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Abstract  
In the last decade, the development of Information and 
Communication Technology (ICT) has enabled 
unprecedented possibilities to tackle worldwide 
ambitious sustainability targets. Demonstration facilities 
like the KTH Live-In Lab are fundamental for the 
adoption of ICT solutions for energy efficiency and 
sustainability in buildings. The Live-In Lab monitoring 
infrastructure enables the creation of a digital-twin, which 
facilitates a cost effective development, testing and 
implementation of advanced control and fault detection 
strategies.  
The paper proposes a calibration methodology for the 
thermal model (energy and comfort) of the Live-In Lab, 
developed in IDA-ICE, to be deployed as a digital twin. 
The methodology first screens the parameters with most 
impact on energy use and then calibrates the model 
minimizing the error in both indoor comfort and energy 
use with a weighting parameter β. Calibration results are 
then validated against the measured data.  
The results of this paper will be instrumental to the 
improvement of control systems and it will facilitate the 
study of behavioral aspects of the energy use.  

Introduction   
The recent development of ICT has originated an 
exceptional potential for cost-effective improvement of 
energy efficiency in buildings, providing tools for more 
advanced building monitoring and building data analysis, 
more advanced control architectures and fault detection. 
Nevertheless, large scale implementation of ICT-related 
solutions in buildings need to be well proven and smart 
building demonstrators are required. Emerging tools to 
gain better and more realistic insights on the potential of 
ICT in buildings are virtual testbeds and digital twins.  
According to the CIRP Encyclopedia of Production 
Engineering (Stark and Damerau 2019) the definition of a 
digital twin can be given as:  
“A digital twin is a digital representation of an active 
unique product (real device, object, machine, service, or 
intangible asset) or unique product-service system (a 
system consisting of a product and a related service) that 
comprises its selected characteristics, properties, 
conditions, and behaviors by means of models, 

information, and data within a single or even across 
multiple life cycle phases.” 
In a recent review, (Jones et al. 2020) identify 13 
characteristics common to digital twins; according to 
(Jones et al. 2020) all digital twins share, among other 
characteristics, a physical entity (e.g., a building), the 
virtual entity or twin (e.g., the building model of the 
building), a physical and virtual environment (e.g. the 
weather and the weather monitored data), a physical-to-
virtual connection and twinning, i.e., the act of 
synchronizing virtual and physical states. An interesting 
example of implementation of a digital twin for buildings 
can be found in (Lydon et al. 2019); they present a 
coupled simulation for the thermal design of a space 
heating and cooling integrated in a lightweight roof 
structure to support design improvements. 
In building design and operation, digital twins can serve 
as an invaluable tool to test the effectiveness of advanced 
control architectures in reducing energy use and providing 
improved comfort, to test cost-efficient fault detection 
schemes, to generate realistic data for benchmarking of 
algorithms and to investigate potential privacy risks 
related to the increasing sensing and monitoring 
capabilities.  
The KTH Live-In Lab (“KTH Live-In Lab”), whose 
monitored data will be used as benchmark in this paper, 
has evolved from a single building (now Testbed KTH) to 
a set of demonstration buildings with the goal of testing 
and demonstrating the impact of ICT-based solutions in 
the building to facilitate innovation in the building 
industry. The testbed KTH is configured as a smart 
building; a key element to foster research is the creation 
of its energy digital twin. The first step in the creation of 
the digital twin is the implementation and the calibration 
of an energy model: this paper deals with the process of 
calibration and introduces a methodology considered 
particularly suitable to the specific requirements of a 
digital twin. 
The capability to accurately predict energy use and 
temperature is crucial. Prediction discrepancies  in 
building simulation models typically arise from 
uncertainties in input data relative to the building 
enclosure, like for instance geometry, air-tightness and 
wall insulation, to the HVAC system, control setting, e.g. 
temperature setpoints, and to the building usage, i.e. 
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internal gains from people, light and equipment. The issue 
of reliable data retrieval for simulations may be even more 
problematic for older buildings, where such information 
may not be available at all – thus relying on an assessment 
based on expert knowledge. In addition, the monitoring of 
certain environmental conditions, like solar radiation, can 
be impracticable, expensive or not commonly available; 
similarly, certain variables like occupancy estimation in 
time may not be accurate. All these uncertainties are likely 
to result in a relevant mismatch between the building and 
the building model it represents. Building models 
calibration against measured data has proven an effective 
way to improve the prediction accuracy of the models. 
Important contributions in the literature on thermal model 
calibration will be briefly summarized in this section.  
The calibration of a building energy model can be used as 
a first step towards the evaluation of energy savings 
measures: examples can  be found in (Ascione et al. 2019) 
that perform a calibration for the whole building model – 
a university building- on the available monthly energy 
data (gas and electricity) after a preliminary investigation 
on the prevalent indoor conditions, with errors after 
calibration below recommended thresholds. 
(Coakley, Raftery, and Keane 2014) provide an 
exhaustive overview of challenges, software tools, 
procedures and methods in matching building energy 
simulation models to measured data. Building energy 
performance simulation calibration approaches are 
grouped in analytical tools, mathematical and statistical 
techniques, manual calibration approaches and automated 
calibration approaches, which include optimization-based 
techniques and Bayesian techniques. The application of 
optimization techniques to building simulations is object 
of the review by (Nguyen, Reiter, and Rigo 2014), who 
stress the growing number of publications and illustrate 
the main challenges related to the topic. 
Bayesian approach for building model calibration and 
parameter ranking is used by (Yuan et al. 2017) in an 
existing building in Singapore, based on monthly 
electricity data. Other successful examples of Bayesian 
calibration are found in (Chong et al. 2017), who apply it 
to two building cooling plants, in (Kristensen, Choudhary, 
and Petersen 2017), who investigate the effect of 
aggregation of smart meter data on the calibration of a 
building energy model and in (Zhu et al. 2020), who 
propose a new Bayesian calibration approach combined 
with machine learning. Finally, guidelines for the 
implementation of Bayesian calibration are provided by 
(Chong and Menberg 2018) to ease general users from its 
complexity and need of specific information due to its 
statistic formulation, which make it non-trivial for 
building designers and consultants. 
Compared to Bayesian approaches, optimization-based 
calibration methodologies have the advantage of a being 
more intuitive and have been widely used in literature. 
(Asadi et al. 2019) deal with the calibration of the cooling 
energy of a building in a temperate zone (Doha), with 

hourly electricity monitoring, using a Harmony search 
optimization algorithm. (Mustafaraj et al. 2014) perform 
a two-step calibration of the model of a large university 
building in Ireland to evaluate potential energy savings 
measures; two steps are required due the complexity of 
the model and satisfactory results are reached after the 
second step of the calibration. 
(Yang et al. 2016) applies a calibration method based on 
sensitivity analysis and Particle Swarm Optimization to a 
building in Shanghai to improve the prediction accuracy 
of the model. The model is developed using eQUEST and 
the calibration, which is performed on monthly energy 
data on HVAC, lighting and equipment, manages errors 
below the recommended thresholds. 
(Chaudhary et al. 2016) propose an “Autotune” 
calibration methodology and test it on a deliberately de-
tuned building model and on a manual calibration 
approach, yielding accurate results and time efficient 
operation. 
(Monetti et al. 2015) perform a calibration of a test 
building model of approximately built around a climatic 
room. Given the limited dimensions (160 m2) of the 
building, a thermal zone was defined for each of the 
rooms, for a total of seven thermal zones. Most calibration 
parameters are given a variation range of 25%. The hybrid 
generalized pattern search with Particle Swarm 
Optimization was used in a two steps calibration: first 
with time-varying parameters (like equipment and 
infiltrations) and then building envelope parameters, for a 
total of 11. 
A slightly different approach is used by (Allesina et al. 
2018), who opt to calibrate a building model, a 3600 m2 
retail store building from the 70’s in Italy. The calibration 
is based on the energy signature of the whole building and 
data recovered from gas bills; instead of using heuristics, 
they create a mesh of 176 configurations of the building 
model, built with EnergyPlus.  
As model calibration may involve numerous parameters 
in the optimization process, refined methods include a 
screening analysis before the calibration process. (Zuhaib, 
Hajdukiewicz, and Goggins 2019), for instance, perform 
a Morris analysis to isolate parameters with significant 
impact on the model thermal dynamics, and then perform 
a two steps optimization. Similarly, (Li et al. 2018), use 
Morris analysis to reduce the number of parameters in the 
optimization from 15 to 6; after calibration, the 
discrepancy between monitored and predicted energy 
(CV) in the validation period decreases from 84% down 
to 16%. Sensitivity analysis is used also by (Ascione et al. 
2020) to validate the model of an industrial building in 
Southern Italy and evaluate different retrofit measures 
with a Pareto frontier.  
Calibration processes can also be extended to aggregated 
set of buildings: (Taylor et al. 2019), for instance, propose 
a method to calibrate an aggregate energy demand model. 
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(Li et al. 2018) stress that current calibration practice is 
mostly carried out on monthly data with fewer studies 
with hourly calibration. In building energy models to be 
deployed as digital twins, calibrations with higher time 
resolutions are preferable, but there is a trade-off between 
effort and calibration resolution. The necessary data may 
not be available, it may be costly to obtain or it may come 
with high uncertainty. It is often challenging to get data 
with the desired time resolution and spatial resolution; a 
temperature sensor may be available for only a room in a 
large space or set of rooms.  
It is commonly found in literature that uncertainty is 
related to occupancy related dynamics, including gains 
from occupants, equipment and lighting, and energy flows 
from demand-controlled ventilation. In this work, high 
resolution data from the Live-in Lab Testbed KTH 
enables the evaluation of a calibration methodology with 
a detailed model, with a zone for each room, and hourly 
resolution. The testbed monitoring platform includes 
motion sensors; such data is used to estimate occupancy 
patterns and evaluate the impact of occupancy in the 
calibration of the model; furthermore, the calibration 
methodology introduces a weight factor β to enable the 
evaluation of the errors of both energy and indoor 
environment in the cost function of the calibration. 
The following paragraphs of the paper include a 
methodological section, with a description of the building 
to be calibrated and the methodology proposed, based on 
a screening analysis and an optimization algorithm based 
on sequential search technique; the results of the 
calibration are then presented. The discussion of the 
results follows and a conclusion section ends the paper. 

Method  
The building energy model and the measurements refer to 
the Live-In Lab Testbed KTH (Figure 1). The Testbed 
KTH is a residential building for students located in the 
KTH Main Campus. The Testbed KTH premises feature 
total of 305 square meters distributed over approximately 
120 square meters of living space, split into four 
apartments; each apartment is divided into a living room, 
a kitchen and a bathroom. The remaining space is used as 
technical space and an office. The testbed is designed to 
be energetically independent, with dedicated electricity 
generation systems through PV panels, a heat generation 
system (ground source heat pumps), and energy storage 
(electricity and heat). Sensors are extensively used to 
improve energy efficiency and indoor comfort, study user 
behaviour and to improve control and fault detection 
strategies. Indoor environmental quality is continuously 
monitored via multiple temperature, relative humidity, 
CO2 and VOC sensors in each room. Additional sensors 
include, for instance, occupancy detectors and magnetic 
sensors to detect the opening of windows. Space heating 
energy is distributed through the ventilation system and 
both ventilation and energy are continuously monitored at 
the apartment level; in addition, electricity consumption 
is also logged per apartment. 

A building model, to be used as a digital twin has been 
created in the IDA-ICE 4.8 simulation environment 
(“IDA ICE - Simulation Software | EQUA”). The IDA-
ICE release 4 has been validated according to EN 15255-
2007 and performs within given error boundaries (0,5 
Kelvin for operative temperature and 5 % for maximum 
and average cooling power) in all but one test cases; 
validation scores according to EN 15265 are A in most of 
the heating cases (Equa Simulation AB and Equa 
Simulation Finland Oy 2010). To enhance the model 
accuracy, the simulation model features a zone per each 
room of the apartments; all apartments share the same 
layout with a living room, a kitchen/entrance and a 
bathroom. 

 
Figure 1: Computer generated view of the Testbed KTH 
building [source: property developer Einar Mattsson] 

and the building model generated in IDA-ICE. 

The methodology for calibration discussed in this paper 
pivots around two crucial steps: a screening analysis and 
the actual calibration. 
The screening analysis is a fundamental step to evaluate 
the impact that the parameters have on the thermal 
dynamics, i.e. indoor temperature and energy demand, of 
the model. The impact of each single parameter can differ 
significantly from building model to building model.  
The ranking of the parameters is primarily intended to 
limit the calibration process to a more restricted subset; 
this is two-fold beneficial, speeding up the calibration 
process and avoiding that a too large set of parameters to 
calibrate might become intractable. In this screening 
analysis each parameter is varied one at a time with 
respect to the initial configuration of the building model. 
Each parameter is varied only between a given minimum 
and maximum value. A performance indicator, the 
Sensitivity Index S.I. (Heiselberg et al. 2009), is defined 
by: 

S.I.(%)=
Emax-Emin

Emin
 (1) 
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where Emax and Emin represent the energy demand relative 
to the maximum and minimum parameter value. 
Upon completion of the screening process, the selected 
parameters are used in the calibration process, which is 
essentially an optimization problem.   
The software architecture is displayed in Figure 2, where 
the monitored building (blue box) constitutes the basis for 
calibration. A simulation manager, based on an ad-hoc 
code developed in Python, launches the simulation model 
(yellow box) and evaluates the outputs of the IDA-ICE 
simulation model against the monitored building; the 
difference between the simulated results and the 
monitored data is the error, i.e. the cost function to 
minimize. 
To maximize model fidelity, a climate file derived from 
the weather station installed in the monitored building is 
used as input for the simulation model; similarly, internal 
loads and occupancy schedules are reconstructed based on 
metered electricity consumption and motion detector 
sensors. 

 
Figure 2: illustration of the simulation conditions and 

workflow. 
The algorithm used for optimization is the one proposed 
by Box in (Box 1965); the algorithm is capable to escape 
global maximum of a multivariable non-linear function 
subject to non-linear constraints. The optimization 
algorithm is based on a sequential search technique, 
proven effective in solving problems with non-linear 
objective functions and without requiring the calculation 
of derivatives. The optimization procedure is initialized 
with a set of K points randomly scattered throughout the 
feasible region of the N independent variables (Box 
1966). The required dimension of the set of points is 
K≥N+1, while the dimension of the points is N. 
Common performance indicators for calibration accuracy 
used in literature are the Mean Biased Error, MBE, and 
the Coefficient of Variation (Root Mean Square Error), 
CV(RMSE), defined in (2) and (3), (Ruiz and Bandera 
2017) 

MBE(%)=
∑ (mi-si)

Np
i=1

∑ (mi)
Np
i=1

 (2) 

CV(RMSE)(%)=

√∑ (mi-si)
2Np

i=1
Np

⁄

m̅
∙ 100 

(3) 

mi and si denote respectively the measurement mi and the 
simulated output si at the same timestep i, which is 
sampled on an hourly basis; Np is the number of samples 
in the considered sampling interval. Recommended 
maximum errors for calibration depend on whether 
calibration is carried out hourly or monthly and are given 
in Table 1. 

Table 1 Suggested values for maximum error for 
calibrated models according to different sources, from 

(Ruiz and Bandera 2017). 
Guideline Hourly (%) Monthly (%) 

 MBE CV(RMSE) MBE CV(RMSE) 
ASHRAE  ±10 30 ±5 15 
IPMMVP  ±5 20 ±20  
FEMP  ±10 30 ±5 15 

The proposed calibration approach aims at the 
minimization of the error of energy and room indoor 
temperature the overall error to minimize in the cost 
function is reduced to a scalar through the weight factor 
β, introduced in equation (eq. 4) and set prior to the 
calibration run. For β=0 the cost function is evaluated 
through the error on energy only; for increasing values of 
β, the weight of the temperature error in the cost function 
grows. 

Weighted CV(RMSE)=CV(RMSE)(T)∙(β)
+ CV(RMSE)(En)∙(1-β)  

 

(4) 

Results 
To speed up the optimization problem, a screening 
analysis has first been carried out to identify and rank the 
variables with the largest impact on the building thermal 
dynamics and to rule out the parameters with marginal 
impact on the model calibration. Since the calibration 
process considered in this work only focuses on thermo-
physical properties of the building envelope, set-points 
and parameters of the heating and ventilation system and 
internal gains, the building geometry has been excluded 
from the calibration process; the rationale for this decision 
is building geometry can usually be estimated with good 
accuracy either through building drawings or with in-situ 
measurements. Table 2 shows the list of the variables and 
the resulting ranking. The large impact of the efficiency 
of the heat recovery system is largely due to the large 
airflows required by the full-air heating system. Similarly, 
the transmittance of the windows has a large impact 
because of the high windows-to-walls ratio. On the 
opposite, the impact of the cooling setpoint is due to the 
simulation period, March. Windows G-value and 
insulation on external walls show a similar S.I.; insulation 
was chosen for the calibration due to less reliable 
information available. Occupant gains in kitchen and 
bathroom result in no impact due to the spaces being 
barely used. Living rooms feature variable ventilation 
between minimum and maximum airflows; in the 
screening analysis the values minimum and maximum 
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airflows are varied. Kitchens and bathrooms instead use a 
constant ventilation strategy, i.e the ventilation flow is 
kept constant within a simulation; in the screening 
analysis the value of the ventilation flow is varied. The 
S.I. of kitchen and bathroom heating setpoints is due to 
constant ventilation flow scheme.  Heat capacity of the 
thermal envelope, which has been dealt varying the 
thickness of the external walls, resulted in a limited 
impact in the screening analysis. 
To showcase the method, parameters have been divided 
into three groups: building envelope (BENV), HVAC 
system (HVAC), and building occupancy and behaviour 
(BEHV). Two parameters per group have been chosen, for 
a total of six parameters; insulation thickness and 
windows U-value for the building envelope; heat recovery 
system and airflows for the HVAC, and occupancy gains 
and temperature set-points for the third group.  

Table 2: Results from the screening analysis; selected 
parameters for calibration are highlighted.  

Type Parameter S.I. Selected 
HVAC Heat recovery efficiency 117.2% Y 

BENV Windows U-value 14.9% Y 

HVAC Living room minimum airflow 11.9% N 

HVAC Living room maximum airflow 9.3% Y 

BENV Windows G-value 8.7% N 

BENV Insulation thickness 8.3% Y 

HVAC Kitchen airflows (constant) 8.3% N 

BEHV Living room heating setpoint 5.7% Y 

HVAC Bathroom airflows (constant) 5.7% N 

BENV Infiltrations 4.7% N 

BEHV Living room occupant gains 4.4% Y 

BEHV Living room equipment gains 0.8% N 

BEHV Living room light gains 0.8% N 

BEHV Bathroom light gains 0.8% N 

BEHV Kitchen light gains 0.7% N 

BEHV Bathroom equipment gains 0.7% N 

BEHV Kitchen equipment gains 0.7% N 

BEHV Living room cooling setpoint 0.6% N 

BENV Building envelope heat capacity 0.2% N 

BEHV Kitchen occupant gains 0.0% N 

BEHV Bathroom occupant gains 0.0% N 

HVAC Bathroom cooling setpoint 0.0% N 

HVAC Bathroom heating setpoint 0.0% N 

HVAC Kitchen cooling setpoint 0.0% N 

HVAC Kitchen heating setpoint 0.0% N 

The calibration algorithm has been tested to benchmark 
its optimization performance. Arbitrarily de-tuned 
simulation building model building configuration have 

been used as initial values for optimization, which used a 
reference building configuration as a “ground truth”. 
Starting from the initial configuration, the optimization 
algorithm efficiently converged to the target –benchmark- 
configuration even with several parameters, without 
getting stuck in local minima. 
Table 3 shows the cumulated errors on energy and 
temperature after calibrations for different values of the 
weight parameter β. Weighted CV(RMSE) is the overall 
error; the lowest weighted CV(RMSE) after  calibration 
is equal to 6% and is found for β=0.75; this value is below 
the recommended values found in literature and 
summarized in Table 1, and it ensures that the calibration 
is satisfactory for both energy and indoor environment. 

Table 3: Coefficient of variation for energy and 
temperature mapped for different values of the 

parameter β. 
β 0.25 0.5 0.75 

MBE Energy [%] -8% -3% -2 
MBE Temperature [%] 2% -2% -2 
CV(RMSE) Energy [%] 16% 14% 13% 
CV(RMSE) Temperature [%] 3% 3% 3% 
Weighted CV(RMSE) [%] 13% 9% 6% 

Figure 3 shows measured and simulated trends for 
averaged temperature and overall energy in the 
apartments in the initial configuration; these results, 
before calibration, are for the period between 07-03-19 
and 11-03-19. Although the temperature trends almost 
overlap, the time series illustrates clear discrepancies 
energy; the CV(RMSE) Temperature is 2%, the 
CV(RMSE) Energy is 46% and the Weighted CV(RMSE) 
is 13%. 

 
Figure 3: Comparison of energy use (top) and average 

indoor temperature (below) with hourly resolution in the 
period between 07-03-19 and 11-03-19 before 

calibration. Energy and temperature measured are 
plotted against the actual monitored values. 
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Figure 4 shows measured and simulated trends for 
averaged temperature and overall energy in the 
apartments for the same period after calibration for 
β=0.75. The Weighted CV (RMSE) is 6% and the time 
series shows almost overlapping trends for both. 

 
Figure 4: Comparison of energy use and average indoor 
temperature with hourly resolution in the period between 

07-03-19 and 11-03-19 after calibration. 
Table 4 summarizes the values of the parameters included 
in the calibration process for the initial and calibrated 
configuration for β=0.75. 
Table 4: Initial and optimized values for the considered 
variables. 

Parameter Initial 
value 

Calibrated 
value 

External walls insulation [m] 0.05 0.10 
Windows U-value [-] 1.4 1.87 

Living room maximum airflow 
[l/sm2] 

2.0 2.0 

Air heat recovery efficiency [%] 0.85 0.60 
Heating set-point [ºC] 22 18 

Occupants gain [npeople] 1.0 1.5 

Discussion 
The screening analysis has a two-fold importance. First, 
selecting only the parameters with the most impact on the 
thermal dynamics, it reduces the number of variables to 
optimize for; this speeds up the overall simulation time 
and reduces the risk of local minima. Furthermore, 
including parameters with low impact in the calibration is 
likely to result higher uncertainty in such calibrated 
parameters, due to the limited sensitivity that they have in 
the cost functions. Although the selection of the 
parameters to calibrate can – and usually is – be done 
based on expert knowledge of the impact that each 
parameter has on thermal dynamics and the uncertainty 
that exists on that parameter, the impact of each parameter 
on a building model can vary significantly in building and 

important parameters may be overlooked and excluded 
from the validation; the sensitivity analysis mitigates this 
risk. 
The simple screening approach used still has a degree of 
subjectivity, based on expert knowledge, in the choice of 
minimum and maximum values of the parameters, which 
in turn influences the sensitivity index. Another limitation 
of the chosen screening approach is that, given that it is a 
local sensitivity analysis approach, the initial 
configuration has an impact on the results of the screening 
analysis. A global sensitivity analysis, like the Morris 
method, can be a more accurate tool the problem but at a 
cost of a higher computational burden.  
Upon completion of the calibration, the implemented 
methodology has been shown to decrease significantly the 
discrepancy between measured and simulated data for 
both energy and temperature. The initial value of CV 
(RMSE) was 2% for the temperature and 46% for energy 
with an overall error, CV (RMSE), of 13%; this error has 
decreased down to 6%, CV (RMSE), with 2% and 13% 
respectively for a value of the weighting factor β of 0.75. 
These calibrated values are below the suggested 
thresholds found in literature and are satisfactory for the 
chosen hour time resolution. 
The introduction of the weighting factor β is considered 
central in the context of digital twins. Calibration 
procedures may disregard to quantify the error in the 
indoor conditions. Qualitative assumptions on indoor 
temperatures may be sufficient for calibrations for models 
used for energy auditing or the evaluation of renovation 
measures. Instead, for digital twins the capability to fine 
tune the model accounting for both energy and 
temperatures is expected to deliver a superior model to 
generate synthetic data to support a better understanding 
of the behaviour dynamics in relation to advanced control 
and fault detection schemes, calibrated models are needed 
for both energy use and indoor environment. In this 
context, detailed calibrated models with hourly time 
resolution can be an optimal trade-off between prediction 
accuracy and the cost to produce them. More refined time 
resolution calibrations require higher resolution datasets 
that are often not available, e.g., outdoor data from 
existing weather stations, prone to errors, like motion 
detectors sensors or more costly to manage, like indoor 
data with higher resolution. 
Advanced monitoring platforms, like the one of the 
Testbed KTH, that includes the continuous measurement 
of indoor environmental variables, occupancy and 
internal gains from detailed electricity readings, are 
powerful tools for model calibration and advance the 
implementation of models for building digital twins. 
Sensors with low sampling time, occupancy detectors and 
electricity monitoring can provide useful information to 
reconstruct the occupancy patterns and estimate internal 
gains. 
An immediate practical extension of the use of the 
calibrated parameters is to support fault detection and 
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predictive maintenance; for instance, significant 
discrepancies in a parameter like external wall 
transmittance above the design values can pinpoint a 
problem with the building envelope insulation 
characteristics, and trigger further investigation. 
However, caution should be used, as results presented 
here are only preliminary; in this case, for instance, 
parameters are calibrated only on a limited time series to 
show the viability of the proposed approach and the 
advantages of calibrating a model with both temperature 
and energy in the cost function. Given the observation 
window, the calibrated parameters – though realistic- may 
change in a calibration carried out over different seasons. 

Conclusion 
This paper has showcased an innovative calibration 
procedure for the calibration of building energy models, 
validated against preliminary data from the Live-In Lab, 
a recently built residential building testbed in the KTH 
Main Campus in Stockholm. A detailed building energy 
model has been created in IDA-ICE and has been 
calibrated with hourly sampling, which is the current 
state-of-the-art resolution.  
The calibration methodology consists in a screening 
analysis to select a subset of parameters to optimize and 
subsequently an optimization process. The implemented 
calibration minimizes the error between the model and the 
monitored data with a multi-objective cost function based 
on the discrepancy between indoor temperature and the 
energy demand. In the calibration process the user can set 
a parameter β to weigh the relative importance of the 
temperature and energy error. 
The calibration process has proved to be straightforward 
and after calibration the overall error has been reduced 
from 13% to 6%, while guaranteeing that both errors on 
energy and indoor temperature trends are minimal. For 
optimized configurations, the proposed procedure has 
managed to yield a calibration error below the 
recommended thresholds in the literature. 
Although the monitored dataset is currently limited in 
extension, the observed dynamics in the model follow 
closely the monitored temperature and energy trends, 
which is a key feature for the adoption of the model as 
digital twin.  
The sensor platform of the Testbed KTH, which includes 
the continuous monitoring of indoor comfort conditions, 
occupancy and internal gains from detailed electricity 
readings, has proved an invaluable tool to provide the 
necessary data for calibration and in the evaluation of the 
impact of user activities.  
Future development of this work will include a calibration 
with extended datasets to study seasonal effects. 
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