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Abstract: This work presents a validated workflow based on an algorithm developed in Grasshopper
to parametrically control the building’s shape, by maximizing the solar irradiation incident on
the building envelope and minimizing the embodied emissions. The algorithm is applied to a
zero-emission building concept in Nordic and Mediterranean climate zones. The algorithm enables
conducting both energy and environmental assessments through Ladybug tools. The emissions
embodied in materials and the solar irradiation incident on the building envelope were estimated
in the early design stage. A three-steps optimization process through evolutionary solvers, such
as Galapagos (one-objective) and Octopus (multi-objective), has been conducted to shape the most
environmentally responsive ZEB model in both climates. The results demonstrated the replicability of
the algorithm to optimize the solar irradiation by producing an increment of solar incident irradiation
equal to 35% in the Mediterranean area, and to 20% in the Nordic climate. This could contribute to
compensate the additional 15% of emissions due to the higher quantities of employed materials in
the optimized design. The developed approach, which is based on the parametric design principles
for ZEBs, represents a support instrument for designers to develop highly efficient energy solutions
in the early design stages.

Keywords: life cycle assessment; zero-emission building; parametric design; evolutionary computing;
solar irradiation

1. Introduction

The environmental impact of buildings on the global energy demand and atmospheric greenhouse
gas (GHG) emissions has rapidly increased during recent decades. According to the Intergovernmental
Panel on Climate Change (IPCC) [1], the building sector is responsible for over 40% of the global energy
consumption and 18% of GHG emissions. The Fifth Assessment Report of IPCC describes buildings as
a critical issue in the low-carbon energy transition and a global challenge to a sustainable development.
Current technology in the building industry offers already available and highly cost-effective solutions
to achieve a considerable reduction in energy demand and GHG emissions. In recent decades,
the regulations and national building standards have focused on lowering the operational energy
consumption [2–4]. In the Energy Roadmap 2050 published by the European Climate Foundation,
five de-carbonization scenarios were proposed and these highlighted the importance of having an
efficient use of on-site renewable energy sources (RES) [5]. In response to that, the concepts of net
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zero-energy buildings (NZEB) and zero-emission buildings (ZEB) were developed to face the challenges
of reducing energy consumption and GHGs, and increasing the on-site production of energy from RES.

The paper is structured as follows. The Background (Section 2) is articulated around three
sub-sections describing the main research topics (Sections 2.1–2.3). The Methodology (Section 3) is
divided into two sub-sections: in the first sub-section, the workflow is presented, while in the second
sub-section, the case study is described (Sections 3.1 and 3.2). In the Results and Discussion (Section 4),
the outcomes referring to the reference model, the exposure optimization process, and the responsive
ZEB for each climate zone (Sections 4.1–4.3) are presented and discussed, then the evolutionary
process is outlined (Section 4.4) and the limitations of the study are highlighted (Section 4.5). Finally,
the Conclusions and Future Developments summarize the resulting knowledge generated and the
implications of this work (Section 5).

2. Background

2.1. Towards GHGs Reduction: Zero-Emission Buildings

An NZEB is defined as a building with high energy efficiency, which can generate on-site as
much energy from RES as it needs to cover its operational energy consumption on an annual basis.
In that regard, relevant contributions to its definitions [6–8] are here included, such as the work
done in the framework of the International Energy Agency (IEA) “Solar Heating and Cooling (SHC)
Task 40 Net Zero Energy Solar Buildings”, in which the state of the art of zero-energy buildings
and their classifications have been provided. Up to 30 net zero-energy buildings worldwide were
analyzed and monitored for at least 12 months to define the best practices and develop design
guidelines [9–13]. Other definitions of net zero-energy buildings are in the study conducted by
Marszal et al. [14]. Methodologies for calculating the performance of ZEBs are described in the same
research by integrating aspects of the life cycle assessments (LCA), as in [15,16]. The work conducted
by Torcellini et al. [8] proposed a different categorization of ZEBs into four clusters based on boundary
conditions, performance, and metrics. In Lund et al. [17], the ZEBs are grouped according to energy
demand and installed systems for energy production.

The ZEBs implement both passive and active strategies. The use of RES and their integration on
building components is rapidly growing worldwide [18]. The data reported from the IEA showed that
the total installed production capacity of photovoltaic systems (PV) has grown with an average rate
of 49% per year during the last ten years [19], and, similarly, an increment of 12% per year has been
registered for solar thermal (ST) plants [20]. Furthermore, the growing interest toward bioclimatic and
solar houses is demonstrated by numerous studies on the exploitation of solar irradiation for passive
strategies [21–26]. The concept of a zero-emission solar house (ZESH) was proposed by Oliveira et al.,
2017 [27], who developed the Ekó House ZEB concept, starting from the aforementioned classification
proposed by Torcellini et al. [8].

This study aims at proposing a new parametric approach to optimize a ZEB residential design
in the early design stage. The optimization strategies are pursued by maximizing the solar energy
potential and minimizing the embodied emissions in the construction stage. The workflow is based
on an algorithm for the multi-objective optimization of passive and active strategies and real-time
evaluation of embodied and operational emissions. This workflow was tested in both Mediterranean
and Nordic climate zones.
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2.2. Parametric Design for Multi-Objective Optimization

The parametric-driven approach allows multi-objective optimization processes to define the optimized building shape configurations, simultaneously and
automatically. Similar approaches have been adopted in other studies (Table 1). The research conducted by Yun Kyu [28] proposed a method to represent
building geometry by implementing agent points (nodes), and showing a novel solution for building geometry construction. Such a workflow leads to design
more energy-efficient buildings, with a better exploitation of solar radiation impinging on the building envelope. A similar approach has been developed by
Lobaccaro [29]. By contrast, the study carried out by Zani [30] described a generative algorithm for handling varying hypotheses on user occupancy that can
influence building energy performance.

Table 1. Overview of the existing workflows related to the parametric design for multi-objective optimization.

Authors Reference Year Location Case Study
Input *

Tools
Output ** Visualization

Wd Gd Mp En Lce Ee Oe Irr Df 3D Graphs

Yun Kyu et al. [28] 2009 USA Single-family
house 3 3 3 3 — Excel — 3 3 — 3 —

Lobaccaro et al. [29] 2016 Trondheim Row houses 3 3 — — — Rhinoceros;
Grasshopper 3 3 3 — 3 —

Zani et al. [30] 2017 Italy University
campus 3 3 3 3 —

Sketchup;
Rhinoceros;
Grasshopper;
Ladybug;
Honeybee;
EnergyPlus;
Octopus

— 3 3 — 3 —

Kiss et al. [31] 2020 Hungary Generic
building 3 3 3 3 3

Rhinoceros;
Grasshopper 3 3 — — 3 3

Soflaei et al. [32] 2020 USA Courtyard
housing 3 3 3 3 — Rhinoceros;

Grasshopper — — 3 3 3 3

Mahdavi Adeli et al. [33] 2020 Iran Single-family
house 3 3 3 3 3

Design
Builder 3 3 — — — 3

Lolli et al. [34] 2017 Norway

ZEB
residential
single-family
house

3 3 3 3 3 Excel 3 3 — — — 3
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Table 1. Cont.

Authors Reference Year Location Case Study
Input *

Tools
Output ** Visualization

Wd Gd Mp En Lce Ee Oe Irr Df 3D Graphs

Lobaccaro et al. [35] 2018 Norway Single-family
house 3 3 3 3 3

Rhinoceros;
Grasshopper;
DIVA for Gh;
Ladybug;
EnergyPlus;
Octopus

3 3 3 3 3 3

Hollberg et al. [36] 2016 Germany Single-family
house 3 3 3 3 3

Rhinoceros;
Grasshopper 3 3 — — 3 3

Cavalliere et al. [37] 2019 Switzerland Generic
building — 3 3 — 3 BIM 3 — — — — 3

Ramin et al. [38] 2019 Iran Generic
envelope 3 3 3 3 3 N/A 3 3 — — — 3

Azzouz et al. [39] 2017 UK Office
building 3 3 3 3 3 IMPACT 3 3 — — — —

Ylmén et al. [40] 2017 Sweden Apartment 3 3 3 3 3
EnergyPlus;
Heat 3; Therm 3 3 — — — 3

Braulio-Gonzalo et al. [41] 2017 Spain Generic
envelope 3 3 3 3 3 HULC 3 3 — — — 3

Pomponi et al. [42] 2017 UK Generic
envelope 3 3 3 3 3

MATLAB;
OpenLCA 3 3 — — — 3

Bonomo et al. [43] 2017 Undefined

Building
Integrated
Photovoltaic
façade

— 3 3 3 — Excel — — — — — 3

Ashouri et al. [44] 2016 Undefined Generic
envelope 3 3 3 3 3 MATLAB 3 3 — — — 3

Azari et al. [45] 2016 USA Office
building 3 3 3 3 3

Athena
Impact
Estimator;
ANN

3 3 — — — 3

* The input values are: weather data (Wd), geometric dimensions (Gd), material properties (Mp), energy standards (En), and life cycle emissions (Lce). ** The output values are: embodied
emission (Ee), operational energy (Oe), solar irradiation (Irr), and daylight factor (Df).
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Recently, the use of parametric tools has also been adopted for the calculation of a number of
other performance aspects in addition to solar radiation, such as the emissions from operational
energy use and embodied emissions of materials [31–33]. Some studies led to the development
of new methodologies that allow multi-objective optimization for energy and/or environmental
assessments [34,35]. Nevertheless, to develop a parametric approach to conduct fast and simplified
LCA analyses during the early stage of the design process is critical for ZEB designs. In this
regard, Hollberg implemented an algorithm in Grasshopper to conduct LCA studies on a building’s
components [36]. However, it did not allow for a free control of the building’s shape but only a minimal
control was possible through few parameters, such as the number of levels and the building footprint.

2.3. Solar Irradiation at Different Latitudes

Nordic and Mediterranean climate zones largely differ due to the available solar irradiance
and the annual sun path’s distribution. The Scandinavian region has been considered, for a long
time, an area characterized by a low solar potential compared to Central Europe. Nevertheless,
recent studies demonstrated that some of these common assumptions were incorrect [46]. Jones and
Underwood [47] presented the data collected by two sun tracking systems installed in Piteå (Sweden)
and Freiburg (Germany) and the results proved that they receive almost the same annual global solar
irradiation [46,48], although the distribution through the year is different. Those studies documented
the growing interest in solar energy exploitation in the Scandinavian countries, and in this regard,
the research carried out by Lobaccaro et al. [49] and Imenes et al. [50] is worth being mentioned.

In this paper, the weather data collected in Oslo (OS) (Norway) were chosen as representative of
the Nordic climate zone. Oslo is classified according to the Köppen–Geiger classification as a “Warm
Summer Continental Climate”. However, Oslo is located on the very edge of this climate area and it
is characterized by some regular snow during winter with an average annual temperature of 6.7 ◦C.
For the Mediterranean area, characterized by larger available solar irradiation, the sun path shows
higher values of the azimuth angle compared to the Scandinavian region. The solar irradiation incident
on a horizontal surface is higher, although the daylight hours throughout the year are almost the
same, according to the monitoring campaign conducted by Castaldo et al. [51]. The city of Perugia
(PG) (Italy) has been set as the location for the Mediterranean climate zone. The city belongs to the
climate zone classified as “Cfb—Marine West Coast Climate” according to the Köppen–Geiger climate
classification [52].

3. Methodology

3.1. Multi-Objective Optimization Workflow

This paper presents a workflow based on an algorithm defined through Grasshopper (Figure 1).
Grasshopper is a parametric design tool based on Python scripts. It allows the implementation
of different algorithms for parametric design by means of a visual programming interface. In this
study, an algorithm implemented in a previous study [35] was used to parametrically control the
building’s volume of a ZEB Base Case (presented in Section 2.2). The algorithm allows conducting
both solar irradiation analysis and environmental impact calculation to optimize the building’s shape
according to two objective functions: (i) maximization of the solar irradiation (Irrgl) harvesting on
the building envelope and (ii) minimization of the embodied emissions (Ee) due to the employed
building’s materials. The calculations are performed for all the design configurations. The inputs and
outputs data, and the tools used to control the geometry (Gm) in each step of the workflow are shown
in Table 2.
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Figure 1. Overview of the algorithm developed in the Grasshopper environment with the different steps, inputs, and outputs.
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Table 2. Overview of the workflow.
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The workflow is based on an algorithm that applies parametric transformations to evaluate the
solar and environmental optimization of the building shape in the early design stage. It is structured
in three steps.

In Step 1, the Base Case was modeled through a parametric approach followed by the calculation
of the building’s materials’ embodied emissions, and the global solar irradiation on the envelope.
The Evaluation component of Grasshopper was used to conduct the GHG analysis in terms of embodied
emissions for each model configuration. This made it possible to control several material properties
to evaluate the impact of the materials and technologies on the building’s total embodied emissions.
The system boundaries used for the GHG analysis are defined according to EN 15804; specifically,
the stages A1–A5, B4, and B6 have been used. Stage B4 (replacement of building components) was
applied only to the PV system, which has a service life of 30 years (Table 3).

According to the Norwegian Standard 3940:2012 [53], the building lifetime was set to 60 years,
while the functional unit, used for referring to the energy and environmental impact, is 1 m2 of HFA.
The emission factors of the building materials were retrieved from the Norwegian Environmental
Product Declarations (EPD) (www.epd-norge.no) when possible, or alternatively, the information was
collected from the Ecoinvent 3.0 LCA database. The emission factors were integrated in the algorithm
with the other parameters specifically developed to control the variation of the building’s geometry
and components. In fact, Step 1 of the GHG analysis is strictly connected to the building’s geometry:
the volumes and the masses of the employed building materials were estimated and constantly
updated during the optimization process; then, they were converted into carbon emissions by using
the emission factors. The GHG emissions of the technical installations (heat pump, boiler, radiator,
etc.) were calculated by multiplying the number of technical components by the emission factors of
each component. A third cluster of parameters was introduced in Grasshopper to calculate the annual
global solar irradiation incident on the building’s envelope. This solar irradiation analysis was carried
out by using the Ladybug plug-in. Iterative grid-based analyses visualized in radiation maps were

www.epd-norge.no
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performed by setting “r-trace” parameters in Radiance (Table 4) in accordance with similar previous
studies [54].

Table 3. Building life cycle phases according to [55].

Product
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Table 4. Set of “r-trace” parameters.

Ambient
Bounces

Ambient
Divisions

Ambient Super
Samples

Ambient
Resolution

Ambient
Accuracy

Specular
Threshold

Direct
Sampling

Direct
Relays

3 1000 20 300 0.10 0.15 0.20 2

Two different weather files—the .epw files of Perugia (Italy) and Oslo (Norway)—were used
as inputs to define reference values for the Base Case, which are later compared to the optimized
configurations carried out from Step 3.

In Step 2, the orientation of the ZEB Base Case model and the exposure of its façades were optimized
to increase the south exposed area for the installation of the building-integrated photovoltaic (BiPV)
panels. Such an optimization process aims to develop a configuration with the highest incident solar
irradiation on two contiguous façades by varying the building’s orientation and façades’ exposure.
The box-shaped dwelling (the Base Case) was rotated by 90◦ by incremental angle steps of 1 degree.
The optimization was conducted by coupling Ladybug with the Galapagos evolutionary solver to
generate the optimized configurations in terms of global incident solar irradiation on two contiguous
façades (fitness). The optimization process starts by creating an initial population of the optimized
building orientation and façades’ exposure through multiple-crossovers mutations and with random
combinations of genes. The best solutions according to the fitness criteria (i.e., highest solar irradiation
on two contiguous façades) are selected. Then, the process is repeated. The optimization process
runs until the final population of optimized building shapes has been generated. The analysis was
conducted on both the Mediterranean and the Nordic climate zones.

In Step 3, the parametric transformations of the Base Case’s shape were introduced in the workflow.
The shape’s variations represent the core of this part of the work, in which parametric design principles
are applied. In fact, the shape configuration of the Base Case is controlled through few control
points, whose geometrical positions were moved to find a balance between the maximization of solar
irradiation on the building envelope and the minimization of the embodied emissions. Both of them
(solar irradiation and embodied emissions) were set as objective functions (fitness) of the evolutionary
solver Octopus. Differently from Galapagos, Octopus allows the optimization of several objective
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functions simultaneously within a single process. The investigated processes were progressively
reported on a Cartesian plan, whose axes indicate Ee and Irrgl

−1. The mathematical inverse function
allowed obtaining a better arrangement of the solutions by locating the best ones close to the origin
of the axes. Finally, the comparison between the optimized building shape for the Nordic and the
Mediterranean climate zones has been performed.

3.2. The ZEB Single-Family House Case Study

The process was applied to a single-family house pilot project in Oslo (Norway) that aims to
reach the zero environmental impact in terms of embodied and operational emissions by reducing its
energy consumptions (passive approach) and applying efficient energy production strategies (active
approach). This concept building, largely described in previous works [56], was used as the Base Case
in this study (Figure 2a). The building is a typical Norwegian single-family house and it is arranged in
two stories. The building volume is a box shape with a rectangular plan of 10 by 8 m. The longest
façades are exposed respectively towards north and south. The house contains four bedrooms and two
bathrooms (Figure 2b,c) with a total heated floor area (HFA) of 160 m2.
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Figure 2. View of the zero-emission building (ZEB) Base Case (a), plans of the ground floor (b), and the
first floor (c).

The embodied emissions for the construction materials are listed in Table 5, while the characteristics
of the construction of the Base Case are detailed in Table 6.

The energy requirements are achieved by an air-to-water heat pump integrated with solar collectors
on the façade and with a PV system installed on the flat roof. The used module is from the manufacturer
SunPower (SPR-3333NE-WHT-D), and it is a monocrystalline cell type with high efficiency (around
20%). The energy production due to the 8.3 m2 of ST has been calculated equal to 3300 kWh/y, while the
69 m2 of the PV system allows it to reach more than 11,000 kWh/y.

Table 5. Building elements of the ZEB Base Case included in the LCA calculation [35].

Building Elements GHG Emissions [kgCO2-eq/m2 HFA Year]

Groundwork and foundations 1.44
Superstructure and outer walls 1.69
Inner walls 0.50
Structural deck 0.24
Outer roof 0.64
Heating distribution system and units 0.65
Ventilation system 0.05
Photovoltaic system 2.90
Solar thermal system 0.24

Total 8.35
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Table 6. Thermal transmittance value (U-value) of the different building envelope components of the
ZEB Base Case.

Element U—Value [W/m2 K] Composition

External
wall 0.12

Timber-frame wall with 350-mm-thick
insulation
Indoor

1. Gypsum plasterboard (15 mm)
2. Wind barrier (0.2 mm)
3. Mineral wool (350 mm) (0.2 mm)
4. Vapor barrier (PE-foil)
5. Vertical timber structure

(30 mm)
6. Horizontal timber structure

(50 mm)
7. Wood pine cladding (15 mm)

Outdoor

Roof 0.10

Compact roof with 400-mm-thick
insulation
Outdoor

1. Asphalt (15 mm)
2. Mineral wool (400 mm)
3. MDF board (30 mm)
4. Damp-proof membrane (LPDE

0.2 mm)
5. OSB board (15 mm)
6. Wooden trusses (h: 300 mm)
7. OSB board (15 mm)
8. Gypsum plasterboard (15 mm)

Indoor

Internal
Slab -

Indoor

1. Parquet wood flooring (15 mm)
2. MDF board (15 mm)
3. Mineral wool (200 mm)
4. OSB board (15 mm)
5. Damp-proof membrane (LPDE

0.2 mm)
6. Wooden trusses (h: 300 mm)
7. OSB board (15 mm)
8. Gypsum plasterboard (15 mm)

Indoor

Slab on
the ground

0.07 (0.06)
The value in brackets
considers the thermal
resistance of the
ground.

Slab on the ground with
500-mm-thick insulation.
Indoor

1. Parquet wood flooring (15 mm)
2. PE foil (0.2 mm)
3. Concrete slab (100 mm)
4. Radon membrane (0.2 mm)
5. EPS (500 mm)

Ground/Soil

Windows 0.65 Triple-glazed low-energy windows, with insulated frame

Doors 0.65 Insulated doors
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4. Results and Discussion

4.1. Step 1, ZEB Reference Model

The embodied emissions of the materials for the Base Case were calculated to be equal to
8.35 kgCO2-eq/m2 HFA per year (80,200 kgCO2-eq, total emissions for 60 years). The global solar incident
irradiation on the building envelope was estimated equal to around 194,000 kWh/y in Oslo, while it
reached around 250,000 kWh/y in Perugia. In Table 7, the global solar incident irradiation on each
façade is reported, as well as its average value on the whole envelope. Already at the early stage,
the results highlight how the geographical location can affect the distribution of solar irradiation on
the building envelope.

Table 7. Results of the solar analyses conducted during Step 1 on the ZEB concept model.

ZEB Concept Model
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90°/Smallest Façade 
Oriented to South 

Weather File Oslo Perugia Oslo Perugia Oslo Perugia 
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Weather file
Oslo Perugia

kWh/y % kWh/y %

North façade (A) 13,700 7 16,000 6
East façade (D) 24,700 13 30,900 12
South façade (C) 48,200 25 54,800 22
West façade (B) 24,100 12 30,900 12
Roof 83,200 43 119,100 47
Total Irrgl kWh/y 194,000 250,000
Average Irrgl kWh/m2y 560 730

It is worth noting that the lower solar angles in the Nordic region led to a slightly minor irradiation
of the roof—only 43% in Oslo against 47% in Perugia—counterbalanced by the increment of the south
exposed façade—25% in Oslo against 22% in Perugia. The percentages refer to the annual total global
irradiation (Total Irrgl) of the two single cases.

4.2. Step 2, Exposure Optimization of the Box-Shaped Model

The optimization performed in Step 2 demonstrated that the box-shaped model of the Base Case
could be more efficient if rotated by 51◦ (Tables 8 and 9). Although the total annual global irradiation
does not change significantly among the three investigated orientations, the solar energy incident on
two contiguous façades—in this case, façade B and façade C (Table 7)—increases by 12% if compared
to the 90◦ rotated model in both climate zones. The algorithm allowed designing a model in which up
to 40% of the solar energy is incident on the two contiguous façades B and C. In particular, the solar
irradiation incident on façades B and C is equal to 77,400 kWh/y in the Nordic case study, while the
Mediterranean achieves 91,900 kWh/y.

Table 8. Optimization performed by the Galapagos evolutionary solver on solar analyses in Step 2.

Rotation Angle/Exposure 0◦/Biggest Façade
Oriented to South

51◦/Two Contiguous
Façades Oriented to South

90◦/Smallest Façade
Oriented to South

Weather File Oslo Perugia Oslo Perugia Oslo Perugia

Façade A kWh/y 13,700 16,000 19,900 25,200 30,300 37,900
Façade B kWh/y 24,700 30,900 36,300 42,400 39,300 44,700
Façade C kWh/y 48,200 54,800 41,100 49,600 29,600 37,900
Façade D kWh/y 24,100 30,900 14,000 17,800 11,100 13,100
Roof kWh/y 83,200 119,100 83,200 119,100 83,200 119,100
Façades B and C kWh/y 72,900 85,800 77,400 91,900 68,900 82,600

Total Irrgl kWh/y 193,900 251,700 194,500 254,100 193,500 252,700

Average Irrgl kWh/m2y 560 730 570 740 560 740
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Table 9. Advantages and disadvantages of optimization performed by the Galapagos evolutionary
solver on solar analyses in Step 2.
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0◦/Biggest façade oriented to south

- Advantages: maximum façade’s area facing south where
there is the highest amount of solar irradiation.

- Disadvantages: higher variation of total solar irradiation on
the different façades
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90◦/Smallest façade oriented to south

- Advantages: lower variation of the total solar irradiation on
the different façades.

- Disadvantages: minimum façade’s area facing to the south
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51◦/Two contiguous façades oriented to south

- Advantages: the highest amount of solar irradiation on two
contiguous façades. Therefore, the higher façade’s area can
be irradiated.

- Disadvantages: the other two façades received the lowest
incoming irradiation.

4.3. Step 3, Towards a Responsive ZEB

The outcomes from Step 2 were used as inputs in Step 3, where the ZEB’s shape was modified
from the initial box model of the Base Case.

The Octopus evolutionary solver performed a series of iterative assessments that allowed to
develop the most environmentally optimal configurations characterized by the lowest impact in terms
of embodied emissions from materials. All building configurations are depicted in the graphs reported
in Figure 3.
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Among those, the two configurations on the bottom (area delimited by the red dashed line in
Figure 3) are those best fitting the curve (maximization of solar irradiation on the building envelope
and minimization of the embodied emissions). The tilted angles of the main surfaces highlighted how
the designed concepts are influenced by the sun paths. The height of the sun at noon in Oslo changes
significantly during the year, where it varies from around 55◦ in the summer to below 10◦ in the winter.

Differently, the sun height at noon in Perugia varies from 25◦ in the winter to 70◦ in the summer.
Such a variance of the angles of incidence of solar irradiation during the year shaped the building
differently. In fact, while in the Mediterranean climate zone the optimized configuration appears
flatter—the main surfaces are characterized by the same tilt angles, about 40◦ from the horizontal
direction—in the Nordic zone, the building envelope of the model turns out to be as vertical as
possible—the tilt angles range from 40◦ to more than 60◦.

Figure 3 shows the graphical representation of the outcomes of the multi-objective optimization.
The area delimited by the red dashed line included the most optimized configurations designed
in Step 3. In fact, the others were characterized by a too high level of embodied emissions or by a
shape too flat for being considered dwellings. The optimized volumes and the sun paths used on the
process are shown on the bottom of Figure 3. Therefore, as summarized in Table 10, the annual global
solar irradiation on the selected optimized shapes varies from 234,500 in Oslo to 339,000 kWh/y in
Perugia. The developed algorithm allowed achieving a 20% improvement of solar irradiation in the
Nordic climate zone and 35% in the Mediterranean area. This has been achieved by both improving
the model’s orientation, façades’ exposure, and incrementing the envelope’s surface area—a factor
that penalizes the solar irradiation per square meter compared to Step 2—while maintaining as low
as possible the materials’ embodied emissions. The embodied emissions were estimated equal to
92,000 kgCO2-eq for both the optimized configurations: these are 15% higher than those calculated for
the reference Base Case. The higher embodied emissions may be/are compensated by both the lower
energy requirements for heating and the higher efficiency of the PV panels.

Table 10. Optimization performed by the Octopus evolutionary solver on solar analysis in Step 3.

Optimized Shape

Weather File/Location Oslo Perugia

kWh/y kWh/m2y kWh/y kWh/m2y

Façades 122,600 335 227,500 415

Roof 111,800 110 111,500 80

Total Irrgl 234,400 445 339,000 495

4.4. The Evolutionary Process

The evolutionary process described in this paper and the achieved results have demonstrated the
suitability of the parametric design approach to maximize the exploitation of the available solar energy
on the ZEB concept model in different climate zones. As highlighted in Figure 4, the magnitude of
the enhancement is influenced by the latitude, but even in adverse climates such as the Nordic one,
the algorithm allowed to achieve a significant improvement from the Base Case. At the beginning
of the study, the concept of the Base Case model located in Oslo was characterized by an incident
solar irradiation equal to 194,000 kWh/y, which was increased to 234,400 kWh/y at the end of Step 3.
A significant goal was also achieved in Step 2, in which the solar irradiation on two south exposed
contiguous façades was increased by 12%. Regarding the ZEB optimized in the Mediterranean zone,
the solar irradiation reached 339,000 kWh/y from the initial 251,700 kWh/y. Furthermore, in this case,
the optimization conducted in Step 2 allowed to improve the exposure of the best two contiguous
façades by 12%. When it came to GHG analysis, the embodied emissions were equal to 80,200 kgCO2-eq

in Step 1 and Step 2, and such an amount increased to 92,000 kgCO2-eq at the end of Step 3 in both
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the climate zones. This increment is caused by the greater envelope’s extension in the optimized
configurations if compared to the Base Case.
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Figure 4. Trend and values of global solar incident irradiation and emissions embodied in materials
throughout the optimization process about Oslo and Perugia. In both Step 1 and Step 2—box-shaped
model—the exposure of two contiguous façades was optimized. In Step 3, the whole envelope was
enhanced, thus the graphs report a null value for the bar of “other façades”.

4.5. Limitations of the Study

It should be noted that the ZEB Base Case was originally designed as a generic concept model
for the local climatic conditions of Oslo, and the building was considered a detached house without
any urban surroundings. It is relevant to underline that the urban context affects the optimization
process and the optimal configuration of the environmentally responsive layout and building volume.
The urban context may reduce solar accessibility and the solar energy production. In this respect,
the presence of other buildings may affect both the positions and geometry of the solar systems
integrated on the building envelope as demonstrated in previous studies regarding the influence of
urban complexity and density on solar accessibility and PV localizations [57,58].

Finally, the assessment of the building’s energy performances during the operational stage has
not be investigated in this paper, as further and detailed analyses regarding this aspect represent part
of future developments. The optimized configurations carried out from the optimization process have
been slightly adjusted to maintain the original HFA.

5. Conclusions and Future Developments

This work proposes a possible application of the parametric design principles to the development
of a ZEB optimized in terms of solar energy potential and embodied emissions due to materials.
The proposed methodology finalized to buildings form-finding was developed in the Grasshopper
environment: the algorithm integrates the component for conducting environmental analyses (Evaluate
component) with the one for energy assessment (Ladybug). Finally, Galapagos and Octopus tools
were used as evolutionary solvers. This workflow enables an iterative analysis by dynamically
linking each parameter and simultaneously modeling and comparing numerous building configurations.
Furthermore, the Grasshopper tool allows visualizing in real-time the optimized model’s layouts from the
early design stages, and the related data about annual global solar irradiation and embodied emissions.

The results demonstrated how the algorithm—and the parametric design principles in general—can
be considered suitable for ZEB design and optimization. In fact, the solar irradiation caught by the
envelope turned out to be increased by up to 35% in the Mediterranean climate zone, with a low
variation of embodied emissions that could be fully compensated by the advantages derived from
the optimized exposure (low energy requirements for heating, PV plant’s efficiency higher than 20%).
Similarly, the ZEB base case located in the Nordic climate zone showed an increment of the Irrgl as
high as 20% at the end of Step 3.

The main achievements are summarized as follows:
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• The optimization process of the orientation (Step 2) allows increasing the Irrgl by 12% in both the
Nordic and Mediterranean climate zones;

• The multi-objective optimization from Step 3 led to increase the Irrgl by 20% in the Nordic zone
and 35% in the Mediterranean zone;

• The Ee estimated at the end of Step 3 was increased by a share of 15%.

The proposed innovative workflow and the early results derive from its application in different
climate zones. However, there are some future developments which are still under investigation and
should allow a better assessment of the optimized models. Furthermore, the operational stage could
be introduced in the calculation to have a complete view of the ZEB concept model and to better
understand the effect of the optimization process on the whole life cycle of the building. To achieve
those goals, the design of the building cannot be interrupted at the preliminary investigation stage
of shape and volume, but it would be necessary to go further by arranging the rooms and defining
their functions.

Author Contributions: Conceptualization, G.L. and M.M.; methodology, G.L., M.M. and N.L.; software, M.M.;
formal analysis, M.M.; investigation, M.M. and G.L.; resources, G.L., M.M. and N.L.; data curation, M.M.;
writing—original draft preparation, G.L., M.M. and N.L.; writing—review and editing, G.L., M.M., N.L. and
R.A.B.; visualization, M.M.; supervision, G.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding and the APC was funded by Norwegian University of
Science and Technology—Trondheim (Norway).

Acknowledgments: The authors wish to thank the Norwegian University of Science and Technology (Trondheim,
Norway) and the University of Perugia (Perugia, Italy) for having supported the collaboration between the two
universities in this work, framed by the EU programme for education, training, youth and sport—ERASMUS+.
The authors gratefully acknowledge the support from the Research Council of Norway and several partners
through the Research Centre on Zero Emission Buildings.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Variables
Irr Solar irradiation
E Emissions
HFA Heated Floor Area
U Thermal transmittance
Subscripts
gl Global
e Embodied
Acronyms
GHG Greenhouse Gas
IPCC Intergovernmental Panel on Climate Change
RES Renewable Energy Source
NZEB Net zero-energy buildings
ZEB Zero-Emission Building
IEA International Energy Agency
SHC Solar Heating and Cooling
LCA Life Cycle Assessment
PV Photovoltaic
ST Solar Thermal
ZESH Zero-Emissions Solar House
OS Oslo
PG Perugia
Gm Geometry
EPD Environmental Product Declaration
BiPV Building-Integrated Photovoltaic
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