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Global Marginal Carbon Footprint Evaluation of Internet Services 
with Building Energy Models

Eric Kumar, Erica Cochran Hameen, Wei Liang
Carnegie Mellon University, Pittsburgh PA

School of Architecture

Abstract

Over the last decade, operational efficiency optimiza-
tions in data center (DC) facilities designs have cur-
tailed their absolute power demands. However, their
physical footprint is still growing. This growth in ca-
pacity may offset the efficiency gains at best or may
even increase the power demand in absolute terms.
Such offsetting effects make system level life cycle
environmental footprint evaluations complex for dis-
tributed services operating in these DCs.

To support system level evaluations for services op-
erating in DCs, this research uses simulated net-
work traffic profiles and coincident energy generation
source aware building energy models (BEM) to evalu-
ate the marginal carbon footprint of a globally span-
ning network of data centers. The result of this re-
search is a prototype of a BEM based framework that
can be used in environmental decisions to character-
ize DC life-cycle costs at internet service levels.

Introduction

Globally distributed internet services are ubiquitous
today. These services are driving the demand to
build mega-watt scale data center facilities (DC) dis-
tributed through out the globe. In a 2015 study data
centers were forecast to consume as much as 13% of
the global energy production by 2030 (Andrae and
Edler, 2015). More optimistic models form the US
Department of Energy for the US showed a curtail-
ment with up to fifty percent decline in energy com-
pared to the industry’s use of 2% of the power pro-
duced by the national grid in 2005 as a result of using
state of the art efficiency and consolidation practices
(Shehabi, 2016). As more and more parts of soci-
ety are transitioning to data center dependent online
paradigms, the absolute demand of data centers is
growing. The volume of growth is exemplified by the
capital costs being invested across the world in con-
structing these data centers.

The growth in data center capital construction costs
will reach $89 billion by 2027, a significant increase
from the $45 billion spent in 2018 (Insight-Partners,

2019). Capital costs aren’t the only commitments for
data center owners however. DC owner's also incur
significant operational costs throughout the entire op-
erational lives of their facilities.

Over a 20-year life of a continuously operating data-
center facility, the use-phase energy costs can exceed
its capital costs while having a much larger ecolog-
ical footprint. Given the accumulation of costs and
impacts over the life of data centers, there is a need
for a robust model the couples the information tech-
nology (IT) and building systems with their energy
supply sources through its useful life. In this article a
geographically extensible model that accounts for the
workloads, building systems, and power utility grid is
presented.

In the rest of this paper a model for coincident en-
ergy demand and marginal energy costs (MEC) of a
set of data centers is proposed and developed. First,
the proposed method uses a hybrid model consisting
of EnergyPlus and Python programming modules as
developed by the researcher in (Kumar, 2020a). For
this article, the researcher’s original hybrid model is
modified as described in the methodology section to
be more indicative of the current operations of cloud
data centers. Then second, the resulting time series
of operational energy demand profile is used as input
to a Python based open source MEC simulation tool
that is also extended as described in the methodology
section.

The MEC calculations are based on the Dispatch Op-
timized Systems Cost of Energy (DOSCOE) model
developed by Platt (Platt et al., 2017). DOSCOE
provides a linear programming platform that com-
putes the monetary costs and several environmen-
tal emissions associated with operating a mix of
dispatch-able and non-dispatch-able energy sources.
In this context, dispatch-able energy sources are those
that can be controlled to meet demand. Natural gas
power plants are examples of dispatch-able sources
of energy, where the plant operators can control
the mass flow rates of the combustion gases to cur-
tail generation rates. On the contrary are the non-
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dispatchable sources, where the energy generation is
dependent on extrinsic factors. An example of non-
dispatchable energy source is solar; where cloud cover
greatly effects the generation rate and no power can
be generated at night.

Modeling the costs for a mixture of dispatchable and
non-dispatchable generators is complex as most non-
dispatchable sources are only accounted for as oppor-
tunistic supply sources when sizing the power gen-
eration infrastructure. By design the dispatchable
generators are sized to meet the full demand in a
worst-case condition when no dispatchable power is
available (Platt et al., 2017). However, when non-
dispatchable power is opportunistically available, it
supplements the grid; allowing dispatchable sources
to be turned down to part loads. This saves fuel costs
for dispatchable sources (ie natural gas generators),
but it leaves their physical infrastructure stranded
and underutilized.

This research’s coupling of the DOSCOE model with
a BEM quantifies the monetary and ecological costs
associated with operating data centers in grids with
mixtures of energy sources bound by physical con-
straints. The developed model is evaluated by match-
ing the marginal costs of energy with data center de-
mands on hourly intervals. Furthermore, the result-
ing model is inclusive of the stranded costs of the
underutilized power infrastructure.

In the next section, Background, informative context
is provided to set the proper use-case for this frame-
work. Then in the Similar Works section, past liter-
ature which have quantified the ecological life cycle
cost of data centers and internet services are sum-
marized. In the Methodology section, the two main
modules of the software implementation of this re-
search are presented. Specifically these modules are
a modified version of hybrid building energy model
and a novel MEC model based on DOSCOE. After
the details of the models are presented, the results
are discussed in the Results and Discussion section
followed by the Conclusions.

Background

Data centers are critical to modern internet experi-
ences for billions of people. They are the key enablers
for disseminating information in real time regardless
of people’s location. As an example of location ag-
nostic services geographical dispersed infrastructure,
Figure 1 illustrates a geographically distributed archi-
tecture that enables data centers to provide globally
consistent internet experience that have become the
status quo over the last decade. Distributed software
architectures implemented in the server clusters at
the leaf-nodes consist of a collection of autonomous
computing resources that appear to its users as a
single coherent system (van Steen and Tanenbaum,
2018).

Figure 1: General Topology of data center networks.
The 1:1 metropolitan area to building relationships
are shown for clarity only. Pink: indicates the first
layer - ISP-Metropolitan links (physical). Magenta:
indicates the second layer Metropolitan-DC Building
with a full mesh connection (physical). Gray: repre-
sents the cross-connection between Data Centers (log-
ical). Green/Red: Cluster to Cluster links (logical).

In Figure 1, a data center network stack with three
hierarchical WAN layers are shown. The first hierar-
chical layer, the global level, has a wide area network
(WAN) connected to two internet service providers
(ISP) as its root node. For the purposes of this work,
the WAN is an abstraction of a network that con-
nects a set of data center facilities with each other.
The second layer of the global level are the metropoli-
tan regions. In this layer, the ISP links are shown as
coming in from top and the outgoing links from the
bottom serve local distribution networks to buildings
within the metropolitan areas. The final layer of the
global level are the data center buildings, where the
global network links connect to clusters of servers. In-
side each data center there may be another indepen-
dent hierarchy as shown by the server clusters. The
physical network links shown in Figure 1 connect the
buildings to each other through the WAN. However,
the physical links (pink, magenta) is transparent for
the clusters, which directly communicate with each
other through logical links (gray, green, red).

Large cloud data center operators have championed
WAN systems for global up-time (service availabil-
ity) and user experience optimizations (Sushant et al.,
2013) (Hong and Kandula, 2013). Cloud data cen-
ters are a specific class of data centers. They serve
business functions that require custom IT and build-
ing systems tuned for optimality in total costs of
ownership models. These facilities house numerous
services that can be controlled by network load bal-
ancers, with each data center limited by its physical
infrastructure’s capacity. As described by Sushant
and Hong, the WAN networks can shift loads between
data center on command. The efficacy of a strategy
for shifting computational loads depends on the ca-
pacity headroom of the physical resources at the data
center where the loads are shifted to.
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Figure 2: Activity distribution of a sample of 2 clus-
ters, each containing over 20,000 servers, over a pe-
riod of 3 months. The x-axis indicates the server uti-
lization rates (0 to 1) and the y-axis indicates the
fraction of time during the 3 months (Barroso et al.,
2018). The figure on the right (b) shows that peak
utilization exceeds 75% with little variances over the
3 months, whereas the right figure (a) shows that uti-
lization is below 60% at all times.

The location fungibility enabled by WANs is desirable
from a service application performance point of view,
as latency can be significantly reduced for specific
markets and applications by minimizing the round
trip communication times with consumers. Further-
more for cloud DCs, researchers have demonstrated
cross awareness of BEMs and network models to op-
timize DC sustainability (Tripathi et al., 2017; Kiani
and Ansari, 2017). Beyond the sustainability gains,
there is a potential for meaningful financial incentives
by balancing workloads across DC, thus reducing the
peak demand on any specific DC and lowering the
required physical capacity that must be built.

In the context of BEMs, there is a trade-off with the
non-deterministic nature of network load balancing
described above. Implementations of load balanc-
ing strategies using WAN’s make the IT workloads
temporally (and geographically) unstable, rendering
it elusive for building modelers to reason about. As
an example of temporal and geographical instabil-
ity of data centers, Figure 2 (Barroso et al., 2018)
shows the difference in utilization rates for two server
clusters from Barroso’s operational experience. This
behavior of IT loads is something that WAN aware
BEMs can help characterize and exploit. One pos-
sible means of exploitation is to flatten the peak of
each cluster by routing the excessive workloads to an-
other similarly provisioned cluster with lower coinci-
dent demands and sufficient building systems capac-
ity headroom. However, building energy simulation
need to be aware of more then just energy to make the
right environmental decisions. To effectively optimize
environmental objectives, BEMs coupled with MEC
models can quantify the energy’s global warming po-
tential in terms of carbon footprint to shift loads from
one building to another.

Based on the literature reviews and references cited,
there are no publicly available simulation frameworks
that couple the dynamic data center workloads and

the coincident carbon footprint associated with pow-
ering their load. The marginal cost of energy coupled
building energy model described in this research is
the first publicly available tool to allow owners, de-
signers, and researchers to quantify the carbon foot-
print of data center operations accounting for gran-
ular supply and demand matching of power. Next,
a literature review of past works concerning the car-
bon footprint of data-centers and digital services is
presented in the Similar Works section.

Similar Works

There are two notable past works that look at the
energy footprint for distributed sets of data cen-
ters. First, Tripathi considers hardware capital costs
alongside with energy acquisition costs to quantify
the total costs of ownership in (Tripathi et al., 2017).
Tripathi's framework is dynamic in terms of work-
loads but it is not aware of the building energy dy-
namics. In the second work, Kiani and Ansari de-
scribe a geographical load balancing strategy that ex-
ploits green energy mix in the utility grid (Kiani and
Ansari, 2017). However, their load balancing scheme
doesn't provide insights into how the load balancer
evaluates the building energy demands or how the
greenness of the energy supply is obtained.

Using a life cycle assessment framework, Whitehead
demonstrates a comprehensive data center site level
life cycle costs analysis in (Whitehead, 2015). All en-
ergy use in Whitehead’s models were deduced from
annualized PUE values, precluding coincident energy
source evaluations with their framework. Similarly
the Green Grid’s data center life cycle assessment
guideline is limited to PUE as their suggested ba-
sis for the operational energy proxy (The Green Grid,
2012). The PUE metric is shown in Equation 1, it has
proven to be the most popular method for data center
operational efficiencies since 2006 (Wikipedia.com,
2020).

PUE =
Etotal

EIT
(1)

Etotal = Total Power Used at Facility

EIT = Power Consumed by IT Equipment

Other’s have evaluated the costs of internet services
(Taylor and Koomey, 2008; Shehabi et al., 2014).
Taylor and Koomey quantify the energy and green-
house gas implications of online Advertising circa
2008. While Shehabi evaluates the energy and green-
house gas implications of video stream circa 2014
(Shehabi et al., 2014). Together these works provide
a taxonomy that can be followed to assess internet
service costs in terms of energy use.
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Figure 3: Data center locations

Methodology

In this section the MEC model's coupling with the
BEM is described. The resulting model maintains a
strict partition between the two technical domains.
The first part of the model simulates the hourly en-
ergy demands of a set of five data centers in En-
ergyPlus (EP) using the method demonstrated in
(Kumar, 2020a). These data centers are distributed
across the globe as shown in Figure 3. Then in the
second part, the data center demands are matched
with the respective region's utility power generation
sources for the coincident hour to assess the MEC
during that hour. These parts are described in the
following subsections.

A fundamental component of the demonstrated im-
plementation of this framework is the network traf-
fic simulator from (Kumar, 2020a). The simulation
produces a time-series profile of the network traffic
that a hypothetical service will get at a particular
data center site. The hypothetical services are based
on Wikipedia and segregated according to the natu-
ral language of the Wikipedia pages. By segregating
services by natural languages allows the treatment of
each language as a ’service platform’. With these net-
work simulations, one or more languages can be sup-
ported from a single data center with the constraint
that the sum of the IT workloads does not exceed the
capacity of the data center facility.

Building Energy Model

For the first part, a sufficient building energy demand
profile is simulated as in (Kumar, 2020a). The IT
workload profile characterizing the power and cool-
ing load is obtained by simulating the 50th quantile
of daily network traffic to each data center using Ku-
mar’s method from (Kumar, 2020b). There are three
notable differences between Kumar’s orginal BEM
and the model presented here. The specific changes
are:

1. Setting 2kW/m2 as the IT equipment load den-
sity to represent cloud DCs with hot-aisle/cold
aisle containment resulted in run-time errors.
This persistently led to thermal runaway condi-

tions for the Singapore and San Francisco sites
in the new model. In order to keep the building
envelope form-factor and the construction mate-
rials the same, this simulation’s IT power load
density is changed to 1.0kW/m2.

2. In these simulations, the data center model has
air distribution flow control with approach tem-
peratures specified. Flow control with approach
temperature method calculates the temperature
differences between the IT hardware boundaries
and the air handling equipment. This method is
more representative of modern data-center oper-
ations and allows modeling ASHRAE 90.4 Stan-
dard’s requirement of hot-aisle / cold-aisle com-
partmentalization. The alternate method in En-
ergyPlus considers the entire data center room
as a well-mixed environment, consistent with the
modeling from (Kumar, 2020a). While using the
approach temperature method, the cooling set-
point is changed to 27 degrees Celsius from 25
degrees used in (Kumar, 2020a). This 2-degree
adjustment corresponds with the approach tem-
perature between the air handling equipment dis-
charge and the inlets of the ITE; as there is no
mixing of the supply air before it enters the ITE.

3. As the third and final change, the load distri-
bution values in the EnegyPlus input file (IDF)
were revised from the SequentialLoad setting to
UniformPLR. In the former, equipment is acti-
vated in the order listed in the IDF. With this
specification each piece of equipment ramps se-
quentially from its idle state to full capacity, be-
fore subsequent equipment is enabled. In the lat-
ter load distribution specification, all equipment
are loaded in parallel to each other. Another
available setting for load distribution, the Opti-
mal specification, was also tried for this field, but
it crashed the simulations.

To validate that the proposed building energy model
configurations with the above changes produce rea-
sonable results, each data-center is simulated with
two models. In the first model, the economizer for the
direct evaporative cooler (DEC) limits are increased
while in the second model the default settings are
maintained. The summary of the changes are indi-
cated in Table 1, while the comparison of total site
energy between the two models for each set of the
simulations is illustrated in Figure 4.

In Figure 4, the pairs of simulations for a DC site
are presented. In the figure, the red bar indicates the
total site energy of the model with economizer limits
increased and the IT loads reset by the network coef-
ficient (RL). The blue bar indicates the default econo-
mizer values (NoRL) from Kumar and with statically
configured IT load profiles (ie cyclic day/time load).
From the figure it can be observed that the increased
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Figure 4: Total Site annual energy for statically
(NoRL) configured IT load and dynamically reset
(RL) IT loads.

economizer settings lead to more energy use than the
default values for three of the five DCs. This increase
in energy demand is attributed to the load resetting,
where the network aware model increased the IT load
for more hours of the year.

Table 1: Economizer settings for the two models

IDF Object Variable Default Increased

DC-OA Econ. Max db-C 23 28

DC DEC Evap. Max db-C 20 28

The next subsection introduces the marginal costs of
energy model, which will take the results from the
BEM model described above.

Regional Marginal Costs of Energy

The second module requires a time-series profile of
the electrical grid’s power source attributions, where
the intervals of the power generation values match
the BEM energy profile. The corresponding site and
regional grid model pairs are indicated in Table 2.
For this model the energy generation regional grid
profiles are obtained from Platt, who provides profiles
for 13 US regions in DOSCOE [5]. Singapore and
Amsterdam data-centers grid profiles are constructed
as described below.

Table 2: Data Center Site and Power Grid
DC ID DC Location Regional Grid

SFO San Francisco, CA California
CAR Carrolton, Texas ERCOT
ASH Ashburn, VA Midatlantic
AMS Amsterdam Netherlands
SIN Singapore Singapore

Each U.S region’s grid profile is composed of hourly
demands and corresponding production capacity of
several power generation technologies. Hourly values
for each region’s demand, solar, wind, coal, coal with

cryogenic capture, coal amine gas scrubbing, and nu-
clear are defined. These grid regions are representa-
tive of three out of five of the data-center locations
being simulated.

For Singapore, the International Energy Agency
(IEA) provides a top down view of the annual en-
ergy production from various technologies. The IEA
data shows that the renewable penetration in the en-
ergy supply for Singapore accounted for only 1.6% of
the total energy demand in 2016 (IEA, 2017). Due
to this negligible contribution from renewable sources
and lack of hourly generation data, it is assumed that
all demand is met by natural gas power generators,
consistent with other sources (USEIA, 2016b). Fig-
ure 5 indicates the energy production capacity and
the associated carbon emissions for each of the util-
ity grid regions. The demand profile for Singapore in
2016 is obtained from (Singapore-Government, 2016).

For the Amsterdam data center, the energy profile of
Netherlands is used. The IEA indicates that in 2018,
12% of Netherlands’ energy demands was met by re-
newable sources. This is a meaningful contribution
from renewable, therefore a more granular generation
profile is prudent as opposed to Singapore which did
not require evaluations of the energy mix at any given
time. To formulate a more granular resolution of
the Netherlands’ generation, the IEA data is supple-
mented with data from the Open-Power-System-Data
to characterize the time series profile of renewable en-
ergy (Open-Power-System-Data, 2019). OPSD pro-
vides hourly data for the renewable sources only. The
balance of the energy demands in the Netherlands is
met by fossil fuel-based generators, namely 35% by
coal and 42% by natural gas (USEIA, 2016a). The
DOSCOE grid profiles don’t have any correspond-
ing field for bio-mass, so the bio-mass generation in-
dicated in OPSD is lumped in with the fossil fuel
generators. In the discussion section, some valida-
tion for this approach is presented. The Netherlands
also produces nuclear energy, but only the annual
production rates were obtained (USEIA, 2016a). In
this works implementation of the DOSCOE, the an-
nual nuclear production for Netherlands is distributed
equally over the year and modeled as a constant (non-
dispatchable) base load throughout the year.

The MEC coupled BEM algorithm is given below.
In the algorithm two inputs are required. The first
is DOSCOE[region], it is a two-dimensional array
formatted as described in (Platt et al., 2017). It
indicates hourly grid profiles of the power demand
and power capacity of the available energy sources
at the corresponding hour. The second input, traf-
fic.language, is a one-dimensional vector indicating
the network traffic to the respective site from Kumar
(2020b). In the algorithm, for each language, it’s traf-
fic to the respective data center is checked. If there
are traces of a language routed to a site, the algo-

BuildSim-Nordic 2020

- 312 -



rithm performs the BEM simulation by invoking En-
ergyPlus. This resulting demands from EnergyPlus
are then added to the region’s grid demand profile. If
a language does not have any traffic to a particular
site than, the data center site does not do any work
and the BEM simulation is bypassed.

Algorithm 1 MEC coupled BEM algorithm

Require: DOSCOE[region] & traffic.language[site]
for site and region in DC.site and DC.region do

if traffic.language[site].all ! = 0: then
DEMANDDC ← BEM(site, traffic.language)
DOSCOE[region].demand += demand[site]

end if
end for
CO2 footprint = GridSim(region, rps)

Where DEMANDDC is the marginal demand the data
center puts on the power grid,

The second step of algorithm quantifies the marginal
carbon footprint of the grid with the added data cen-
ter loads by running DOSCOE’s Grid Simulator. In
this step, the renewable portfolio standard (rps) ar-
gument specifies the percentage of renewable energy
mix for the region.

In the next section the results from the methodology
are discussed.

Results & Discussions

The resulting values of the carbon footprint for each
data center is summarized in Table 3. The energy
model for the 491 kW data center has been scaled
by 1000 to represent the metro scale of data centers
impact of the regional grid. The specific data center
model represents only a small fraction of hyper-scale
data centers campuses that reach 500-Mega-Watts.
The table further indicates the carbon footprint of
each of the languages being served from the data cen-
ters. The values are indicative of the marginal CO2

emitted by adding the data center demand to the re-
spective grid.

Table 3 indicates the total marginal carbon footprint
for each language in the last row by summing each
of the language columns. While the total marginal
carbon footprint of each data center is obtained by
summing the rows as shown in the last column. The
English pages have the most traffic globally and as ex-
pected English has the largest marginal carbon foot-
print due to its data-center operations. Form the
physical data center perspective, the model shows
that the Ashburn data center has the highest car-
bon footprint. This can be attributed in part to the
energy source’s carbon footprint relative to other lo-
cations as shown in Figure 5.

Figure 6 is a histogram plot of the PUEs for all the
data centers in the evaluated network. Each color
in the figure represents a specific data center. The

PUE is indicative of the utilities system efficiencies;
namely the cooling and the power distribution The
x-axis in Figure 6 indicates the PUE value and the
y-axis indicates the number of hours the data centers
have at specific values. As a concrete example, the
bars representing Netherlands site is labeled as ams-
rl PUE and has most hours at or below a PUE of 1.1.
Other data centers also have a PUE of 1.1. Stacking
the curves from the different data centers indicates
the global network’s time spent at a specific PUE.
A major influencing factor for the PUE is the local
weather conditions.

An understanding of the cooling design weather con-
ditions may help reason about the differences in PUE.
Lower PUEs generally coincide with cooler weather,
which leads to more favorable thermo-mechanical
equipment operating points. In practical terms,
cooler temperatures enable facilities to be cooled with
economizers for more hours and they also lower the
equipment’s energy demand when economizers are
not fully operational. For the set of the data cen-
ter analyzed in this work, the ASHRAE cooling de-
sign conditions are shown in Table 4 (from ASHRAE.
(2009)).

As an implementation detail, the DOSCOE model
proved to be quite sensitive to the data structure of
the load profiles. For example any null value in the
profile resulted in breaking the linear solver. Also,
solar and wind energy are required to be non-zero for
at least one hour of the year. This requirement is a
practical constraint, but in the profile developed for
this work the values are arbitrarily set to a low value
across all hours. Specifically, the defaults setting used
in the work is 0.1 MW for each hour.

Another implementation measure required the dis-
counting of facility’s base loads. Without this dis-
count, each model accounted not only the incremen-

Figure 5: Energy Product Capacity and Carbon Emis-
sions.
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Site German English Spanish French Japanese Russian Chinese Total

California 0.0 1.24x106 0.0 0.0 0.0 0.0 0.0 1.24x106

Carollton 0.0 6.59x104 1.20x106 0.0 0.0 0.0 0.0 1.26x106

Ashburn 0.0 4.38x106 8.0x105 1.17x105 0.0 0.0 0.0 1.36x106

Amsterdam 2.81x105 2.25x105 9.85x104 2.67x105 0.0 3.15x105 4.67x104 1.23x106

Singapore 0.0 3.74x105 0.0 3.71x104 3.35x105 3.91x105 7.87x104 1.22x106

Total 2.81x105 2.35x106 2.09x106 4.21x105 3.34x105 7.06x105 1.25x5 6.31x106

Table 3: Data Center Operation Carbon Footprint (Tonnes of CO2 Emitted over the Year)

Figure 6: Stacked histogram of PUE from all Data
Centers.

DC 0.4%DB 0.4%WB 1%DB 1%WB 2%DB 2%WB
Amsterdam 82 67.5 78.1 66.2 74.6 64.4
Ashburn 93.5 75.1 90.8 74.3 88.2 73
Singapore 91.7 79.4 91.1 79.4 89.9 87.2
Carrolton 100.4 74.5 98.4 74.6 96.2 74.8
San Francisco 83 63 78.3 62.1 74.4 61.2

Table 4: ASHRAE Annual Cooling and De-
humidification Design Conditions in ◦F ASHRAE.
(2009)

tal load placed on the DC from a service’s incoming
traffic, but also it would account for the entire base-
line loads in each EnergyPlus run. For sites with
multiple services, this results in significantly over ac-
counting of the base loads, as it would be included
for all the services in the DC. To address this issue, a
post processing step apportioned the baseline load to
each service/language by using the traffic coefficients.
For the attributions, an initial condition for the traf-
fic coefficient is set to 0. With this initial condition,
the BEM provides the baseline energy required by
the data center (i.e. all equipment operating at their
lowest turn-down rates). The traffic coefficient scaled
this value, bound by the constraint that the sum of
the coefficients is strictly equal to 1 for all time-steps
of the simulation.

Conclusion

The network dependencies between physically dis-
persed data center resources make system level build-
ing design decisions a challenge to reason about. This
research has presented a quantitative method to cou-
ple the network dependencies of data centers with

their building energy and grid level marginal costs
of energy. The research extended the PUE metric
with utility grids to indicate carbon footprint of data
centers. Furthermore, as shown in Table 4 the pre-
sented method allows analysis of data center systems
at global service levels.

As pointed out in the background section, there is a
lack of bottoms up building design and carbon foot-
print models. The modular methodology of this re-
search is a novel means of coupling abstracted service
level metrics (WAN traffic in this case) with physics
based building energy simulation (EnergyPlus in this
case). This integrated tool set can be used by data
center system modelers to optimize their deployment
across geographical bounds. Future work should con-
sider controlling the network traffic based on building
energy simulations to achieve global optimality in real
time operational environments.
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