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a b s t r a c t

Acid injection, reactive instabilities and wormholing in carbonate reservoirs is investigated through the
analysis of the linear acidizing problem theoretically and experimentally. Theoretically acidizing was
analyzed by formulating the problem as a reactive moving boundary Stefan type problem. Wormholing
is viewed as a reactive infiltration instability to the trivial solution of uniform dissolution. A linear
stability analysis from the equilibrium state is performed and the critical wavenumber below which
instabilities have a positive growth rate is identified. When applied to the scale of the experiment,
an optimum injection velocity is identified for a given formation and injection concentration, for
the growth for a single wormhole. This optimum injection velocity scales with the inverse of the
specimen diameter. Experimentally, linear acidizing tests were performed in Mons chalk, a high
porosity analogue of North Sea reservoir chalk. In the experiments the critical injection velocity for
wormhole formation at minimum acid injection was obtained and the results were compared with
the theoretical predictions.

© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Matrix acidizing is a common reservoir stimulation technique
in the petroleum industry aiming to recover or enhance perme-
ability in the near wellbore region. Hydrochloric acid solutions or
mixtures of hydrochloric acid with hydrofluoric acid are injected
at pressures below the fracturing pressure of the formation. Acid
transported by the aqueous solution reacts with the rock and
dissolves it. This leads to a rock permeability increase either by
removing the permeability damage caused during drilling and
production or by creating new and larger pathways.1 Acidizing
is applied to both carbonate and sandstone formations; however,
the process is fundamentally different in each case. Acidizing in
sandstones is characterized by relatively low reaction rates lead-
ing to uniform dissolution patterns while carbonate acidizing ex-
hibits high reaction rates leading to sharp dissolution fronts and
the creation of pathways of high permeability called wormholes.1
Fig. 1 shows a schematic of a carbonate acidizing application and
the creation of wormholes.

The objective of an acidizing treatment design is to select
the acid injection rate and concentration to create long and nar-
row wormholes thus creating pathways of increased permeability
with minimum acid spent. In experiments, this translates to a
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quantity known as Pore Volume To Breakthrough (PVTB) meaning
the number of acid solution pore volumes of the rock specimen
which have to be injected before the first breakthrough from
the inlet to the outlet side has been generated in a cylindrical
rock specimen. The PVTB should be minimized for an optimum
acidizing application. This concept has been demonstrated well
by McDuff et al.2 In the minimum PVTB value, the corresponding
dissolution pattern shows a single narrow wormhole extending
to the whole length of the specimen while for lower or higher
values of acid injection velocity, the wormholes become either
thicker or ramified, respectively.

Acidizing has received a growing interest in the last decades
with researchers contributing to experimental investigations,2–5
analytical modeling6–8 and numerical simulations.9–12 The exper-
imental works generally focus on demonstrating the various dis-
solution patterns generated by different acid injection rates and
concentrations. An important work was presented by Fredd and
Fogler3 who performed acidizing experiments with hydrochlo-
ric acid solutions injected at various values of the Damkohler
number showing that for relatively low values of flow velocity,
dissolution advances in a uniform manner while the increase in
this parameter eventually leads to an optimum injection rate
for the formation of wormholes. A further increase in flow ve-
locity leads to ramified, dendritic structures. Experimental work
revealed also a scale dependency of the optimum acid injection
rate.13 In a PVTB vs. velocity plot, the optimal velocity appears
to be linearly proportional to the inverse of the sample size. An
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Fig. 1. Wormholes created by acid injection into a perforated completion.

analytical extraction of this scale dependency is one of the goals
of the paper.

Analytical studies generally focus on the reactive infiltration
instability, a phenomenon which is described in more detail in
Section 2. The analysis of this instability follows the solution of
a moving boundary problem and gives predictions for the criti-
cal values of the control parameters for wormhole creation and
propagation.8 The validation of the results of the linear stability
analysis on experiments on carbonates can provide a method to
predict the optimum injection velocity and upscale results from
different specimen sizes to the field.

Numerical studies focus on the simulation of boundary value
problems with fixed inlet and outlet boundaries. Some of them12

use an averaged computational fluid mechanics approach while
others10,11 suggest a two-scale model to study the effect of
medium heterogeneities to the wormhole pattern. Numerical
codes can handle more complex coupled chemical reactions, and
this is essential for the simulation of acidizing in sandstones.9
All the numerical studies produce contour plots of the generated
dissolution pattern and try to extract the optimum conditions to
minimize the PVTB.

The theoretical work in this paper combines the results of
a linear stability analysis of the acidizing process with exper-
imental results to validate the theoretical predictions on the
onset of instability and the optimum conditions for the creation
of wormholes. The linear stability analysis is a useful mathe-
matical technique that investigates the potential for onset and
growth of an instability. The analysis does not attempt to model
the post-bifurcation/post instability development which requires
numerical methods due to the loss of uniformity. Stress, temper-
ature or other effects are not considered in either the analysis
or the experiments. The analytical approach that is presented
follows concepts introduced by Ortoleva et al.14 and later by
Zhao et al.8 and formulates the advective–dispersive–reactive
transport as a moving boundary problem involving a reacted
and an unreacted region. Section 2 introduces the concepts and
assumptions of wormholing which is a reactive type infiltration
instability encountered in carbonate acidizing and is analyzed
as a perturbation to the uniform dissolution front. Section 3
describes the moving boundary problem of acid dissolution and
Section 4 derives the analytical solutions for an equilibrium state
corresponding to a uniform dissolution pattern. Section 5 per-
forms a scaling process to define the internal lengths and time
durations of the system and reformulates the boundary value
problem to scaled, non-dimensional variables. A classical linear

stability analysis is performed in Section 6. Its results are the
dominant wavelengths of instability expected for various values
of acid injection rates and the critical value of acid injection
rate for the onset of wormhole formation for a given specimen
size. These predictions are put under examination in Section 8
with the aid of experimental results from acidizing tests on
Mons chalk described in Section 7 after performing the necessary
scale dependent calculations. The experimental results comple-
ment the theoretical study and provide means to validate the
theoretical predictions. Mons is an outcrop analogue chalk for
high porosity North Sea chalk reservoirs. The experiments were
performed in a Hassler cell on cylindrical specimens initially oil
or brine saturated by injecting a 15% v/v HCl solution at two
different injection rates. Section 9 summarizes the conclusions
and discusses the predictions and the underlying assumptions of
the analytical model.

2. Reactive infiltration instability

Carbonate acidizing and wormholing where an aqueous hy-
drochloric acid solution is injected in carbonate rocks, can be
considered as a reactive infiltration instability phenomenon in the
sense of the definitions set by Chadam et al.15 Reactive infiltration
instability is an example of self-organization as an autonomous
passage of a system from an un-patterned state to a patterned
state without externally imposing a specific template.16 For this
instability to develop and patterns to emerge, destabilizing fac-
tors, i.e. self-amplifying phenomena where forces tend to amplify
a disturbance driving constantly the system out of equilibrium,
dominate over the stabilizing factors, i.e. the self-equilibrating
phenomena where forces tend to dampen disturbances and drive
the system back to equilibrium. The interplay between these
two types of phenomena under the specific initial and boundary
conditions leads to a specific pattern in the domain of interest.

In reactive flow, an aqueous acid solution is injected into
porous rock. The chemical species of the aqueous solution react
with the rock minerals dissolving rock and thus increasing its
porosity and permeability. A higher permeability causes a larger
fluid flux, eventually bringing larger quantities of reactants in
the aqueous solution to the areas of higher permeability. This
again further increases dissolution and permeability. These are
the destabilizing phenomena because an infinitesimal nonunifor-
mity e.g. in permeability of the rock tends to be amplified by the
physics of the system leading to fingering (Fig. 2a). As a result
of diffusion, these fingers cannot grow indefinitely and there is a
stabilizing force that limits their advancement and growth. Fig. 2b
displays a higher porosity finger and shows that reactants in the
aqueous solution must travel larger distances from upstream to
reach the tip of the finger. During this time, they diffuse to the
boundaries of the finger. The larger the finger the greater the
loss of the reactant’s concentration before reaching the tip. This
causes the finger on one side to widen due to the reaction at
the finger boundaries and on the other side to slow down the
tip advancement due to poor reactant concentration at the tip. It
is reasonable to expect that fingers will halt their advancement
once a critical finger length has been reached where the reac-
tant concentration at the tip vanishes. These are the stabilizing
mechanisms.

Often reactive infiltration instabilities are modeled analytically
as moving boundary problems where rock is separated into two
distinct phases, one reacted phase which has been dissolved to
its maximum porosity and one unreacted phase where rock is
intact and at its initial porosity.8,14,15 Section 3 describes the
formulation of the moving boundary problem for the linear case.
The important things to mention are the assumptions required
to support such a formulation. First, a thin front approximation
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Fig. 2. (a) Destabilizing and (b) stabilizing mechanisms of reactive instability.

is made between the reacted and unreacted phases of the rock
which allows a formulation like the one in the classical Stefan
problem of melting of ice.17 This assumption is based on the fact
that the concentration of the reactant in the aqueous solution
is several orders of magnitude smaller than the mineral density
in the rock. By using a large density asymptotics assumption
and several mathematical manipulations the thin reaction front
postulate is inferred. However, some researchers claim that the
large density asymptotics assumption is not a sufficient con-
dition for the thin front limit and the necessary condition is
the fast reaction limit.18,19 Indeed, fast reaction rates can yield
a thin front since for the movement of an infinitesimal sharp
front, all the rock at the front must reach its maximum poros-
ity and be completely dissolved during the infinitesimal time
interval. Fast reaction rates, as compared to the dispersion and
advection timescales, guarantee the thin reaction front. This is a
different case from slow dissolution problems like weathering of
calcarenites by environmental agents.20

As already mentioned in Section 1, carbonate acidizing ex-
hibits high reaction rates allowing the modeling of the phe-
nomenon as a moving boundary problem. After solving the uni-
form dissolution case, a confirmation of the validity of the thin
front assumption is presented using calculated values of front
velocity and values obtained from experiments for the acid injec-
tion rates, diffusion–dispersion coefficients and chemical reaction
rates of the specific materials of this application.

3. Formulation of moving boundary problem for reactive flow

The problem is formulated for a porous rock whose represen-
tative volume V consists of solids s with volume Vs and fluid f
with volume Vf . It is assumed that the fluid covers all the void
space Vv , such that Vf = Vv . The fluid is an aqueous hydrochloric
acid (HCl) solution which reacts with calcium carbonate (CaCO3)
according to the chemical reaction

CaCO3 + 2HCl → CaCl2 + H2O + CO2 (1)

The porous rock is a pure chalk composed of 99% calcium car-
bonate. It is thus considered that the only chemical reaction that
takes place is the one-way reaction Eq. (1). The porosity φ, molar
concentration c of the acid in the fluid and molar density ρs of
the chalk are defined as

φ =
Vv

V
c =

na

Vf
=

na

Vv

=
na

φV
ρs =

ns

Vs
=

ns

(1 − φ) V
(2)

where na is the number of moles of acid and ns the number of
moles of calcium carbonate.

The governing laws of reactive flow within a volume V are the
conservation of fluid mass
∂ϕ

∂t
+ ui,i = 0 (3)

conservation of acid molar mass
∂ (φc)

∂t
+ (cui),i =

(
φDc,i

)
,i + R (4)

and conservation of molar mass of the calcium carbonate

−
∂

∂t

(ns

V

)
= −

∂

∂t
[ρs (1 − φ)] = ρs

∂φ

∂t
=

R
2

(5)

D is the diffusion coefficient with dimensions length squared over
time. A comma denotes partial differentiation and the Einstein
convention is used where repeated indices are summed. The
fluid flux ui is related to the pore pressure gradient through the
constitutive equation of Darcy’s law

ui = −κP,i (6)

where P is the fluid pressure and κ the permeability coefficient
which can be expressed as k/µ where k is the intrinsic per-
meability

[
m2

]
and µ the fluid viscosity [Pa s] and is assumed

to be constant for simplicity. Although µ increases slightly with
increasing acid concentration, the effect on κ is small compared
to the effect of porosity change on k. The latter can be expressed
by a porosity–permeability law like the Carman–Kozeny law

k (ϕ) =
k0 (1 − ϕ0)

2 φ3

φ0
3 (1 − φ)2

(7)

where φ0 and k0 are the initial porosity and permeability, respec-
tively. The porous rock due to dissolution is assumed to attain a
maximum final porosity φf .

The advective–dispersive–reactive transport Eq. (4) contains
a reaction term R which expresses the rate of loss of moles of
acid per unit volume of rock and per unit time

[
mol/

(
m3t

)]
. The

reaction term is also present in the conservation of molar mass
of calcium carbonate Eq. (5) where the 1/2 coefficient results
from the stoichiometry of the chemical reaction Eq. (1). Zhao
et al.8 and Chadam et al.15 suggest a linear reaction rate term
R = r0

(
φf − φ

)
c where r0 is a reaction rate constant [1/s]. The

reaction term is such that the reaction stops either when the
concentration of the acid vanishes or when the porosity of rock
reaches its maximum value so that all soluble solid has been
dissolved. The explicit form of the reaction rate equation is not
important in cases of high reaction rates where the thin front
approximation is made because it assumes that the reaction is
instantaneous.

The boundary value problem under consideration consists of
a two-dimensional domain of infinite length (−∞ < x < ∞) and
finite width W (0 ≤ y ≤ W ), as shown in Fig. 3. An aqueous acid
solution is injected at the inlet at prescribed constant molar acid
concentration c0 and fluid injection velocity u0. The horizontal
boundaries are no flux boundaries for both the molar acid con-
centration flux c,y and the fluid flux uy. The initial conditions are
everywhere at

t = 0: φ = φ0, c = 0 (8)

and the boundary conditions are at

x → −∞ : c = c0, ux = u0
x → +∞ : c = 0
y = 0,W : c,y = P,y = 0

(9)

From the fluid flux boundary condition, the pressure gradient at
the inlet is

P,x
⏐⏐
x→−∞

= δP = −
u0

κ (φ0)
(10)

As discussed earlier and well documented by Ladd and
Szymczak,18 in the limit of high reaction rates, reaction takes
place only at a thin front separating the domain into a reacted
region where rock has reached its maximum porosity and all
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Fig. 3. Schematic of the domain and boundary conditions of the Stefan moving boundary problem for linear acidizing.

soluble solids have been dissolved and an intact region where
rock is at its initial porosity. Since the reaction takes place only
in a thin front, the rock can be either in the fully dissolved rock
phase or the intact rock phase with the front separating these
two phases of the Stefan problem. The front position becomes an
unknown function S (x, y, t) of space and time, while porosity can
be either φ = φf in the dissolved phase or φ = φ0 in the intact
phase. Under these considerations, the conservation Eqs. (3)–(5)
of the general acid dissolution Stefan problem in Fig. 3 become
in the reacted, dissolved phase behind the front at S (x, y, t) < 0

ui,i = 0, ui = −κ
(
φf , µf

)
P,i = −κf P,i

φf
∂c
∂t

= φfDc,ii − (cui),i
(11)

and in the unreacted, intact phase ahead of the front at S (x, y, t)
> 0
u′

i,i = 0, u′

i = −κ (φ0) P ′

,i = −κ0P ′

,i
c = 0 (12)

Although fluid pressure can be described by a unique variable
in both phases, it is chosen here, in order to simplify the math-
ematical treatment, to adopt two different dependent variables
of pressure, i.e. P, P ′, for the two domains of the problem, the
dissolved and the intact, respectively. Complementary to the two
fluid pressures, two fluid fluxes ui and u′

i are also introduced
for the dissolved and intact phase, respectively. At the interface
between the two phases, i.e. at the reaction front S (x, y, t) = 0,
continuity equations are satisfied across the two phases for the
fluid pressure and acid molar concentration

P = P ′, c = 0 (13)

Moreover, conservation equations are satisfied across the front
for the fluid mass and the acid molar mass. These are written,
respectively, as(
ui − u′

i

)
ni =

(
φf − φ0

)
Vini (14)

c,ini =
−2ρs

(
φf − φ0

)
φfD

Vini (15)

Eq. (14) expresses the jump of the fluid flux between the two
phases as a result of the different porosities in each phase. This
equation was derived using fluid mass conservation across the
front, where Vi is the velocity of the moving front and ni the unit
normal to the front boundary, which is a line in two dimensions
or a surface in three. Eq. (15) is derived from molar mass con-
servation across the front and it is called the Stefan condition. In
addition to the above equations, the kinematic condition for the
front
∂S
∂t

+ S,iVi = 0 (16)

is necessary for the mathematical closure of the moving boundary
problem.

4. Equilibrium state solution for uniform dissolution

The one-dimensional boundary value problem corresponding
to uniform dissolution (equilibrium state) is shown in Fig. 4. Since
there is no dependency on the y-axis, Eqs. (11)–(16) that describe
the Stefan problem simplify as follows. The front position func-
tion is written as S (x, y, t) = x − ζ (t) while in the dissolved
phase behind the front at x < ζ (t)

ux,x = 0 ⇒ P,xx = 0, ux = −κf P,x (17)

φf
∂c
∂t

= φfDc,xx − uxc,x (18)

and in the intact phase ahead of the front at ζ (t) < x

u′
x,x = 0 ⇒ P ′

,xx = 0, u′
x = −κ0P ′

,x
c = 0 (19)

At the interface between the two phases, i.e. at the reaction front
ζ (t) = x, they simplify to

P = P ′

c = 0

lim ux
x→S(t)−

− lim u′

x
x→S(t)+

=
(
φf − φ0

)
Vx =

(
φf − φ0

) dζ
dt

c,x =
−2ρs

(
φf − φ0

)
φfD

Vx =
−2ρs

(
φf − φ0

)
ϕfD

dζ
dt

(20)

where in the above, the kinematic condition for the front
∂S
∂t

+ S,xVx = 0 ⇒ −
∂ζ

∂t
+ Vx = 0 ⇒ Vx =

∂ζ

∂t
(21)

has been used to express the front velocity. The initial Eq. (8)
and boundary conditions Eq. (9) apply. Wangen21 proved that
the right-hand side of the third of Eq. (20) is negligible since
typically the front velocities are orders of magnitude smaller than
the Darcy flow velocities. There appears to be a lack of a boundary
condition for the downstream pressure P ′ to have closure in
the mathematical problem but that does not affect the essential
features of the problem since only the relative pressures and the
pressure gradients are of interest.

In the solution of the partial differential equations, under
the given the boundary conditions and the equation of interface
motion for this Stefan problem, Lie group infinitesimal generators
can be helpful. As discussed by Cherniha and Kovalenko,22 for
a Lie group to generate symmetries for a Stefan type mov-
ing boundary problem, all the variables and parameters of the
problem, namely differential equations, boundary conditions and
boundaries, should be left invariant under the action of the
group, including the interface motion function ζ (t). Among all
Lie groups that generate symmetries for the partial differential
Eq. (18), the only one that leaves invariant all other equations is
the generator X = ∂t+Vx∂x. The front velocity Vx in this generator
is a constant to be determined. Having found a Lie symmetry
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Fig. 4. Schematic of the domain and boundary conditions of the Stefan moving boundary problem for uniform dissolution (equilibrium state).

generator for the boundary value problem of interest, one can
find a solution of the problem that is invariant under the action
of the group. The solution invariant to the action of this generator
is a traveling wave and is obtained by introducing the canonical
coordinate ξ expressed as

ξ = x − Vxt (22)

Applying the transformation Eq. (22), the second of the partial
differential equations in Eq. (17) is transformed into the following
ordinary differential equation

∂2c
∂ξ 2 − A

∂c
∂ξ

= 0, A =
ux/φf − Vx

D
> 0 (23)

The solution of the Stefan problem is obtained by solving Eq. (23)
and using the boundary and kinematic conditions. In the dis-
solved phase behind the front, i.e. for ξ < 0

P (ξ) = δPξ + P0 (24)

c (ξ) = c0
(
1 − eAξ

)
(25)

where P0 = P (ξ = 0) is the fluid pressure at the interface. In the
intact phase ahead of the front at ξ > 0

P ′ (ξ) = κδPξ + P0, κ = κf /κ0
c = 0 (26)

The interface velocity, which is constant in time, is given as
dS
dt

= Vx =
c0u0/φf

c0 + 2ρs
(
1 − φ0/φf

) (27)

It depends on acid injection rate, acid concentration and the
difference between initial and final porosities. The parameter A
must be larger than zero such that the solution of the Stefan
problem satisfies the boundary conditions. This appears to be
the case since the front velocity Vx is expected to be orders of
magnitude smaller than the fluid interstitial velocity ux/φf (cf.
Eq. (23)). This agrees with the fast reaction assumption employed
earlier which leads to the thin front approximation. The interface
should advance sufficiently slow in order that enough acid enters
and fully dissolves the calcium carbonate at each cross-section
of the medium. Substitution of Eq. (27) in Eq. (23) for A and
considering that in the dissolved area the fluid flux is constant
and equal to u0, yields

A =
u0/φf − Vx

D
=

u0/φf

D
·

2ρs
(
φf − φ0

)
c0 + 2ρs

(
1 − φ0/φf

) (28)

Eqs. (24)–(26) along with the front velocity Eq. (27) constitute
the analytical solution of this Stefan moving boundary problem
for which the equation of motion of the front is explicit and
gives a unique solution. Eq. (24) shows that the pressure con-
tinuously decreases at a constant rate thus dictating a constant
Darcy velocity in both reacted and unreacted domains. Eq. (25)
shows that the acid concentration decreases exponentially while

Fig. 5. Fluid pressure, acid concentration and fluid flux as a function of position
in the equilibrium state solution.

approaching the front. Fig. 5 plots a schematic of the fluid pres-
sure, acid concentration and fluid flux profiles as a function of the
coordinate ξ centered at the front. The pressure profile is plotted
assuming that the pressure at the front is an arbitrary pressure
P0 that does not enter the problem since only the pore pressure
difference is solved.

Fig. 6 plots from Eq. (27) the front velocity Vx as a function
of the fluid injection velocity u0 and acid injection concentration
c0. The parameters used in these plots correspond to values used
in the acidizing experiments in Mons chalk to be presented in
Section 7. Typical HCl acid concentrations in applications are
between 10%–30% v/v which correspond to c0 = 2.87–9.45 mol/L.
Fig. 6a shows the linear dependence of the front velocity on the
fluid injection velocity. The results show that the front velocity
is two orders of magnitude smaller than the fluid flow velocity.
This slow movement of the front compared to the fluid velocity
justifies the high reaction rate assumption and the thin front
approximation which should not be violated by the results. Fig. 6b
shows that the acid concentration affects in a parabolic way the
front propagation velocity.

5. Scaling

Before proceeding to the scaling of the model it is useful to
write the explicit equations of the general Stefan problem in
two spatial dimensions by transforming Eqs. (11)–(16) from the
x− y− t system to the ξ−y− t system. The position of the front
is written as S (ξ , y, t) = ξ − ζ (y, t). Here the interface is not
necessarily planar vertical, i.e. independent of y. Its form deviates
from planar depending on the unknown function ζ (y, t). In this
study, growth or decay of small disturbances from the planar
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Fig. 6. Equilibrium state solution. Front velocity as a function of (a) fluid
injection velocity and (b) acid concentration.

state are investigated and thus this function is assumed to take
relatively small absolute values. In the dissolved phase behind the
front, i.e. at ξ − ζ (y, t) < 0

P,ξξ + P,yy = 0
∂c
∂t

= Vxc,ξ + D
(
c,ξξ + c,yy

)
+

κf

φf

(
c,ξP,ξ + c,yP,y

) (29)

and in the unreacted, intact phase ahead of the front, i.e. at
ξ − ζ (y, t) > 0

P ′

,ξξ + P ′
,yy = 0

c = 0 (30)

At the interface between the two phases, i.e. at the reaction front
ξ − ζ (y, t) = 0

P = P ′, c = 0
κ

(
P,ξ − ζ,yP,y

)
= P ′

,ξ − ζ,yP ′
,y

c,ξ − ζ,yc,y = −
2ρs

(
φf − φ0

)
φfD

(
Vx +

∂ζ

∂t

) (31)

The process of scaling follows the guidelines set by Lin and
Segel.23 In their work, scaling amounts to non-dimensioning a
model so that the intrinsic reference quantities give the order
of magnitude of the corresponding variables in the phenomenon
while the dimensionless variables exhibit an order of magnitude

of unity. Since the dependent variables are functions of the equi-
librium state solution, the intrinsic reference quantities can be
extracted in a straightforward manner

c∗
= c0, L∗

=
1
A
, t∗ =

1
AVx

, P∗
= −

δP

A
,

ζ ∗
= max |ζ (y, t)| (32)

Then the scaled variables become

c =
c
c∗

, ξ =
ξ

L∗
, y =

y
L∗

, t =
t
t∗

, P =
P
P∗

,

P ′ =
P ′

P∗
, ζ =

ζ

ζ ∗
(33)

A small dimensionless parameter ε = ζ ∗/L∗ can be inserted
in the equations because, as mentioned before, the deviations
from planar state are small compared to the intrinsic length of
the system. The parameters in Eq. (32) describe the intrinsic
quantities of the system which express the order of magnitude
of the corresponding variables. The non-dimensional variables in
Eq. (33) have magnitude of order one as the scaling process dic-
tates. Using Eqs. (32) and (33), the equilibrium state solution can
be expressed in scaled variables. In the dissolved phase behind
the front, i.e. at ξ < 0

P = −ξ + P0

c = 1 − eξ
(34)

In the intact phase at ξ > 0

P ′ = −κξ + P0, P0 = −P0A/δP
c = 0 (35)

The next step is to express the two-dimensional Stefan problem
Eqs. (29)–(31) in the scaled variables. From this point forward,
the dashes on the scaled variables are dropped for convenience.
In the dissolved phase behind the front, i.e. at ξ < εζ

P,ξξ + P,yy = 0
∂c
∂t

= c,ξ +
1
ac

(
c,ξξ + c,yy

)
+

(
1 +

1
ac

) (
c,ξP,ξ + c,yP,y

) (36)

where

ac =
φf c0

2ρs
(
φf − φ0

) (37)

In the intact phase at ξ > εζ

P ′

,ξξ + P ′
,yy = 0

c = 0 (38)

and at the interface ξ = εζ

P = P ′, c = 0
κ

(
P,ξ − εζ,yP,y

)
= P ′

,ξ − εζ,yP ′
,y

c,ξ − εζ,yc,y = −

(
1 + ε

∂ζ

∂t

) (39)

The scaling process reveals the existence of a dimensionless acid
capacity number ac in Eq. (37), which expresses the amount of
acid needed to dissolve the available rock mass per unit volume
of porous medium.

6. Linear stability analysis

The boundary value problem Eqs. (36)–(39) contains four un-
knowns, c, P, P ′ and the unknown interface shape function ζ .
A linear stability analysis investigates the growth or decay of
infinitesimal disturbances from the planar interface. This corre-
sponds to seeking solutions to the vector problem [υ] = [υb] +
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Fig. 7. Neutral stability line and regions of stability for the acid capacity number
ac vs. wavenumber ω depending on the sign of the Re (a0).

[υ1] where vector [υb] corresponds to the equilibrium state so-
lution of the dependent variables and vector [υ1] expresses sinu-
soidal disturbances with wavenumber ω and exponential growth
coefficient α0

[υ] =

⎡⎢⎣ c (ξ , y, t, ε)
P (ξ , y, t, ε)
P ′ (ξ , y, t, ε)

εζ

⎤⎥⎦ , [υb] =

⎡⎢⎣cb (ξ)
Pb (ξ)
P ′

b (ξ)
0

⎤⎥⎦ ,

[υ1] = ε

⎡⎢⎣c1 (ξ)
P1 (ξ)
P ′

1 (ξ)
ζ1

⎤⎥⎦ cos (ωy) ea0t (40)

Introducing these specific solution forms into the boundary value
problem allows the prediction of growth, decay or stability of
each disturbance based on the sign of the real part of the eigen-
value a0 in Eq. (40). The equilibrium solution [υb] satisfies the
boundary conditions of the problem and therefore the instability
solution [υ1] satisfies homogeneous boundary conditions at the
external boundaries, i.e.

ξ → − ∞, c = cb (ξ) , P = Pb (ξ) , c1 (ξ) = 0,
P1 (ξ) = 0
ξ → + ∞, P ′

= P ′

b (ξ) , P ′

1 (ξ) = 0
(41)

Imposing the specific form of solution to the Stefan problem,
expanding all terms in a Taylor series around εζ = 0 and
neglecting all terms of O

(
ε2

)
or higher, gives the following set

of ordinary differential equations

d2P1
dξ 2 − ω2P1 = 0

d2c1
dξ 2 −

dc1
dξ

−
(
ω2

+ a0
)
c1 − (1 + ac)

dP1
dξ

= 0

d2P ′

1

dξ 2 − ω2P ′

1 = 0

(42)

with interface conditions
(κ − 1) ζ1 + P1 (0) − P ′

1 (0) = 0
c1 (0) − ζ1 = 0
dP1 (0)

dξ
−

1
κ

dP ′

1 (0)
dξ

= 0

dc1 (0)
dξ

+ a0 − ζ1 = 0

(43)

Solving analytically the differential equations Eqs. (42) with the
homogeneous boundary conditions Eqs. (41) gives the explicit
expressions for [υ1]. Evaluating these expressions at the four
interface conditions Eqs. (43) results in a homogeneous, linear,
algebraic system of equations with coefficient matrix [M]

[M] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.5 +

√
a0ac + ω2 + 0.25 −

(1 + ac) ω2

a0ac + ω
0 a0 − 1

0 1 −1 κ − 1

1 −
(1 + ac) ω

a0ac + ω
0 −1

0 ω ω/κ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(44)

For the homogeneous system to have a nontrivial solution, the
determinant of [M] must vanish. This results in an equation for
the eigenvalue a0

a0 = 0.5 − g1 +
κ − 1
κ + 1

·
(1 + ac) (g1 + ω + 0.5)

a0ac + ω
(45)

where

g1 =

√
a0ac + ω2 + 0.25 (46)

Eq. (45) can predict the short-term fate of a disturbance expressed
by the wavenumber ω relatively to the acid capacity number
of the system. A similar calculation as in Wollkind and Segel24
can prove the principle of exchange of stabilities for this system
which means that a0 has no pure imaginary roots, thus no oscilla-
tory behavior is expected. This principle enables the investigation
of the neutral stability conditions by setting a0 = 0. The neutral
line is then expressed by the following equation

ac =
κ + 1
κ − 1

·

ω

(√
ω2 + 0.25 − 0.5

)
√

ω2 + 0.25 + ω + 0.5
− 1 (47)

Fig. 7 plots Eq. (47) and presents the results of the linear stability
analysis where the neutral stability curve and the stable and
unstable regimes are noted. The results are calculated for φ0 =

0.43 and φf = 0.97 which give

κ + 1
κ − 1

=
(1 − ϕ0)

2 φ3
f +

(
1 − ϕf

)2
φ3
0

(1 − ϕ0)
2 φ3

f −
(
1 − ϕf

)2
φ3
0

= 1.0005 (48)

Points on the curve correspond to the zero value of growth
factor a0 and neutral stability where an infinitesimal disturbance
from equilibrium will neither grow nor decay. The upper-left
part of the plot is the unstable regime where the real part of
growth factor is positive, i.e. Re (a0) > 0, while the lower-
right part is the stable regime with negative real part of growth
factor, i.e. Re (a0) < 0. For any acid capacity number there is a
critical wavenumber ωcr corresponding to neutral stability. All
wavenumbers smaller than the critical belong to the unstable
regime and all wavenumbers greater than the critical to the stable
regime. From another point of view, for a specific wavenumber
there is a critical acid capacity number above which infinitesimal
disturbances grow and below which decay. By calculating for
a specific acid capacity number, the growth factors a0 for all
wavenumbers smaller than the critical, it can be shown that
the dominant wavenumber, i.e. the one with maximum growth
rate a0, is always the smallest one. The smallest wavenumber
corresponds to the largest wavelength of the instability. The range
of acid capacity number for injection of HCl acid solutions in
calcite is ac = 0 – 0.114. However, the plot in Fig. 7 is extended
outside this range to better illustrate the form of the neutral
stability line.
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Fig. 8. (a) Schematic and (b) Photograph of the experimental setup for linear acidizing.

7. Acidizing experiments on chalk

Linear chalk acidizing was studied by injecting acid into cylin-
drical specimens of Mons chalk with diameter 3.8 cm and length
7.67 cm for a prescribed amount of time at a given rate. Mons
has a porosity of ca. 42%–44% and a permeability of 2–3 mD. It
has a been used as an analogue of high porosity North Sea chalk
reservoirs. The specimens were initially either oil or brine satu-
rated. An aqueous solution of hydrochloric acid (HCl) 15%v/v was
used. The acidizing technique follows the procedure described by
Izgec et al.25 and Furui et al.13 that studied acidizing of Kansas
chalk. CT scans of the specimens were taken after acidizing. Fig. 8
shows a schematic and a photograph of the acidizing system.
The chalk specimen is mounted in a Hassler cell that allows for
fluid flow through the specimen and application of confining
stress. The confining stress is applied only to the lateral side of
the specimen. In the axial direction there is no stress actively
applied to the end faces of the specimen. However, stress builds

up in the axial direction as a reaction due to the Poisson’s effect
of the specimen since rigid caps are placed in contact with the
specimen in that direction prohibiting any axial deformation. Acid
was flowed axially through the specimen to create wormholes.
The acid flow was stopped after wormhole breakthrough.

The fluid pressure difference over the specimen is measured
by a differential pressure gauge. Fluid flow is controlled by a
fluid pump, providing a constant flow rate, and a backpressure
regulator. The backpressure, provided by a nitrogen pressure
bottle, was set to 7 MPa ensuring that the CO2 generated during
acidizing stays dissolved in the liquid. The confining stress was
set to values between 9 and 9.5 MPa, allowing for fluid pressure
differences 2–2.5 MPa over the specimen. The fluid pump that
controls the fluid flow is connected to both the Hassler cell and
an acid filled accumulator. As shown in Fig. 8a, the flow loop is
set up in such a way that either saturation fluid or acid is flowed
through the specimen. The saturation fluid was oil (kerosene) or
brine (Ekofisk field simulated brine; salt content ≈ 7 wt%).
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Fig. 9. Pore pressure drop vs. injected acid volume over specimen pore volume
for Mons chalk acidizing tests on (a) oil saturated specimens at 0.022 mm/s
acid injection velocity and brine saturated specimens at (b) 0.044 mm/s and (c)
0.022 mm/s acid injection velocity.

The chalk specimens were oven dried at 80 ◦C for more than
48 h and subsequently vacuum saturated with oil or brine in the
Hassler cell. Before placement in the Hassler cell, the specimens
were wrapped with two rounds of Teflon tape including the
porous platens at each end and then they were surrounded with
a Viton sleeve. The Teflon was used to protect the sleeve from
the corrosive action of HCl. Flowing was continued for about 1
Pore Volume (PV) of saturation fluid through the specimen before
switching to acid flow. Flow rates were set to 1.5 mL/min for oil
saturated specimens and 3 mL/min for brine saturated specimens.

Fig. 10. Amount of acid flowed through cylindrical chalk specimens until
wormhole breakthrough (PVTB) vs. interstitial fluid velocity for oil and brine
saturated Mons chalk.

Some other flow rates were also tried, like e.g. 1.5 mL/min for
brine saturated specimens, but the selected ones gave the best
results with respect to wormhole formation. The selected flow
rates were high enough to result in wormholes that do not inter-
sect the side of the specimen but low enough to keep the pressure
drop over the specimen below 2 MPa, otherwise the confining
stress would have to be increased with the risk of damaging the
rock. The 1.5 and 3 mL/min correspond to fluid injection velocities
(=flow rate/cross-sectional area) of 0.022 and 0.044 mm/s and
interstitial fluid injection velocities (=fluid velocity/porosity) of
0.0505 and 0.101 mm/s. Not all tests gave breakthrough worm-
holes, and this was the case especially for the tests run at not
optimum flow rates. The specimen porosity φ was obtained from
the specimen dry weight wd and volume V as φ = 1 − wd/ρsV ,
where the density of calcite ρs = 2710 kg/m3 was used for the
solids.

The pressure difference over the specimen decreased during
acidizing with a sharp drop to zero upon wormhole breakthrough.
Shortly after wormhole breakthrough the acid flow was stopped
and about 1 PV of saturation fluid, i.e. oil or brine, was flowed
through the specimen to stop the acidizing process. The fluid
pressure and confining stress were then released, and the speci-
men was dismounted. Fig. 9 presents the experimental results for
oil saturated specimens with acid injection rate 1.5 mL/min and
for brine saturated specimens with injection rate 3.0 mL/min and
1.5 mL/min. The results show good repeatability at all conditions.
Table 1 summarizes the important parameters for each saturation
fluid and injection velocity. Average values for each condition are
listed.

Successful wormholing is characterized by the development of
a wormhole with the lowest possible consumption of acid. The re-
sults show that this is achieved by applying similar pore pressure
gradients (and pore pressure drops for the same length speci-
mens) which are around 18 MPa/m. Thus, a higher flow velocity
of 0.044 mm/s is necessary in the brine saturated specimens
than the 0.022 mm/s velocity in the oil saturated specimens.
Similar PVTBs are obtained in both cases. On the other hand,
for flow velocity 0.022 mm/s in the brine saturated specimens
(Fig. 9c), suboptimum wormholing is obtained with 4–5 times
larger consumption of acid than for the 0.044 mm/s flow velocity.

About 0.2–0.5 PV of acid were needed until wormhole break-
through. Fig. 10 shows a plot of the PVTB as a function of intersti-
tial fluid velocity. The results show a relatively good repeatability
for velocities 0.3 cm/min (flow rate 1.5 mL/min) for oil and
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Table 1
Summary of acidizing test results on cylindrical specimens of oil and brine saturated Mons chalk.
Dry density
[g/cm3]

φ [%] Saturation
fluid

Fluid injection
rate [mL/min]

Fluid velocity
[mm/s]

Interstitial fluid
velocity [mm/s]

Max pore pressure
gradient [MPa/m]

Pore Volume To
Breakthrough [–]

1.536 43.3
Oil 1.5 0.022 0.051 17.3 0.337

2.0 0.029 0.068 21.9 0.212

Brine 1.5 0.022 0.051 10.5 0.974
3.0 0.044 0.101 18.7 0.240

Fig. 11. Representative photographs of inlet face (left), CT-scan-based 3D reconstruction of wormholes (middle) and outlet face (right) of (a) an oil-saturated specimen
acidized at 1.5 mL/min (ML323_03_04), (b) a brine-saturated specimen acidized at 3 mL/min (ML323_03_12), and (c) a brine-saturated specimen acidized at 1.5
mL/min (ML323_03_12). Test names refer to the names in the legends in Fig. 9.

0.6 cm/min (flow rate 3 mL/min) for brine saturated specimens,
respectively. The results are in qualitative agreement with results
obtained by Furui et al.13 in a systematic study where acid vol-
umes to breakthrough were measured for 25.4 mm diameter and
101.6 mm diameter Kansas chalk cylinders for various interstitial
fluid velocities and different acid concentrations and tempera-
tures. The Kansas chalk they used had porosity around 32%. A
comparison shows that breakthrough volumes are similar for
Mons and Kansas chalk for comparable interstitial fluid velocities.

Fig. 11 shows representative photographs of acidized oil and
brine saturated chalk specimens together with a 3D visualization
of the wormholes reconstructed from CT images. The acid was
flowed from left to right. The exit holes on the outlet faces are
clearly visible. As observed in previous studies (McDuff,2 Furui

et al.13), the wormholes have rather complex structure and ex-
hibit several branches. Some of the branches intersect the side of
the specimens as e.g. in Fig. 11c. The diameter of the wormholes
in Fig. 11a,b are in the order of 1 mm while in Fig. 11c is in the
order of 2 mm. When the flow rate is lower that the optimum rate
then the wormholes become larger and more acid is required for
their development.

7.1. Local strength mapping near the wormholes

The local strength variations from wormhole to intact rock in
the acidized chalk specimens were investigated in one oil and one
brine saturated specimen. The objective was to find the spatial
effect of the acid action on the chalk strength and whether an
area of reduce strength surrounds the wormholes. This would
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Fig. 12. Photographs of the specimens tested with the durometer: (a) Reference specimen of virgin chalk (ML323_03_26), (b) Acidized oil saturated specimen
(ML323_03_28), and (c) Acidized brine saturated specimen (ML323_03_29).

verify experimentally the thin front assumption made in the
development of the theoretical model of chemical dissolution.

The strength mapping was made using a durometer. Durom-
eter is one of several measures of hardness of a material which
may be defined as a material’s resistance to permanent inden-
tation. The durometer scale was defined by Shore26 who devel-
oped a measurement device to measure the Shore hardness in
the 1920s. Shore’s device was not the first hardness tester nor
the first to be called a durometer but today that name usually
refers to Shore hardness (other devices are simply called hardness
testers). Hardness measurements have been related to stiffness
and strength and therefore the durometer is considered as a
convenient way to identify potential variations in mechanical
properties around the wormholes. There are several durometer
scales used for materials with different properties. In our case
the ASTM D2240 type D scale was used. The Type D scale uses
a hardened steel rod 1.4 mm diameter with a 30◦ conical pin and
0.1 mm radius tip. It has a 2.54 mm travel and can measure a
force up to 44.42 N. The principle used to measure hardness is
based on measuring the resistance force of the penetration of a
pin into the test material under a known spring load. The amount
of penetration or resistance force is converted to hardness reading
on a scale with 100 units.

The procedure of the durometer test is to first place the
specimen on a hard, flat surface. The indenter for the instrument
is then pressed into the specimen making sure that it is parallel
to the surface. Once the gauge is pressed firmly against the
material and the needle has penetrated as far as it can go, the
measurement needle will indicate the corresponding hardness
measurement. The test specimens are generally 6.4 mm thick.
It is possible to pile several specimens to achieve the 6.4 mm
thickness, but one specimen is preferred. It is recommended to
test at least 12 mm from any edge and perform five tests at least
6.35 mm apart and use the average value.

Cross sectional cuts of the tested specimens were made to
obtain specimens to test with the durometer. Fig. 12 shows
photographs of the tested specimens and the location of the
cuts. Besides the acidized oil and brine saturated specimens,
a virgin specimen was also tested for reference. All specimens
were oven dried at 90 ◦C for at least 24 h prior to testing with
the durometer. Fig. 13 shows the location of the indentation
measurements. Table 2 lists the measurements which had good

repeatability. The average hardness of the reference virgin chalk
is 69.6. In the acidized specimens the reference values far from
the wormhole, i.e. at a distance > 8 mm, are 63.4 and 64.1 for
the oil and brine saturated specimen, respectively. Closer to the
wormhole at distances 1.5–8 mm the hardness values are close
to the reference, except in the cases where the indentation tip
collapsed into the wormhole resulting in much lower values than
the reference.

The results show that the acidized specimens are slightly
weaker than the reference specimen. However, since the poros-
ity of the reference specimen was not obtained, the difference
may result from specimen variation given also the fact that the
porosities of the acidized specimens are larger than 44% which
is in the high side of porosity for the tested block of Mons (cf.
average porosity 43.3% in Table 1). There seems to be no effect
of the saturation fluid, i.e. oil or brine during acidizing since the
specimens were oven dried after acidizing. Also there seems to
be no significant difference between far from the wormhole and
close to the wormhole except for the cases where the indentation
tip collapsed into the wormhole. Thus, the acid affected zone
around the wormhole does not extent more than 1.5 mm and
it may be smaller than that. This is also corroborated from the
CT scans that do not show any area of reduced density near the
wormholes.

8. Analysis of experimental results

In the following the experimental results are analyzed within
the framework of the developed model that views wormholes as
the result of reactive instabilities. An acid concentration of 15%
v/v or c0 = 4.5 mol/L injected in calcite of ρs = 270 mol/L
with initial porosity φ0 = 0.43 and final porosity φf = 1 results
in an acid capacity number ac = 0.01457. For these conditions
the critical wavenumber is ωcr = 2.69, as depicted with the
dashed red lines in the plot in Fig. 7. This is a general observation
which uses the main dispersion relation Eq. (45) of the scaled
non-dimensional model. This means that all instabilities with
wavenumber ω ≤ ωcr will grow. To study the actual wavelengths
and critical values of the various parameters one must use the
intrinsic scales of the system expressed during the scaling pro-
cess. The actual wavelength λ of the perturbation is calculated
by multiplying the dimensionless wavelength λ = 2π/ω with
the intrinsic length L∗ of the system to obtain the wavelength to
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Table 2
Durometer hardness measurements on reference Mons and acidized Mons specimens far and close to the wormhole.
Saturation fluid
during acidizing

φ [%] Distance from
wormhole

Hardness Average hardness

Reference
ML323_03–26

– – 71 67.5 69 71.5 73 67 68 69.6

Oil ML323_03_28 44.1
>8 mm 65.5 62.5 63.5 63 62.5 63.4
1.5–8 mm 65.5 64 64.8
1.5–2 mm + collapse
into wormhole

25 30 22 25.7

Brine ML323_03_29 44.4
>8 mm 64 67 65 63.5 66 64.1
1.5–8 mm 62 62 63 61 62.0
1.5–2 mm + collapse
into wormhole

25 25.0

Fig. 13. Location of the indentation tests in (a) Reference virgin specimen (ML323_03_26), (b) Acidized oil saturated specimen (ML323_03_28) (left, inlet surface;
right, inside surface), and (c) Acidized brine saturated specimen (ML323_03_29) (inside surface). Specimen diameter is 38 mm.

wavenumber relation

λ =
2π
ω

L∗ (49)

The intrinsic length L∗ is defined through Eqs. (28) and (32) and
depends on the diffusion–dispersion coefficient D, the acid injec-
tion velocity u0 or equivalently the imposed pressure gradient
δP at the inlet of the system and the front velocity Vx which is
known from the equilibrium state solution Eq. (27). However, the
contribution of the front velocity in the calculation of intrinsic
length L∗ can be neglected since it is two orders of magnitude less
than the fluid flux or alternatively the mol concentration of acid
c0 is two orders of magnitude less than the calcite mol density ρs,
i.e.

L∗
=

D
u0/φf − Vx

=
D

u0/φf
·

[
1 +

c0
2ρs

(
1 − φ0/φf

)]
≈

D
u0

(50)

The critical wavenumber corresponds to different critical wave-
lengths depending on the ratio u0/D of fluid velocity to diffusion–
dispersion coefficient. This ratio expresses the opposing roles of
advection and diffusion in amplifying or decaying respectively the
infinitesimal disturbances from equilibrium in reactive infiltra-
tion. In the limit of infinite pressure gradient or fluid velocity (or

equivalently in the limit of zero diffusion–dispersion coefficient)
the ratio u0/D → ∞ and the intrinsic length L∗

→ 0. This
causes the actual critical wavelength to tend to zero and any
disturbance will grow. This is reasonable since the destabilizing
processes dominate over the stabilizing ones. Conversely in the
absence of advection (or equivalently in the limit of infinite
diffusion–dispersion coefficient) the ratio u0/D → 0 and the
critical wavelength tends to infinity thus causing perturbations
of any size to decay.

As mentioned earlier, for a specific acid capacity number the
dominant wavenumber is the smallest of all wavenumbers to the
left of the critical one in the horizontal axis of Fig. 7, which is
reproduced in Fig. 14 for realistic values of acid capacity number
for HCl acid injection in Mons chalk. When applying these results
to a physical model as in the experiments, there is the restriction
of the width W of the system. The actual wavelength λ of the
instability relates to the width W through the expression λ =

2 W/n, where n = 1, 2, 3, . . . , such that the boundary conditions
at the upper and lower boundary are satisfied for the perturba-
tion solution [υ1] in Eq. (40) and the sinusoidal disturbance has
sufficient width to develop. Fig. 15 shows the waveforms of the
five larger wavelengths that correspond to n = 1, 2, 3, 4, 5 and
develop in a medium of width W.
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Fig. 14. Neutral stability line and regions of stability for the acid capacity
number ac vs. wavenumber ω depending on the sign of the Re (a0).

Substitution in Eq. (49) and use of Eq. (50) gives the wavenum-
ber ω as a function of intrinsic length L∗ and dimensionless
injection velocity u∗

0

ω =
nπ
W

L∗
=

nπ
u∗

0
, u∗

0 =
Wu0

D
(51)

The solution of the implicit nonlinear Eq. (45) renders the growth
rate a0 for every wavenumber ω. Combining this result with
Eq. (51), the growth rate a0 can be calculated for a given value
of n and u∗

0. Fig. 16 plots the growth rate a0 as a function of the
dimensionless injection fluid velocity u∗

0 for various n or equiv-
alently wavelengths λ of the instability. The results show that
instabilities with positive growth rate are possible for injection
velocities u∗

0 > 1.168. This injection velocity gives the instability
with n = 1 and larger wavelength λ = 2W. At higher injection
velocities, instabilities with smaller wavelengths (larger n) are
possible. For example, for u∗

0 = 11.68, all instabilities with n =

1–10 have positive growth rate. However, from all the different
wavelengths the largest wavelength for n = 1 has the largest
growth rate. The growth rate has an asymptote for ω → 0 which
for the particular problem is amax

0 = 8.752 as marked in Fig. 16.
These findings are in accordance with experimental results2,3

that show that a primary wormhole (instability) develops at a
given injection fluid velocity while at higher velocities besides the
primary wormhole, secondary wormholes develop also resulting
in a dendritic, ramified network. The density of this network
increases with increasing injection velocity because more insta-
bilities of smaller wavelength have now positive growth rate.
This means that for an optimum acidizing process with mini-
mum amount of acid spent and a single wormhole, the optimum
injection fluid velocity will be the smallest one with positive

Fig. 16. Growth rate a0 as a function of dimensionless injection fluid velocity
u∗

0 for various n values of the wavelength of the instability.

growth rate. It will have the largest possible wavelength. For
the parameters at hand, the optimum dimensionless injection
velocity u∗

0_opt = π/ωcr = 1.168. Fig. 17 plots u∗

0_opt vs. the acid
capacity number ac . using the results from Fig. 14. The values
of ac in the plot correspond to the injection of HCl acid with
concentrations 0 to 100% v/v in Mons chalk. Thus, for a given HCl
concentration the optimum injection velocity can be obtained.

Eq. (51) gives a scale effect with respect to the width W of the
model for the dimensional optimum injection velocity u0_opt

u0_opt =
u∗

0_optD

W
=

πD
ωcrW

(52)

Thus, the optimum injection velocity scales with the inverse of
the model width. This theoretical result is in accordance with
scaled experiments performed by Furui et al.13 who tested sam-
ples of different widths and showed the same scaling of optimum
acid injection velocity to sample width.

The previous analysis can be applied to the acidizing exper-
iments in Section 7 and the results can be compared with the
experimental measurements. The width of the system is taken
equal to the diameter of the specimen, i.e. W = 0.038 m. This
approximation neglects the difference in geometry between the
theoretical model that has an infinite depth and the specimen
that has a cylindrical geometry. The optimum dimensional injec-
tion velocity u0_opt for the experimental setup can be predicted
using Eq. (52) provided that the diffusion–dispersion coefficient
D is known. This coefficient is written as D = DF + DS where
DF is the molecular diffusion part and DS the dispersivity asso-
ciated with hydrodynamic dispersion.27 Molecular diffusion for
relatively high flow velocities like this one is three to four orders

Fig. 15. Waveforms of the instabilities with the five larger wavelengths λ for n = 1, 2, 3, 4, 5 that develop in a medium of width W.
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Fig. 17. Optimum dimensionless injection fluid velocity u∗

0_opt as a function of
acid capacity number ac for various HCl injection concentrations and Mons chalk.

of magnitude less than the hydrodynamic dispersion and there-
fore DF can be neglected. The hydrodynamic dispersivity DS is
assumed to be linearly dependent on fluid velocity, i.e. D ≃ DS =

aLu/φ, where aL is the longitudinal diffusivity with dimension
length. Although no measured values of aL for flow of HCl solution
in Mons chalk were found in the literature, Schulze-Makuch28

report a value of aL = 1 m for chalk which when scaled from
8 m to the 0.08 m length of the laboratory specimen, using the
proposed square root scaling law, gives a value of aL = 0.1
m. Furthermore, Mathias29 in his numerical simulations in chalk
aquifers used aL = 0.04 m for chalk. These values of aL and the
fluid velocity of the experiments listed in Table 1 for brine, yield
D = aLu/φ = 0.04−0.1·0.044×10−3/0.433 = 4−10×10−6 m2/s.
In our case, a value of aL = 0.01 m giving D = 1×10−6 m2/s,
yields an optimum fluid injection velocity and pressure gradient
at inlet that compares well with the experimental results in
Table 1

u0_opt =
u∗

0_optD

W
=

πD
ωcrW

=
1.168 · 1 · 10−6

3.8 · 10−2 = 3.05 · 10−5 m/s

u0_opt =
k0
µ

δp ⇒ δP =
µu0_opt

k0
=

1.2 · 10−9
· 3.05 · 10−5

2 · 10−15

= 18.6 MPa/m

(53)

where a chalk permeability of 2 mD and a constant viscosity for
the HCl solution of 1.2 cP were used.

9. Conclusions

Reactive instabilities developing during linear acidizing in
pure calcite chalks were studied. First the equilibrium state,
uniform front solution was analyzed within a moving boundary
value problem formulation in an infinite domain. This analysis
results in a self-similar problem that spatially depends only on
the distance from the location of the front as the front travels
through the medium at constant velocity. The solution assumes
a thin dissolution front where all reaction takes place and allows
the separation of the domain into two distinct regions, the fully
reacted region behind the front and the unreacted region ahead
of the front. This assumption is validated by experiments that did
not indicate the existence of a transition zone between reacted
and unreacted region.

The analytical solution for the equilibrium state was combined
with a linear stability analysis which investigated whether ad-
ditional infinitesimal sinusoidal solutions or perturbations have
positive growth rates. The growth of these reactive instabilities
is presumed to lead to the formation of wormholes in linear
acidizing experiments. The stability analysis shows that for a
given acid capacity number, i.e. formation and injection acid
concentration, there is a critical wavenumber below which all
instabilities grow at an increasing rate as the wavenumber de-
creases. When applying the results to the physical model of linear
acidizing experiments, the restriction of the width of the system
relates the wavelength of the instability to the width. This results
in an optimum injection velocity for the growth of an instability
with wavelength twice the specimen width which grows to a
single wormhole. Above the optimum injection velocity, instabil-
ities with smaller wavelengths also grow resulting in a ramified,
dendritic network of wormholes as observed in experiments.
The analysis shows that the optimum injection velocity scales
with the inverse of the specimen width as also observed in
experiments and reported in the literature.

A set of linear acidizing experiments on Mons chalk specimens
was performed to compare the modeling results with experi-
mental measurements. A 15% v/v hydrochloric acid solution was
injected in cylindrical specimens at different injection velocities
and the optimum injection velocity for wormhole formation was
obtained. The quantitative comparison of the optimum injection
velocity from the model and the acidizing experiments, requires
a value for the diffusion–dispersion coefficient for HCl flow in
Mons. Alternatively, this coefficient can be back calibrated from
the experimental results. The obtained value in this case appears
to be smaller by a factor 4 to 10 as compared to values for
chalk aquifers obtained from the literature. However, the range
of values of these coefficients is rather wide and it may include
scale effects and/or other measurement artifacts. This suggests
that back calibration from experiments for a particular problem
is a reasonable alternative. In field applications, field calibration
can be performed instead.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Lars Erik Walle and Eyvind
Sanstebø for their contribution in the experimental part of this
work which was carried out with the financial support of Aker BP,
ConocoPhillips Norway, Hess Denmarkwithin the Joint Industry
Project ‘Chalk influx in production wells’.

References

1. Economides MJ, Hill AD, Economides-Ehlig C, Zhu D. Petroleum Production
Systems. 2nd ed., Prentice-Hall: Westford; 2013, p. 622.

2. McDuff DR, Shuchart CE, Jackson SK, Postl D, Brown JS. Understanding
wormholes in carbonates: Unprecedented experimental scale and 3D visu-
alization. In: SPE134379, Proc. SPE Annual Technical Conference and Exhibition
2010. Florence, Italy.

3. Fredd CN, Fogler HS. Alternative stimulation fluids and their impact on
carbonate acidizing. Soc Pet Eng J. 1998;SPE31074:34–41.

4. Bauer A, Walle LE, Stenebråten J, Papamichos E. Impact of acidizing-induced
wormholes in chalk on rock strength. In: ARMA 13-534, Proc. 47th US Rock
Mechanics/Geomechanics Symposium. San Francisco, CA; 2013.

5. Walle LE, Papamichos E. Acidizing of hollow cylinder chalk specimens and
its impact on rock strength and wormhole network structure. In: ARMA 15-
566, Proc. 49th US Rock Mechanics/Geomechanics Symposium. San Francisco,
USA; 2015.

http://refhub.elsevier.com/S2352-3808(19)30050-4/sb1
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb1
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb1
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb3
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb3
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb3


E. Papamichos, P. Strongylis and A. Bauer / Geomechanics for Energy and the Environment 21 (2020) 100161 15

6. Hinch EJ, Bhatt BS. Stability of an acid front moving through porous rock.
J Fluid Mech. 1990;212:279–288.

7. Szymczak P, Ladd AJC. Instabilities in the dissolution of a porous matrix.
Geophys Res Lett. 2011;38. L074073.

8. Zhao C, Hobbs BE, Ord A. Theoretical analyses of acidization dissolution
front instability in fluid-saturated rocks. Int J Numer Anal Methods Geomech.
2013;37:2084–2105.

9. Liu X, Ormond A, Bartko K, Li Y, Ortoleva P. A geochemical reaction-
transport simulator for matrix acidizing analysis and design. J Pet Sci Eng.
1997;17:181–196.

10. Valia N, Balakotaiah V. Effect of medium heterogeneities in reactive
dissolution of carbonates. Chem Eng Sci. 2009;64:376–390.

11. Panga MKR, Ziauddin M, Balakotaiah V. Two-scale continuum model for
simulation of wormholes in carbonate acidization. AIChe J. 2005;51:3231–
3248.

12. De Oliveira TJL, De Melo AR, Oliveira JAA Jr . Numerical simulation of
acidizing in carbonate reservoir. In: CFD OIL2012, Proc. 5th Latin America
CFD Workshop applied to the Oil and Gas Industry. Rio de Janeiro, Brazil;
2012.

13. Furui K, Burton RC, Burkhead DW, Abdelmalek NA, Hill AD, Zhu D, Nozaki M.
A comprehensive model of high-rate matrix-acid stimulation for long
horizontal wells in carbonate reservoirs: Part I – Scaling up core-level acid
wormholing to field treatments. 2012, SPE 134265.

14. Ortoleva P, Chadam J, Merino E, Sen A. Geochemical self-organization II:
The reactive-infiltration instability. Am J Sci. 1987;287:1008–1040.

15. Chadam J, Hoff D, Merino E, Ortoleva P, Sen A. Reactive infiltration
instabilities. IMA J Appl Math. 1986;36:207–221.

16. Ortoleva P, Merino E, Moore C, Chadam J. Geochemical self-organization
I: Reaction-transport feedbacks and modeling approach. Am J Sci.
1987;287:979–1007.

17. Stefan J. Ueber einige Probleme der Theorie der Wärmeleitung. Sitz ber Wien
Akad Math Nat Abt. 1889;98:473–484.

18. Ladd AJC, Szymczak P. Use and misuse of large-density asymptotics in the
reaction-infiltration instability. Water Resour Res. 2017;53:2419–2430.

19. Ladd AJC, Szymczak P. Comment on Validity of using large-density asymp-
totics for studying reaction-infiltration instability in fluid-saturated rocks. J
Hydrol. 2018;564:414–415.

20. Ciantia M, Hueckel T. Weathering of submerged stressed calcarenites:
chemo-mechanical coupling mechanisms. Géotechnique. 2013;63:768–785.
http://dx.doi.org/10.1680/geot.sip13.p.024.

21. Wangen M. Stability of reaction-fronts in porous media. Appl Math Model.
2013;37:4860–4873.

22. Cherniha R, Kovalenko S. Lie symmetries and reductions of multi-
dimensional boundary value problems of the Stefan type. J Phys A.
2011;44:485202–485227.

23. Lin CC, Segel LA. Mathematics Applied to Deterministic Problems in the Natural
Sciences. Society of Industrial and Applied Mathematics: Philadelphia; 1988.

24. Wollkind DJ, Segel LA. A nonlinear stability analysis of the freezing of a
dilute binary alloy. Phil Trans R Soc A. 1970;268:351–380.

25. Izgec O, Zhu D, Hill AD. Numerical and experimental investigation of acid
wormholing during acidization of vuggy carbonate rocks. J Pet Sci Eng.
2010;74:51–66.

26. Shore AF. Apparatus for measuring the hardness of materials. US patent
1770045, issued 1930-07-08.

27. Bear J. Dynamics of Fluids in Porous Media. Dover; 1972.
28. Schulze-Makuch D. Longitudinal dispersivity data and implications for

scaling behavior. Groundwater. 2005;43:443–456.
29. Mathias SA. Modelling Flow and Transport in the Chalk Unsaturated

Zone (Ph.D. thesis), University of London; 2005.

http://refhub.elsevier.com/S2352-3808(19)30050-4/sb6
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb6
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb6
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb7
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb7
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb7
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb8
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb8
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb8
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb8
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb8
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb9
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb9
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb9
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb9
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb9
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb10
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb10
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb10
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb11
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb11
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb11
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb11
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb11
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb13
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb14
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb14
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb14
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb15
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb15
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb15
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb16
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb16
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb16
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb16
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb16
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb17
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb17
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb17
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb18
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb18
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb18
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb19
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb19
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb19
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb19
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb19
http://dx.doi.org/10.1680/geot.sip13.p.024
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb21
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb21
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb21
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb22
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb22
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb22
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb22
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb22
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb23
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb23
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb23
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb24
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb24
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb24
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb25
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb25
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb25
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb25
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb25
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb27
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb28
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb28
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb28
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb29
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb29
http://refhub.elsevier.com/S2352-3808(19)30050-4/sb29

	Reactive instabilities in linear acidizing on carbonates
	Introduction
	Reactive infiltration instability
	Formulation of moving boundary problem for reactive flow
	Equilibrium state solution for uniform dissolution
	Scaling
	Linear stability analysis
	Acidizing experiments on chalk
	Local strength mapping near the wormholes

	Analysis of experimental results
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


