 ∈ 𝑪,	∀𝒉 ∈ 𝑯,	∀𝒅 ∈ 𝑫,	∀𝒚 ∈ 𝒀 (7) 

Finally, constraint (7) ensures that only the allowed hours are 
used when shifting the atomic loads, i.e. not at night. 

IV. CASE STUDY 
The data discussed in chapter III.A is the basis for the case 
study. However, as we are considering 30 different days worth 
of data over 6 different years with no direct coupling in time, 

we choose to run the model iteratively over these 30 individual 
scenarios, and to mainly look at the aggregated results and 
trends not on a single scenario, but on the scenarios combined. 
Nevertheless, we choose also to investigate certain behavior on 
a single scenario to better understand the results.  

A. Benchmark case 
To establish a benchmark of the theoretical potential for peak 
reduction by load shifting, we define an initial setting of model 
parameters that do not consider consumer preferences, such as 
their inconvenience when rescheduling their atomic loads and 
which hours that are likely to be considered unavailable. 

B. Practical case 
After the initial benchmark is defined, we introduce the 
parameters of consumer preference, which in term give insight 
to the potential such a model can actually have if implemented 
in practice. 

C. Individual case 
Lastly, in order to observe the details of a single scenario (i.e. 
a single day), we choose the practical scenario with the most 
reduced peak load to further investigate individual behavior of 
the model before they get aggregated and averaged. 

V. RESULTS 

A. Theoretical peak reduction potential (benchmark case) 
When considering the optimal potential of atomic load shifting 
without any user constraints, we observe a high level of shifted 
load from the initial sampled starts based on probabilities 
described in section III.A.2). See Fig. 3, including a yearly 
output. 
 

   
Fig. 3 - Shiftable loads from all initial load scenarios and the portion of the 

shifted load from days in year 3 for the benchmark case 

We calculate an average daily shiftable load of 44.33 kWh, 
whereas an average of 36.49 kWh are shifted per scenario. This 
translates to shifting 82.32% of the initial sampled atomic 
loads into new suggested start times. If we look at the initial 
peak load of the system compared to the peak load after the 
optimal re-ordering of atomic loads, we see a reduction in all 
scenarios as displayed in Table VI. 

TABLE VI - PEAK LOAD REDUCTIONS FOR ALL BENCHMARK SCENARIOS 
Peak load reduction  Mon Tue Wed Thu Fri 
Average [kWh] 3.39 3.23 4.56 4.14 4.07 
Total [kWh] 16.96 16.14 22.79 20.73 20.35 
Max [kWh] 5.03 4.52 5.43 6.07 4.06 
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On average, we calculate a daily peak load reduction of 3.23 
kWh which translates to 1% of the initial load. There are no 
clear differences between the weekdays, supporting a more or 
less uniform behavior from Monday to Friday. When 
investigating where the atomics load shift from and to, there is 
a clear trend to shift almost all load to the first hours of the day, 
as assumed, given the objective of the model is to minimize the 
peak load, illustrated in Fig. 4.  
 

 
Fig. 4 – Initial and optimal starts of atomic loads for the benchmark case 

This is explainable by the shape of the aggregated load curve 
for all scenarios in Fig. 2, which has its lowest value in the first 
hours of the day. The reason it does not necessarily fill up the 
hours with the very lowest load is simply that it does not matter 
to the model, as long as the peak load has been reduced. The 
model has sampled 1238 initial atomic starts whereas 1111 of 
them has been changed, translating to 90% of all initial starts. 
B. Peak reduction potential with consumer inconvenience 

penalty and hours unavailable to shift to (practical case) 
To model assumed consumer preferences, we need to 
introduce certain restrictions to the model. Thus, we enforce 
that atomic loads cannot start in hours 2-6. Additionally, we 
introduce an inconvenience function that penalizes the model’s 
objective linearly with respect to how far apart the atomic load 
is shifted from its initial position. With an inconvenience 
penalty and restrictions on hours, we observe the total shifted 
load to decrease to 412.61 kWh (68.76 kWh on average weekly 
and 13.75 kWh on average daily), whilst the percentage of the 
total shifted load from the total shiftable load is reduced to 
31.02%, as per Fig. 5, which also includes a yearly selection. 

     
Fig. 5 - Total shifted load for all scenarios and the comparison towards the 

shiftable load for year 3 for the practical case 

In Fig. 6 we also identify a clear difference between the runs 
when comparing the optimal new starts of the atomic loads, 
yielding a more reasonable and balanced distribution of the 

loads over the hours allowed to be shifted towards. Out of the 
1238 sampled initial atomic loads, 622 where shifted, equaling 
exactly 50.0%. However, the peak load reduction is unchanged 
from the less restricted solution, resulting in the same amount 
of reduction for all scenarios. This is due to it being enough 
capacity in the allowed hours for the atomic loads in peak 
hours to be shifted. 
 

 
Fig. 6 - Initial and optimal starts of atomic loads for the practical case 

C. Single result of day with most reduction in peak load 
(individial practical scenario) 

Looking at the scenario with the most reduction in peak load 
(year 3, day 4, equivalent to Thursday, 31.12.2009), we 
observe that the new total load has decreased compared to its 
initial level. See Fig. 7.  

 
Fig. 7 – Load comparisons for the individual case (year 3, day 4) 

Hour 17 is the peak hour defining the results as it is reduced 
to its maximum potential, which is to the level of the fixed 
load that hour. Fig. 8 displays all the changed hourly loads. 

 
Fig. 8 – Delta changed load overlayed against the shiftable load for the 

individual case (year 3, day 4) 

Most of the shifted load has been added to hour 15 and 23, 
which has been close enough to the hours with the highest load 
so that the inconvenience penalty is modest. Additionally, the 
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movement of atomic starts for this scenario has a pattern 
accordingly. See Fig. 11 in the appendix for details. 
Again the model does not see any difference in where to put 
the new load as long as the inconvenience penalty is the same 
and the total load for that hour does not become a new peak 
load itself. For this scenario, we see 15 initial starts, whereas 
10 of them are shifted, yielding 67% of all initial sampled starts 
to be shifted. 

VI. DISCUSSION 

A. Peak load reduction potential only slightly reduced by 
consumer preferences 

The difference between the theoretical potential and a solution 
considering the consumer preferences are neglectable when it 
comes to peak load reduction. This can be a pin-point towards 
realizing that the right incentives towards consumers can 
support a realization of the peak reduction effect even though 
a highly centralized control mechanism is usually not 
applicable in real-life. This observation could be strengthened 
or given more nuances if empirically based knowledge was 
available on to what hours consumers prefer to shift their load 
if deviating from today's pattern. 
B. Reducing the single highest peak hour is a viable strategy 

to a certain extent 
This model’s objective function is targeting minimizing the 
peak load for a 24 hour period, i.e. a calendar day. The 
consecutive hour reduced after the peak load hour is not 
optimally chosen by the model as long as the objective is 
defined as mentioned. When investigating the delta between 
the initial peak load hour and the initial second largest load 
hour for all aggregated scenarios, we observe an average value 
of 6.28 kWh, with most scenarios being above the average 
peak load reduction of 3.21kWh from the model. This 
observation can give insight to how much more shiftable load 
that it is possible to model with the current objective. See Fig. 
9.  

 
Fig. 9 – Delta between initial peak load and initial second largest value 

In other words, it would in most cases be more relevant to 
consider the consumer’s pattern of inconvenience or other 
equivalent factors than it would be to carefully consider which 
hour the new load reduced from the peak hour is shifted to 
(unless the hour shifted to becomes the new peak load hour, 
which then requires new iterations by the model). 
 

 
1 https://tibber.com 

This becomes a leading strategy up until approximately twice 
the amount of the current reduction potential. One can analyze 
these results as a theoretical exercise on initial load data 
without applying any model or algorithms, to determine the 
single-hour peak load reduction potential and compare it to the 
magnitude of loads one wants to shift. If the sum of loads is 
less than this delta value, they will not alone be enough to 
fulfill this approach’s potential, and opposite, if the sum of 
loads exceeds the delta value, a more extensive objective needs 
to be considered. 
C. The impact of atomic loads on the total household load 

are modest 
The investigated atomic load’s importance with respect to the 
total load may be discussed, based on the values in Table VII. 
 

TABLE VII – AVERAGE AND MAX PEAK LOAD VS. PEAK LOAD REDUCTION 
 Average  Maximum 
Peak load [kWh] 382.02 454.78 
Peak load reduction [kWh] 3.21 6.07 

 
They translate to an average reduction of the peak load of 1%, 
which is arguably modest considering the total load as a whole.  
The underlying data on both the household loads and the 
consumer’s usage of the three considered household 
appliances are considered solid, concluding that in order for 
this method to have an increased effect on the total load, 
additional appliances or loads need to be considered and 
implemented. The willingness to delay or expedite the usage 
of other high power household loads normally found used in 
peak hours such as cooking appliances can be assumed more 
difficult to find sufficient incentives on as of today, but with 
upcoming increased resolutions on spot markets (i.e. 15 minute 
price blocks) and a more transparent and easily accessible way 
of communicating this price information in combination with 
ways to (smarter) control new appliances accordingly, there 
might still be further potential to reduce peak loads by shifting 
atomic and non-atomic loads in a similar way as this model 
proposes. Utilizing an approach comparable to this on i.e. 
electric vehicles is a well-proven commercialized solution 
already use1 because of its larger shiftable load demand which 
again incentivizes the consumers and the industry to a higher 
degree. 

VII. CONCLUSION 
By smarter shifting atomic loads from peak load hours, taking 
consumer behavior and inconvenience into account through an 
optimization model, we are able to reduce the peak load of 
aggregated households in all scenarios in all our case studies. 
We observe that the peak load reduction potential of this model 
approach is approximately twice the magnitude of the current 
atomic load, meaning that the peak hour could be further 
reduced given similar household appliances that one can 
assume shiftable in time. At the same time, we also conclude 
that the impact of these atomic loads on the aggregated 
household load as a whole is modest. 
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APPENDIX 
 

 
Fig. 10 - Individial and aggregated household loads for all scenarios 

 
Fig. 11 - Initial and optimal starts of atomic loads for the individual case 
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