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Abstract 
Model Predictive Control (MPC) has proved to be a key 
technology to activate the energy flexibility of buildings. 
A reliable control-based model should be developed to 
implement an efficient optimal control. Grey-box models, 
as a combination of physical knowledge and experiment 
data, have been widely used in the literature. However, in 
the identification process of grey-box models, many 
factors affect the results. This paper uses data from virtual 
experiments in IDA-ICE to investigate the influence of 
the optimization methods, the filtering methods, the 
training dataset and the sampling time interval on 
stochastic grey-box models. It shows that global 
optimization increases the chance to avoid a local 
minimum. Pre-filtering methods have a small influence 
on the model quality. Larger data sampling time will 
cause the identified parameters to become non-physical. 
However, the simulation performance of the model is kept 
almost unchanged. 
Introduction 
The share of Renewable Energy Sources (RES) is 
increasing constantly in today’s energy system. The 
volatile property of RES generation has brought notable 
challenges to the grid. Thus, flexible loads become a 
requirement to further increase the penetration of RES. 
Demand response (DR) is considered to be one of the key 
components to provide flexibility in smart grid [1]. DR 
can be described as the interaction and responsiveness of 
the end-use customer to a  penalty signal (e.g. price signal, 
CO2 intensity factor for electricity) [2]. In addition, due to 
the continuous increase of the electric consumption of 
households and the introduction of electric vehicles, DR 
can be used for peak-shaving in order to avoid congestion 
in the distribution grid [3]. Consequently, peak-shaving 
would enable to minimize or postpone the reinforcement 
of these grids. 
About 25% of the final energy consumption is consumed 
by buildings and more than 65% of this energy is used for 
heating and cooling demand in European households, 
which makes HVAC systems a promising candidate for 
demand response [4]. In Nordic countries, the space-
heating season is long and cold, the energy consumption 
is mainly related to space-heating. The thermal mass of 
buildings can be a significant heat storage [5,6]. When 
using the thermal mass to perform DR, the heating 
demand will be shifted optimally, while the thermal 
comfort constraints can still be respected [7]. The targets 

of DR in buildings are usually the reduction of peak load, 
lower CO2 emissions, maximize the use of RES or 
minimize energy cost [8]. Model predictive control (MPC) 
is often considered as an important technique to perform 
demand response (DR) using the thermal mass of the 
building. The logic of MPC in a building is that the control 
agent (computers, built-in intelligent devices, etc.) takes 
the predictions of future disturbances (weather data, 
power generation from RES, etc.) and the system 
constraints into an optimization problem and generate an 
optimal control decision at each control time step. Thus, 
it is important that the dynamic model embedded in the 
MPC controller has decent prediction accuracy. A poor-
quality model could lead to suboptimal performance, such 
as increased energy costs, violation of the thermal comfort 
or even be counterproductive for the electricity grid. In 
addition, the model identification should also be low-cost 
to make the investment costs of MPC sufficiently low. 
Control models for MPC controller can be divided into 
three main categories, namely white-, black- and grey-box 
models. White-box models are based on physical laws, 
which require detailed knowledge of the system, the 
underlying physical process and parameters. In practice, 
it is too complicated and time-consuming to access all the 
information and to keep it updated during the building’s 
operational lifetime. This type of model usually has 
higher accuracy but is mathematically more complex, 
which may cause challenges for the MPC optimizer. This 
fact makes this kind of model sometimes too complex for 
MPC [4]. Black-box models are pure data-driven methods 
considering only measured inputs and outputs from the 
system. The physical knowledge of the system is not 
needed. However, this method requires a larger amount of 
data for training and the precision of black-box models is 
significantly influenced by the data quality. Black-box 
models are known to have lower generalization 
(extrapolation) properties. Grey-box modelling is a 
combination of physical knowledge and statistical 
methods. Since the grey-box models have a model 
structure based on physical knowledge, grey-box models 
usually require less experimental data compared to black-
box models and are hopefully less sensitive to data quality 
[9].  
A common way to create Linear Time Invariant (LTI) 
grey-box models for buildings is to use lumped 
capacitance models (RC models). The thermal conditions 
of the building are expressed with an electrical circuit 
analogy [10]. This paper mainly focuses on five specific 
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factors influencing the grey-box modelling of the building 
thermal dynamics. The first aspect (Q1) is data 
preprocessing. Few publications are addressing the 
importance of data preprocessing for building thermal 
dynamics. The topic is discussed in other disciplines, like 
[11] in process engineering, but not in building science. 
The second aspect (Q2) is the convexity of the 
optimization problem. Except for models with an 
extremely simple structure like first-order models, the 
optimization problem for identifying parameters of the 
grey-box models is not convex. Therefore, grey-box 
models are very sensitive to initial guess and the search 
method (i.e. the optimizer). For instance, Generic 
Algorithm (GA) combined with gradient-based 
optimization is used in the paper [12] to avoid the 
identification results ending up in a local minimum. The 
selection of the optimization algorithm to avoid the local 
minimum will be discussed in this paper. The third aspect 
(Q3) is how data quality (e.g. level of excitation signal 
and amount of data) influences the identification results. 
It is often said that the temperature of the ventilation 
extract air is a good image of the average building 
temperature and is reliable to identify a grey-box model, 
see e.g. [13]. Thus, the fourth aspect (Q4) is about the 
selection of the representative indoor temperature for 
system identification. The last aspect (Q5) considers the 
sensitivity of the grey-box parameters to the selection of 
the data sampling time (Ts). The theoretical analysis of 
Ljung showed that the continuous grey-box models are 
sensitive to the selection of the sampling time that should 
be taken lower than the shortest time of the system to be 
investigated [14]. This analysis needs to be repeated for 
building applications. All the research in this paper is 
performed using stochastic grey-box models in 
innovation form using the disturbance matrix K and the 
MATLAB identification toolbox.  
Methodology 
Dataset and virtual experiments 
IDA ICE is a detailed dynamic simulation tool for 
studying thermal indoor climate as well as the energy 
consumption of buildings. A two-storey detached house 
with a heated floor area of 160 m² is used as virtual 
experiment for our case study. The three-dimensional 
geometry of the building from IDA ICE is shown in Fig. 
1. The building is constructed in wood (i.e. lightweight 
construction) and complies with the requirement of the 
Norwegian passive house standard, NS 3700 [15]. The 
detailed description of the building construction can be 
found in [16]. The building is equipped with balanced 
mechanical ventilation with a heat recovery unit. The heat 
exchanger is here modelled using a constant effectiveness 
of 85% without bypass, like a plate heat exchanger. 

 
Figure 1: 3D geometry of the building model in IDA ICE 

(showing the southwest façade). 

The building is simulated with a multi-zone model with 
open internal doors. IDA ICE has an embedded 
ventilation network model which accounts for the large 
bidirectional airflow through open doorways. This large 
convective heat transfer leads to relatively uniform air 
temperatures in the entire building. However, bathrooms 
are kept separated with closed doors. Following the 
cascade ventilation principle, ventilation air is supplied in 
living areas and bedrooms and mostly extracted in wet 
rooms (i.e. bathrooms and the laundry). The space-
heating was performed using an electrical heater in this 
case study. Direct electricity is a most common way to 
heat small residential buildings in Norway [17] . The 
hourly profiles of internal heat gains for artificial lighting, 
electric appliances and occupancy is taken from a 
Norwegian standard [18]. 
Two types of excitation signals are used to activate the 
thermal mass of the building in order to collect data for 
system identification. The first signal is called Pseudo-
Random Binary Signal (PRBS) with a minimum and 
maximum step of 10 and 80 min, respectively. The reason 
for choosing a PRBS signal is that it approximates white 
noise, which can activate the dynamic system in a large 
spectrum of frequencies [19,20]. The other excitation 
signal is an intermittent set-point, which means that the 
temperature set-point changes between daytime and 
night-time (i.e. night setback). In this case, an on-off 
control is implemented in IDA ICE to track the 
temperature set-point, like in real direct electric radiators. 
Both excitation signals are applied to an electric radiator 
placed in each zone, except for bathrooms as these rooms 
are relatively small and typically heated by floor heating 
(with significant thermal inertia). Five different periods 
with specific weather conditions are implemented in the 
virtual experiments, as described in the table below.  
IDA ICE uses a time-varying time-step so that the data is 
not generated at constant time intervals. The data output 
from IDA ICE is therefore interpolated on a uniform time 
discretization of 2.5 min (thus well shorter than the 10 min 
time interval of the PRBS). 
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Table 1: Weather condition of four PRBS experiments. 
Type Outdoor 

Temperature 
Sky Date Duration 

Very
Cold 

-10 ℃ Clear 
sky 

12/13
/2019 

One week 

Cold 0 ℃ Overcast 12/24
/2019 

One week 

Cold 0 ℃ Clear 
sky 

3/23/
2019 

One week 

Mild 5 ℃ Overcast 11/23
/2019 

One week 

 
Grey-box model structure and identification 
The main purpose of this paper is not to investigate the 
grey-box model structure. This topic is already discussed 
in previous works [21–23]. Only first-order (1R1C) and 
second-order (3R2C) grey-box models are considered in 
this paper with a single temperature node inside the 
building (i.e. mono-zone model). Preliminary tests have 
shown that a third-order model would be over-fitted for 
this test case. Higher-order models can cause over-
parameterization more easily, which has been shown in 
the papers [23,24]. The structure of the two grey-box 
models follows a RC-formalism. The lumped resistance 
and capacitance as well as the physical interpretation of 
these parameters can be found in Figures 2 and 3 below. 
The free parameters of these grey-box models are 
calibrated using the IDA ICE data. The ventilation 
exhaust air temperature or the volume-averaged 
temperature can be selected to represent the measured 
interior node Ti and their respective model performance 
will be compared. 

 
Figure 2: First-order model (1R1C) 

Ti   Temperature of interior heat capacity [°C]. 
Ta The outdoor (or ambient) temperature [°C]. 
Ci   Heat capacity of the building [kWh/K]. 
R (1/UA) Overall heat resistance between the 

building and the ambient, including 
ventilation [K/kW]. 

Qint Internal heat gain from artificial lighting, 
people and electric appliances [kW]. 

Qsolar Heat gain from solar radiation [kW]. 
Qh Heat gain from the electric heater [kW]. 

 

 
Figure 3: Second-order model (3R2C) 

Te Temperature of the building envelope [°C]. 
Ta The outdoor temperature [°C]. 
Ci   Heat capacity of the building combining the 

thermal mass of the air, the furniture, internal 
walls and, potentially, the first centimetres of 
external walls [kWh/K]. 

Ce Heat capacity of the node Te [kWh/K]. 
Rie (1/UAie) Heat resistance between the building 

envelope and the interior [K/kW]. 
Rea (1/UAea) Heat resistance between the ambient 

and the building envelope [K/kW]. 
Rvent (1/UAvent) Heat resistance between the ambient 

and the interior [K/kW]. 
α Fraction of solar gains to air node. 
The internal gains and solar gains are computed exactly 
by IDA ICE. In this work, they are not identified and are 
introduced directly in the grey-box model. Consequently, 
in the 3R2C model, only the coefficient α to distribute the 
solar gains between the two temperature nodes needs to 
be identified regarding gains. In real application, gains are 
not known exactly. However, simplifying the problem 
enables to emphasize the specific research questions of 
the article. 
The MATLAB identification toolbox is used for model 
identification. In grey-box models, the continuous time 
model is first discretized in order to identify the model 
parameters using discrete measurement data. The 
discretization assumes the input data to be piecewise 
constant during each time interval (i.e. zero-order hold). 
Regarding the optimization problem, the initialization 
value of the model parameters and their corresponding 
range (i.e. minimum and maximum values) should be 
defined. The optimizer will then iterate to find the 
parameters that minimize the Normalized Root Mean 
Square Error (NRMSE) of the one-step ahead prediction. 
Then, the toolbox covert the discrete time model back to 
continuous time: 

�̇�(t) =A x(t)+B u(t)+K e(t)  (1) 
�̇�(t) =C x(t)+e(t)   (2) 

where x is the state vector and A, B and C are the system 
matrices. u is the input vector (Ta, Qsolar, Qint, Qh) and y is 
the output (indoor temperature, Ti). K is the disturbance 
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matrix of the innovation form (Kalman gain). It is a 
transformed representation from the general process [25].  
Influence of the optimizer 
In MATLAB, the function greyest identifying the model 
parameters has four different gradient-based iterative 
search methods, used in sequence. However, preliminary 
tests using the 3R2C model show a quick converge to a 
local minimum close to the initial estimate of the 
parameters. A similar behavior is also reported in the 
paper [12]. The authors used GA combined with gradient-
based optimization to overcome the non-convexity of the 
optimization problem. Consequently, a global 
optimization algorithm has been implemented in this 
paper. Instead of the GA method, the first stage 
optimization uses particle swarm optimization (PSO) 
while the second stage uses the default greyest function to 
further polish the results. Each optimization method is 
able to identify the parameters’ value and their 
corresponding variance. For each case, the optimizer 
giving the lowest NMRSE for the one-step ahead 
prediction is selected and provides the selected model 
parameters.   
Pre-filtering methods 
In real-life applications, it is difficult to guarantee that the 
measurement data will be sampled at a higher frequency 
(Ts) than the highest frequency of the system (here 10 
min, imposed by the PRBS). For instance, the Advanced 
Metering System (AMS) in Norway has a typical time 
interval of 15 min [26]. It is important to investigate the 
influence of data pre-processing by low-level digital 
measurement devices before they log the data at an 
appropriate time interval. Temperature sensors can 
register data at a very high frequency (here 2.5 min). This 
data can be pre-processed before being sampled and 
logged at a longer time interval (Ts > 2.5 min). A low-
pass discrete filter can first be applied, such as a moving 
average (MA) or a finite impulse response (FIR). Without 
this low-pass filter (i.e. direct sampling), the aliasing error 
may be high. With MA, the aliasing error is smaller but 
still present while the FIR (applied with a sufficient order) 
would lead to negligible aliasing. By comparing the 
performance of (MA + sampling), (FIR + sampling) and 
the direct sampling on the parameter identification, it is 
possible to understand the influence of aliasing. The low-
pass filter is applied to all the input and output variables 
of the model. If the filter introduces a time delay (like 
MA), this delay is the same for all variables and will thus 
not affect the model. The situation would be more 
complex if the low-pass filter is only applied to a subset 
of the input or output variables. 
Results 
Influence of the optimizer (Q2) 
Five datasets using the four PRBS signals and the 
intermittent on-off heating during the full heating season 
(FHS) are used to investigate the influence of the 
optimizer. The two optimization methods do not show 

much difference for the 1R1C model. In most cases, the 
two optimization methods converge to the same 
parameter values. However, the identified parameters 
from greyest function are not identical for the 3R2C 
model. This implies that the optimization is already non-
convex from the second-order model, this conclusion is 
also confirmed in Arendt et al. [12]. The best optimizer 
leading to lowest NRMSE for the second-order model can 
be found in Table 2 (with different time intervals, 
excitation signals and filters). The figure shows that 
global optimization is selected for all cases no matter the 
time interval or filtering method.  

Table 2: Best optimizer for the four PRBS and FHS 
experiments. 

Sampling 

time 
Type 

Direct 

sampling 

Averaging 

filter 
FIR filter 

2.5min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

15min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

30min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

60min PRBS1 Global Global Global 

 PRBS2 Global Global Global 

 PRBS3 Global Global Global 

 PRBS4 Global Global Global 

 FHS Global Global Global 

 
Since the datasets contain different excitation signals and 
weather conditions, it is a strong proof that global 
optimization can give more robust and higher-quality 
results when the optimization problem is not convex. In 
other words, the global optimization algorithm can 
increase the chance to avoid a local minimum in the grey-
box identification process. 
Influence of the selection of input (Q4) 
While the one-step prediction is used to train the models, 
the simulation performance is more relevant for MPC 
applications. Therefore, the simulation NRMSE fitting is 
mainly used as the performance index in this subsection. 
Table 3 and Table 4 compare the cross-validation 
simulation performance using the volume-averaged air 
temperature and the extracted air as representative indoor 
temperature respectively. Only datasets trained with the 
original 2.5 min sampling time is used to avoid the 
influence of other factors (e.g. dataset, discretization error 
and pre-filtering method). 
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 Table 3:Simulation NRMSE fitting using the volume-averaged 
air temperature (Ts = 2.5min) 

Training 

dataset 

 

Validation dataset and simulation NRMSE fitting 

PRBS1 PRBS2 PRBS3 PRBS4 FHS 

PRBS1 84.25% 74.96% 0.53% 72.34% -17.72% 

PRBS2 77.10% 74.16% 24.25% 60.58% 9.49% 

PRBS3 39.36% 34.03% 64.20% 14.41% 33.24% 

PRBS4 82.19% 69.36% -17.69% 78.45% -42.34% 

FHS 45.95% 41.11% 69.06% 20.59% 39.17% 

 

Table 4:Simulation NRMSE fitting using the extracted 
ventilation air temperature (Ts = 2.5 min) 

Training 

dataset 

 

Validation dataset and simulation NRMSE fitting 

PRBS1 PRBS2 PRBS3 PRBS4 FHS 

PRBS1 90.21% 70.83% 16.97% 79.05% -94.10% 

PRBS2 73.51% 81.86% 29.88% 71.77% -74.10% 

PRBS3 30.44% 43.28% 68.02% 25.09% -15.82% 

PRBS4 78.70% 73.55% -10.68% 83.63% -155.32% 

FHS 78.11% 71.50% 52.43% 64.46% 25.33% 

 
In general, simulation performance with the two different 
representative temperatures are following the same trend. 
The simulation NRMSE fitting is higher for the original 
training dataset and lower for the validation datasets. The 
model identified from the intermittent set-point and on-

off control dataset during the FHS presents higher 
performance on the validation datasets: the validation 
fitting is acceptable at each period never completely 
collapsing. Models trained from the PRBS excitation 
signals of one week have a good simulation NRMSE 
fitting on their own training data but largely fail in some 
cross-validation datasets. Simulation results from 
extracted air temperature show a slightly higher 
simulation NRMSE fitting value for the original training 
dataset. However, models trained with extracted air 
temperature show worse simulation NRMSE fitting 
compared with volume-averaged temperature when they 
are trained and validated with the FHS dataset (values in 
red in Table 3. Thus, the volume-averaged air temperature 
is a more balanced choice of representative indoor 
temperature. The exhaust air temperature is not always the 
best option to train the model and this conclusion could 
be even more severe if all the internal doors inside the 
building were closed. 
Influence of pre-filtering methods and data-quality 
(Q1, Q3 and Q5) 
Figures 4 to 6 show three key identified parameters for the 
second-order model. For the value of the total heat 
transfer coefficient in Figure 4, the estimated value from 
a step-response of the heating power applied in IDA-ICE 
is about 85 W/K. Figure 4 shows that most of the results 
are close to the estimation from IDA-ICE. When the Ts is 
increased to 60 min, some values using the FIR filter or 

Figure 4: Identified Utot of the 3R2C model (variance is not given as Utot combines the 3R) 

Figure 5: Identified Ce of the 3R2C model 
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direct sampling starts to depart from the estimated value. 
Figure 5 shows the value and variance of the heat 
capacitance of the external wall Ce. Regarding the value 
of Ce, direct sampling has the tendency to generate a 
larger capacitance value with increasing sampling time. 
Some values are not visible because completely outside 
the y-axis limits of the graph. The same problem is even 
more pronounced for the value of the heat capacitance Ci 
in Figure 6. The value of Ci diverges quickly when Ts is 
increased for every pre-filtering method. Although it 
shows that the low-pass filter, especially the moving-
average, can improve the results of identified value for 
these key parameters. Regarding the variance of the 
parameters, it is very limited for the sampling time of 2.5 
min. Like the parameter value, the parameter variance 
increases with the sampling time. However, this increase 
of the variance is less systematic and regular than for the 
parameter value. 

Regarding the influence of filters, FIR does not show a 
significant advantage over the moving-average for the 
identification even though the FIR filter is theoretically 
better. On the contrary, FIR filter sometimes has worse 
results than the moving-average filter when Ts is large.  
Another important conclusion can be found. The FHS 
dataset has more stable identified parameters (both values 
and variance) than the PRBS datasets. This shows that a 
dataset generated from a normal building operation over 
a long time period with comfortable indoor temperatures 
(and thus possible occupancy) can give equivalent or even 
better parameter identification than a short training period 
using a better excitation signal (here PRBS) but leading 
to uncomfortable indoor temperatures, probably 
preventing occupancy.  
The simulation performance is shown in Figure 7 taking 
the FHS period to train the model. For the sake of the 
conciseness, the other cases using the other training 

Figure 7: Simulation performance of the models trained using the FHS dataset.  

Figure 6: Identified Ci of the 3R2C model 
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periods are not reported but they give similar conclusions. 
Unlike, the parameter value and variance, it is clear that 
the increase of the sampling time (Ts) does not degrade 
the simulation performance. In some cases, even though 
the identified parameters have non-physical value or 
variance, this does not alter the simulation performance. 
The simulation performance is the main property of 
interest for the application of MPC. This demonstrates 
that training of a model for MPC application or 
characterization of the building thermal properties does 
not require the same quality of the input data. For 
instance, the pre-filtering methods (MA, FIR or direct 
sampling) do not affect much the simulation performance 
as well. It is difficult to rank the three pre-filtering 
methods as their relative performance changes between 
the validation cases.   
Conclusions 
The sampling time (Ts) of data should be limited to 
guarantee the physical meaning of the parameter value 
and variance. Larger Ts can result in non-physical 
parameter values and variance (Q5). If a small Ts is not 
applicable, the data should be low-pass filtered before 
being sampled even though this measure alone does not 
guarantee that the parameters will be physical for all Ts. 
This answers the first question in the introduction (Q1). 
More than the data pre-filtering, the selection of the right 
sampling time is the dominating factor to guarantee the 
physical meaning of the parameters. Nevertheless, 
sampling time and pre-filtering do not seem to affect the 
simulation performance of the identified models, which is 
a positive conclusion for MPC applications.  
Even if a grey-box model has good simulation 
performance, having meaningful physical parameters in 
the model remains interesting. Firstly, it increases the 
physical understanding of the system, it enables to create 
benchmark values for other buildings of the same 
category. Secondly, if the parameters have not physical 
meaning, the model may have no additional value 
compared to a pure black-box model. However, to 
conclude this, the simulation performance of black-box 
models should be compared as well.  
Regarding the selection of the optimizer (Q2), the results 
show that only the oversimple structure of the first-order 
model shows convexity property. Significant non-
convexity already emerged from the second-order grey-
box model. When applying the four different gradient-
based iterative optimizers, the trained second-order grey-
box model has lower NRMSE for the one-step ahead 
prediction compared to the model from global 
optimization. Therefore, it is better to use global 
optimization to increase the chance of avoiding a local 
minimum.  
It is hard to say whether PRBS or FHS is a better option 
from the results that we observe. Since it also depends on 
the target period of the model (better fitting on a certain 
period or longer period of the FHS). However, it is clear 

that with a larger amount of data (longer observation 
period or more samples with smaller sampling time), the 
chance to identify a model with higher fitting and more 
physical parameters can be increased. This answers the 
third question (Q3) of the introduction. The data quality 
does influence the identified results of the grey-box model. 
Nevertheless, it is not always realistic to use the PRBS 
signal to excite the building’s thermal mass with normal 
occupancy in the residential building. Data from normal 
operation (here intermittent on-off heating) over long 
periods seems more accessible. The results of this paper 
also show that an acceptable model can be obtained with 
normal building operations if large amount of data is 
accessible.  
The selection of the correct input and output is also 
important for system identification (Q4). In the case study, 
the identified results from volume-averaged temperatures 
are better than those from the extracted air temperature. 
This proves that the correct selection of the representative 
indoor temperature of the building can increase the model 
quality and that choosing the extracted air temperature 
does not systematically give the best performance.  
This work has answered some questions for the 
identification of stochastic grey-box models. However, 
the data in this paper is based on the results of virtual 
experiments without measurement noise. For future work, 
it will be worth investigating the influence of the 
measurement noise on the identification results. In 
addition, complementary pre-processing methods to 
increase the chance to identify parameters with a physical 
value is also an interesting topic. 
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