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A B S T R A C T   

Major blackouts may have critical societal consequences and are very challenging to analyse and mitigate. Part of the challenge lies in the complex sequences of 
events that characterize such blackouts and that involve a diverse set of mechanisms propagating the events. The analysis is also challenged by the great uncertainties 
associated with individual mechanisms and thus with the overall likelihood of sequences of event. This article proposes a general framework which uses a graph to 
describe the causal relationship between consequences, system states, initiating events and barriers. A concrete implementation of the framework is presented by 
implementing exemplary models for three transition mechanisms, namely i) protection system failures, ii) failure of corrective actions, and iii) failure of islanding. In 
the implementation, a graph is automatically generated where edges are associated with these transition mechanisms. A vulnerability analysis methodology based on 
the modelling framework is proposed that allows for identifying how critical consequences might occur as well as estimating their likelihoods of occurring. The 
vulnerability analysis methodology moreover incorporates a possibilistic uncertainty analysis to explicitly capture uncertainties associated with the likelihood of 
events. Finally, a case study considering a small but realistic test system is used to illustrate the approach and demonstrate its main advantages: i) The vulnerability 
analysis can identify critical sequences of events and barriers to mitigate them, ii) the graph-based representation allows for exploring the sequences of events and 
understanding the vulnerabilities, iii) the modelling framework is general and can incorporate multiple transition mechanisms, and iv) the analysis accounts for the 
large uncertainty associated with the critical sequences of events.  

1. Introduction 

Major blackouts occur relatively infrequently but may have critical 
societal consequences when they do [1–4]. These blackout events can 
be broadly classified by whether they primarily are due to natural ha-
zards (e.g. extreme weather) or whether they are attributed to more 
diverse and complex causes [2,3]. The first group is characterized by 
multiple near-simultaneous weather-related failure events and ex-
tensive physical damage to the infrastructure and consequently long 
restoration times and interruption durations [3]. The second group is 
characterized by often having a single initiating failure event, followed 
by complex sequences of causally related events, eventually leading to 
wide-area power interruptions and large societal consequences [1,5,6]. 
These sequences of events are sometimes referred to as cascading 
events, cascading outages or cascading blackouts. Such blackout events 
can involve a multitude of mechanisms that make the blackout event 
propagate by transitioning from one system state to another. Examples 
include such diverse mechanisms as protection and control system 
failures, failure of corrective actions (including system protection 
schemes), tripping of overloaded transmission lines, generators losing 
synchronism and tripping, etc. [6–8]. 

This article focuses on this second group of major blackouts and 
emphasizes the view of such a blackout as a sequence of causally 

related events. To describe such sequences of events, we propose a 
modelling framework based on concepts from graph theory, and we use 
this framework to analyse power system vulnerability. Vulnerability is a 
term that has been defined and understood in a variety of ways in the 
context of power systems [2]. In this article, we broadly understand 
vulnerability as an expression for the problems the system faces to 
maintain its function if a threat leads to power system failures [4,9,10], 
potentially leading to interruption of electricity supply and associated 
societal consequences. A power system failure can here be the initiating 
event of a sequence of events in the power system. A barrier is under-
stood as something that either can prevent a sequence of events from 
taking place or protect against its consequences, and a vulnerability can 
be associated with a barrier that is either missing, weak or mal-
functioning [4,9,10]. 

In analysing vulnerability we are most concerned with sequences of 
events leading to societal consequences that in some sense are critical. 
What consequences are regarded as critical depends on the system and 
in general has to be determined by or together with the relevant sta-
keholders, e.g. the system operator, regulators or other authorities  
[11]. The main objectives of a vulnerability analysis within the pro-
posed framework is to identify critical sequences of events, and thus to 
identify vulnerabilities and in turn effective barriers against such 
events. 
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1.1. Related work 

Modelling of major blackouts is a complex task, and it is infeasible 
for one single method to encompass all aspects [2,12]. We will focus on 
blackouts due to so-called cascading outages, on which extensive re-
search has been conducted. The interested reader may refer to [6,8] for 
reviews of existing methods. Recent developments on the bench-
marking and validation of simulation tools for cascading outages are 
described in [7,13]. Inspired by classifications e.g. in [2,6,8], we can 
broadly divide the diverse set of existing methods by the level of detail 
used for modelling the electrical grid: i) statistical approaches, where 
the grid is not explicitly represented, ii) topological approaches, where 
the grid is represented as a graph, and iii) electrical engineering ap-
proaches, where the grid is represented and simulated as an electric 
circuit. 

Statistical approaches use statistical methods to predict the blackout 
size or the number of components in an outage state at each stage of the 
propagation of the blackout event. Typical examples of the former ap-
proach are [14,15], and the latter approach is demonstrated in [16,17], 
which uses a branching process for estimating the number of outaged 
components in each stage of the cascade. More recently, [18] uses 
historical data to help evaluate the credibility of statistical approaches. 
A recent review of the use of influence or interaction graphs in such 
approaches is found in [19]. 

Topological approaches are the type of approaches where graph 
theory is most commonly used in the analysis of blackouts. However, 
unlike our work these models represent the power system as a graph, 
whereas we represent possible sequences of events in a blackout as a 
graph. An overview of the literature on topological models for vulner-
ability analysis can be found in [20]. Another review on topological 
models more generally is provided by [21]. The review in [2] of 
methods for power system vulnerability analysis in general also in-
cludes discussion of methods based on graph theory. 

Our work falls within the electrical engineering approach to mod-
elling blackout events. These approaches typically also include some 
type of stochastic modelling of outage occurrences. However, unlike the 
purely statistical approaches, electrical engineering approaches simu-
late how electrical quantities in the power system change as the 
blackout event propagates. In our work this is combined with a graph- 
based approach to analysing sequences of events leading to critical 
consequences. A directed graph is constructed that describes a set of 
discrete-time Markov chains: Each vertex of the graph represents a 
contingency state and the edges of the graph are labelled with state 
transition probabilities. 

The graph-based approach proposed in this article has some simi-
larities with the electrical engineering approach in [22], which pro-
poses a Markov model for state transitions in the propagation of a 
blackout event. The states of the Markov chain represent the con-
tingency state of the transmission lines in the system, but the Markov 
chains are not explicitly recast to a graph formulation as in our case. An 
advantage of our approach is that the graph that is generated is stored 
and utilized in a vulnerability analysis methodology. It is emphasized 
by [22] that their model allows for finding “critical paths” of the 
blackout, however without further elaborating on how. In our ap-
proach, on the other hand, critical paths are explicitly defined and 
identified in the vulnerability analysis. Another article using Markov 
models is [23], where each state represents the number of failed lines 
and the total capacity of the outaged lines. The approach is extended 
upon in [24], where an additional parameter representing whether or 
not the state is stable is introduced. However, unlike our approach, the 
information on the transition between the states is not stored. A fra-
mework based on modelling system trajectories (sequences of events) is 
proposed in [25], but is applied in a security assessment context rather 
than a vulnerability analysis context. In [26] graph theory is used in a 
reliability analysis context to find propagation paths for outages of 
transmission lines due to protection system failures. 

Several methods aim to identify the transmission lines occurring in 
most critical initiating events and the lines occurring in most sub-
sequent cascading outages [19]. For instance, in [27] a Monte Carlo- 
like approach is used to show that these two sets of transmission lines 
do not overlap. This insight inspired works such as [28,29], whose aim 
was to speed up the Monte Carlo sampling of sequences of events. They 
did so using Markovian tree search to avoid sampling duplicated states 
and searching for the states with a major contribution to risk. In [30] a 
Markovian influence graph is used to count the number of outages at 
each stage in the same way as [16,17]. In addition to this, [30] suggests 
a method for calculating the importance of each component in the 
cascade. In [31], the approach for building influence graphs are gen-
eralized by including multiple line outages in the states of the Markov 
chain. 

Other lines of research have used a graph-theoretical approach to 
the power network inhibition or interdiction problem, i.e. the problem 
of finding a small set of transmission lines whose outage occurrence 
could cause major blackouts. For instance, [32] used graph partitioning 
methods to find subgraphs of the grid with large imbalances, and [33] 
used graph theory to consider the feasibility boundary of the power 
flow equations for the system. The latter work was later extended in  
[34], and more details on this and related work can be found in [35]. 
However, most work along this line of research analyse multiple con-
tingencies without considering the sequences of events that give rise to 
them. A more recent review of the power network interdiction problem 
and intentional attacks can be found in [36]. 

Previous works as those mentioned above has considered models for 
various relevant transition mechanisms and barrier failures, such as 
protection system failure [25,26,37–42] and corrective action failure  
[25,43–47]. The possible failure to operate in island mode after system 
separation has also been considered [43,45,48], although most work on 
that topic seem to consider the optimization of controlled or intentional 
islanding (see e.g. [49]). Furthermore, most previous work has ne-
glected interactions between different mechanisms and has been lim-
ited to consider mechanisms in isolation. 

Another challenge that has been addressed only to a limited extent 
in previous research is accounting for the uncertainties that are in-
herent in the sequences of events of major blackouts [12]. Several of the 
works mentioned above include probabilistic models for the transition 
from one state to another [16,17,22–24]. These capture uncertainty in 
the sense of variability in the processes governing the transitions (i.e., 
aleatory uncertainties [50]). Some works also account for the variability 
e.g. in the load of the system under study. Recent work has also started 
accounting for uncertainty due to lack of knowledge (epistemic un-
certainty [50]) in vulnerability analysis [51]. However, transition 
probabilities are associated with deep uncertainties that are typically 
not reflected in the results from such analyses. 

A broader and more general methodology, that is not limited to 
individual mechanisms, has previously been proposed in [4,9,10]. The 
underlying idea is to start with identifying possible critical con-
sequences in the power system under study. Using this as a starting 
point, the next step is to move “backwards” in possible sequences of 
events to identify critical contingencies and operating states that could 
lead to such consequences and finally to identify barriers that could 
mitigate them. An advantage of this approach that we utilize in our 
work is that it helps one to understand by which sequences of events 
critical consequences could occur and how they could be mitigated. The 
methodology incorporates different qualitative and quantitative 
methods at the various steps of the analysis. Although such an approach 
can capture a broad set of transition mechanisms on a qualitative level, 
no quantitative modelling framework has yet been developed on the 
basis of this methodology. 

1.2. Contributions and outline 

This article seeks to put the general methodology proposed in  
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[4,9,10] in a more mathematical framework that allows for quantitative 
vulnerability analysis. More specifically, the main contributions of the 
article with respect to related work reviewed in the preceding section 
can be stated as follows:  

1. It proposes a general framework for modelling possible sequences of 
events leading to power supply interruptions. It is based on con-
structing a graph that describes the causal relationship between 
different system states and consequences. Information about tran-
sition mechanisms, multiple operating states and prior outages is 
also encoded in the graph. This sets it apart from previous graph- 
based contributions reviewed above where only the properties of the 
power grid is encoded in a graph. Compared to other methods based 
on Markov models, the graph that is constructed subsequently used 
to visualize sequences of events and analyse vulnerabilities.  

2. Based on this graph-based modelling framework, a vulnerability 
analysis methodology is proposed. The main novelty of the metho-
dology lies in how it utilizes the graph that is constructed to identify 
critical sequences of events (associated with paths in the graph) and 
describe how critical consequences might occur. The methodology 
furthermore allows identifying vulnerabilities associated with bar-
rier failures (transitions), which distinguishes it from previous work 
based on Markov models or influence or interaction graphs reviewed 
above. 

3. The framework furthermore allows estimating the expected fre-
quency of occurrence (i.e. the likelihood) of the critical sequences of 
events and the associated uncertainty. These estimates account for 
time-dependent failure rates of initiating events and conditional 
probabilities for event propagation, which are encoded in a single 
graph. The uncertainty analysis thus only requires the graph to be 
constructed once.  

4. The modelling framework is formulated in a general manner that 
allows implementing several mechanisms for propagating the se-
quence of events and assessing their interactions and contributions 
to the vulnerability of the system. A concrete implementation of the 
framework and its application to vulnerability analysis is demon-
strated by implementing exemplary models for three types of me-
chanisms, namely i) protection and control system failures, ii) 
failure of corrective actions (generation rescheduling and controlled 
load shedding), and iii) failure of islanding. This is to our knowledge 
the first publication where these three barrier failures are taken into 
account in the same vulnerability analysis. 

The rest of the article is structured as follows. Section 2 describes 
the general graph-based modelling framework and vulnerability ana-
lysis methodology. A concrete exemplary implementation of the fra-
mework is presented in Section 3. The application of the proposed 
approach is subsequently illustrated through a case study considering a 
small but realistic test system in Section 4. The article is concluded in 
Section 5 with a summary of the advantages that are demonstrated and 
some suggestions for how the framework could be extended and ap-
plied. 

2. General modelling framework and vulnerability analysis 
methodology 

The basic idea of the modelling framework is to use concepts from 
graph theory to model sequences of events in power systems. A graph is 
constructed to describe how initiating events lead to sequences of 
transitions between different system states (vertices in the graph) pro-
pagated through different transition mechanisms (edges between ver-
tices). These sequences of events can result in different consequences 
for the power system (also described by vertices in the graph). The 
overall approach for applying this framework in a vulnerability analysis 
can be described schematically as shown in Fig. 1. 

The following subsections lay the theoretical foundation for the 

general graph-based modelling framework. Concrete examples of how 
the graph is constructed according to this framework are given in 
Section 3. 

2.1. Graph-based framework for sequences of events 

The proposed modelling framework is based on representing se-
quences of events as paths in a directed acyclic graph [52]. A graph G is 
in general defined as the ordered pair =G V E( , ) of sets of vertices V 
and edges E. A vertex v V in this framework is in a general sense used 
to represent a state in the power system (to be elaborated below). An 
edge = ×e v v E V V( , ) in the directed graph describes the tran-
sition from the state associated with vertex v to the state associated with 
vertex v . A simple example of a graph according to our framework is 
illustrated in Fig. 2. 

A sequence of events is then associated with a path P in the graph G. 
A path is a subgraph that can be described by a sequence of non-re-
peating adjacent vertices, = …P v v v( , , , )k0 1 , or equivalently by the se-
quence of edges joining these vertices. We will denote the set of all 
possible paths in the graph G by SP. We will furthermore introduce 
mappings S V: P and S V: P that identify the source vertex 

=P v( ) 0 and target vertex =P v( ) k of a path in a directed graph. 

Fig. 1. Schematic illustration of the proposed approach combining a graph- 
based modelling framework and a vulnerability analysis methodology. 

Fig. 2. Example of a graph G and a path P G (highlighted in blue) associated 
with a sequence of events from an initiating event, through contingency states, 
and leading to consequences. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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2.1.1. Multiple operating states 
In the framework, information about the operating state of the 

power system will be incorporated in the graph. The same graph G is 
thus used to describe all operating states under consideration. A path 
may describe a sequence of events that is possible when the system 
initially is in one operating state but not possible in another. We let the 
index i I identify the initial operating state of the system. This is il-
lustrated in Fig. 3, where P describes a sequence of events that is pos-
sible for =i 1 but not possible for =i 2. A sequence of events is thus not 
unambiguously identified by the path P alone, but is described in the 
framework by the pair ×P i S I( , ) P . 

An operating state is generally defined as “a system state valid for a 
period of time, characterized by load and generation composition in-
cluding the electrical topological state (breaker positions etc.) and 
import/export to neighbouring areas” [40]. For our purposes we will 
define and distinguish between two components of this operating state: 
1) The contingency state C describes the electrical topological state in 
terms of e.g. component outages with respect to a base case topology; 
2) the initial operating state O describes the load, generation and import/ 
export for the base case network topology. 

We will assume a set of =I n| | os discrete initial operating states 
…( )O O O, , , n1 2 os . Each operating state i represents a certain number of 

hours during a year and has a duration denoted by ti. 

2.1.2. State vertices 
A subset of the vertices of the graph V Vcont represents con-

tingency states for the physical network (power grid), so that the vertex 
v Vcont represents the contingency state Cv. We here understand a 
contingency as a failure or unplanned outage of one or multiple system 
components [40,53]. 

A sequence of events in the power system starts with an initiating 
event such as a primary failure [54] leading to a component being in a 
fault state. An initiating event is represented in the graph G by an in-
itiating event vertex v Vinit, where we have introduced V Vinit cont as 
the set of all vertices representing initiating events. Operating states 
with prior outages can be represented in the graph by separate in-
itiating event vertices, and a simple implementation is described in 
more detail in 3.1. 

Each initiating event vertex v Vinit is assigned a vector 
= …( , , , )v v v v n,1 ,2 , os representing the frequency of occurrence for 

that type of initiating event. Here, v i, is the expected annual frequency 
of occurrence (i.e. failure rate) in initial operating state i, given that it 
lasted for the entire year. This representation can capture failure rates 
that vary in time (e.g. seasonally). To account for the fact that the 
operating state only lasts for a certain part of the year, we introduce a 
time-weighted failure rate 

= t
t

.v i
i

i I i
v i, ,

(1) 

In other words, v i, is the expected number of that type of initiating 
event occurring per year while in initial operating state i. 

2.1.3. Transition probabilities and transition mechanisms 
Each edge =e v v E( , ) is assigned a weight for each initial op-

erating state that is given by a vector of probabilities 
= …p p p p( , , , )e e e e n,1 ,2 , os . Here, p [0, 1]e i, is the conditional probability 

of a sequence of events traversing edge e for initial operating state i: 

=p A C O( | ( , )).e i e v i, (2) 

Here we let =A Ae v v( , ) denote the transition from the state represented 
by vertex v to the state represented by vertex v . Eq. (2) implies that we 
model the event propagation as being Markovian, in conformity with 
most of related modelling approaches, cf. Section 1.1. 

The framework has the flexibility to encode distinct probability 
values for each edge e E and each initial operating state i I . 
However, transitions can typically be grouped to belong to a certain 
transition mechanism. Such mechanisms could be classified on the basis 
of e.g. [6–8]. We do not aim to propose a complete classification here, 
but mechanisms include: various protection and control system failures, 
failure of corrective actions (e.g. generation rescheduling, load shed-
ding, grid reconfiguration), overload relays tripping (correctly or in-
correctly), unintended system protection scheme interactions, gen-
erators losing synchronism and tripping, failure of islanding (e.g. due to 
frequency instability), etc. To exemplify the modelling of transition 
mechanisms in the framework, we consider the implementation of a 
selection of mechanisms in Section 3: Protection and control system 
failures (here: missing operation and unwanted unselective tripping), 
failure of generation rescheduling and load shedding (as examples of 
corrective actions), and failure of islanding. 

In general, each transition mechanism is denoted by the index . In 
the lack of data justifying more detailed assumptions, we assume the 
same value =p p for all edges representing the same mechanism . The 
method for analysing the uncertainty in these estimates p will be de-
scribed in Section 2.3. 

2.1.4. Consequence vertices 
For book-keeping reasons and to allow for a vulnerability analysis 

focusing on critical consequences, we introduce consequences as se-
parate vertices v V Vcons in the graph G. The term consequence 
will in this article always refer to the consequence to the end-users of 
the power system, but the modelling framework is flexible with respect 
to how these consequences are defined and quantified. 

A consequence vertex v represents the end point of some sequence 
of events, i.e. =P v( ) for some P i( , ). All consequence vertices v are 
joined to a contingency state vertex v Vcont by an edge v v( , ). This 
means that v represents the consequence of a sequence of events that 
reaches the contingency state Cv but does not propagate further. 

All consequence vertices are associated with a numerical con-
sequence value denoted by the general symbol Y. The consequence 
depends on the initial operating state, e.g. the amount of load at the 
delivery points that potentially can be lost. Therefore, a vector 

= …Y Y Y Y( , , ,v v v v n,1 ,2 , )os is assigned to each contingency vertex v . 
Depending on the implementation of the general methodology de-

scribed here, the symbol Y could for instance represent the amount of 
interrupted power, the energy not supplied or the cost of energy not 
supplied. For the implementation presented in this article (cf. also 
Section 4.1), the term consequence will refer to the consequence of end- 
users in terms of the amount of interrupted power measured in MW. 

2.2. Vulnerability analysis methodology 

This section describes how the graph-based modelling framework 
can be used as a part of a quantitative vulnerability analysis. The 
purpose of the analysis is to identify critical sequences of events, vul-
nerabilities, and associated barriers to mitigate them. Given that a 
graph G describing possible sequences of events and their consequences 
has been constructed, the following subsections describe how it can be 
used to 1) identify sequences of events (i.e. paths in the graph) that 

Fig. 3. Example of a graph G describing two operating states and possible se-
quences of events in each of the operating states. 
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result in consequences, 2) estimate the likelihood of these events, 3) 
analyse critical sequences of events (for a given definition of “critical”), 
and 4) identify vulnerabilities and barriers. 

2.2.1. Identify sequences of events 
In the analysis that follows, we consider the sequences of events 

starting with some initiating event and ending in some power system 
consequence. For the sake of brevity, these sequences of events are in 
the following referred to simply as events when there is no ambiguity. 
To identify the sequences of events leading to a given consequence 
vertex v Vcons we first identify the set of paths 

= =S P S P V P v S{ | ( ) ( ) } .P
v

P Pinit (3) 

Each of these events P i( , ) are associated with a measure of the con-
sequence, given by 

= =Y Y .P i v P i, ( ), (4)  

2.2.2. Estimate likelihood of events 
The information encoded in G can be used to estimate the expected 

annual frequency of occurrence P i, of an event P i( , ). For brevity, P i,
will be referred to as a measure of the likelihood of the event (following 
the usage of the term in [50]). Using information about the failure rate 
for initiating events v i, and the conditional transition probabilities pe i, , 
the likelihood of P i( , ) can be estimated as 

= p .P i v i
e P

e i, , ,
(5) 

Here, Eq. (1) has been used to calculate the time-weighted failure rate 
v i, . 

The risk of each event P i( , ) is quantified by the combination of its 
estimated consequence and likelihood, i.e. the pair Y( , )P i P i, , . By plot-
ting the identified events along these two risk dimensions one can vi-
sualize the risk in the form of a risk diagram. 

2.2.3. Identify critical sequences of events 
We follow an approach to vulnerability analysis that focuses on the 

consequence dimension of risk and in particular on events with critical 
consequences [4,10]. The modelling framework is flexible with respect 
to how the threshold for criticality is defined. Here, for the general 
consequence measure Y, we simply let Y Ycrit define a critical con-
sequence. For vulnerability analysis of real systems, the value of Ycrit
should be defined prior to the analysis together with relevant stake-
holders and decision makers [10,11]. 

Given the graph G and the threshold Ycrit, the set of critical con-
sequence vertices V Vcons

crit
cons can formally be defined as follows: 

=V v V Y Y i I{ | for some }.v icons
crit

cons , crit (6)  

We define a critical path as a path that leads to a critical consequence 
for at least one initial operating state. Mathematically, the set of critical 
paths SP

crit can be expressed as 

=S P S P V S{ | ( ) } .P P P
crit events

cons
crit (7) 

A critical sequence of events is defined by a pair ×P i S I( , ) P
crit for 

which > 0P i, . The critical events are identified by first using Eq. (6) to 
find the critical consequence vertices Vcons

crit and then using Eq. (7) to find 
the critical paths SP

crit leading to this vertices. (See also the illustration 
for step 3 in Fig. 1.) 

2.2.4. Identify vulnerabilities and barriers 
One can gain understanding into critical sequences of events and 

insight into associated vulnerabilities by analysing the critical paths 
SP

crit. This can be done by extracting subgraphs of SP
crit for selected 

consequence vertices using Eq. (3) and visually inspecting the paths 
leading to this consequence vertex. 

From considering the edges e P for P SP
crit one can find which 

transition mechanisms are involved in critical sequences of events and 
thus which barriers need to fail for it to occur. This can be quantified by 
identifying the set of paths S SP P

crit, crit that contain edges for transition 
mechanism and calculate the number of possible sequences of events 
corresponding to these paths: 

>i I|{ | 0}|.
P S i I

P i,

P
crit, (8) 

Similar calculations can also be carried out for the number of critical 
sequences of events where the initiating event involves a certain power 
system component k, i.e. for which k Cv for =v P( ). 

The quantitative results and insights obtained by this methodology 
can then be used to inform decisions about which vulnerability-miti-
gating measures to prioritize and which barriers to strengthen. These 
considerations can be complemented by uncertainty analysis results 
described in Section 2.3 and by more qualitative vulnerability assess-
ment as described in [9,10]. Application of the methodology is ex-
emplified and demonstrated in Section 4.3. 

2.3. Uncertainty analysis 

This section describes the method adopted for quantifying the un-
certainties in the results of the vulnerability analysis presented in 
Section 2.2. More specifically, we consider the estimate of the like-
lihood measure P i, for event P i( , ) as calculated by Eq. (5). In the fol-
lowing we suppress the subscripts of P i, to simplify notation and ex-
press it as a general function = xf ( ) of uncertain input parameters 

= …x x x x{ , , , }N
N

1 2 . 
The aim of the uncertainty analysis is to quantify the implications of 

uncertainties in x on uncertainties in = xf ( ). In our case, the un-
certain input parameters could be the set of conditional probabilities for 
the transition mechanisms, i.e. =x pi for transition mechanism . 
(Concrete examples are given in Section 3.) The advantage of the pro-
posed approach is that the graph G does not need to be re-constructed 
for each realization of uncertain input parameters x that is considered. 
Instead, for each iteration it is sufficient to re-assign the weights pe of an 
appropriate subset of the edges e in G before re-calculating P i, . 

In our case the input parameters in x are associated with so-called 
epistemic uncertainty, i.e. uncertainty due to a lack of knowledge [50]. 
There are little data available to describe the uncertainty in these 
conditional probabilities, and one may not justify specifying a prob-
ability density function that describes the probability of different values 
of the uncertain parameters. However, we can still specify our as-
sumptions about which values of the uncertain parameters are possible 
and then analyse the implications of these assumptions. In the fol-
lowing, we therefore propose using possibilistic uncertainty analysis 
techniques. For more details on related methods for handling epistemic 
uncertainties we can refer e.g. to [50,51]. We also note that some 
elements of aleatory uncertainty, associated with natural variability 
rather than a lack of knowledge, are already captured in the proposed 
framework: The conditional probabilities pe represent the uncertainty in 
which sequence of events follows after a given realization of an in-
itiating event, and variability in e.g. load and failure rates is captured 
by considering multiple initial operating states. 

A possibilistic uncertainty representation for a quantity is based on 
a possibility distribution x( ) representing the degree of possibility (not 
probability) of the parameter x. The function x( ) by definition fulfills 

x0 ( ) 1; if =x( ) 0 for a value of x, this means that this value is 
impossible. We adopt the -cuts technique [50], where a so-called -cut 
for a general uncertain variable x is defined as 

= =+A x x x x[ , ] { | ( ) }. (9)  

For each input parameter xi in x we construct M -cuts from the 
possibility distributions x( )i for the parameter. These -cuts will be 
denoted Ax ,i j and calculated for the set of values …{ , , }M1 using Eq.  
(9). We then let A N

j denote the hyper-rectangle formed by the jth 
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-cut for the N individual variables in x [51]: 

= × × = …A xA A x A x A{ | }.x x x N x, , 1 , ,j j N j j N j1 1 (10)  

To propagate the uncertainties in the input parameters …x x, , N1
through the function f to the resulting uncertainty in , we calculate M 

-cuts = +A [ , ], j j j for for each …{ , , }j M1 as follows: 

=+ x xf f[ , ] [ min ( ), max ( )].
x A x Aj j

j j (11) 

The possibility distribution ( ) is then constructed from this set of 
-cuts for the output parameter . When the function xf ( ) depends 

monotonically on its input parameters xi it is sufficient to evaluate the 
vertices of the hyper-rectangles A j when searching for the function 
extrema in Eq. (11). This will be the case for the path frequencies de-
fined in Eq. (5) for the implementation considered in this article. 

3. Exemplary implementation of the modelling framework 

This section describes a concrete implementation that exemplifies 
the graph-based modelling framework by introducing basic models for 
three selected examples of transition mechanisms: i) protection and 
control system failures (Section 3.2), ii) failure of corrective actions 
(generation rescheduling and controlled load shedding, Section 3.3), 
and iii) failure of islanding (Section 3.4). The implementation also in-
cludes modelling of prior outages that can lead to contingency states 
due to independent multiple-outage occurrences [55] (overlapping 
outages). This does not represent a transition mechanism per se, but a 
prior outage can nevertheless be seen as a vulnerability of the system 
and can thus be important to consider on an equal footing with the 
transition mechanisms. We therefore begin by briefly stating the mod-
elling assumptions for prior outages in Section 3.1. 

3.1. Prior outages 

For illustration we consider the case of a prior unplanned outage of 
component k1. (Prior planned outages could also be considered in the 
general framework.) The state with a fault on component component k2
while component k1 is in the outage state is denoted =C k k{ , }v 1 2 . (See  
Figs. 7 and 10 below for examples.) A simplified expression for the 
frequency of occurrence of this initiating event while in initial oper-
ating state i is [40] 

= =
+

k O
µ

({ }| )· .v i k i
k i k i

k i k
1 ,

, ,

,
2

1 2

1 1 (12) 

Here k O({ }| )i1 is the probability of component k1 being in an outage 
state given initial operating state i, and µk is the repair rate of com-
ponent k. In anticipation of the case described in Section 4, with sea-
sonal time dependence of failure rates , we have made the simplifying 
assumption that each prior outage event is contained within a single 
operating state. In the model we furthermore make the assumption that 
the sequence of events propagates so rapidly that one can neglect the 
possibility of an independent primary failure occurring during the se-
quence. 

3.2. Protection and control system failures 

The purpose of power system protection is to clear faults and 
minimize the damage they cause. However, unintended actions of 
protection systems may sometime aggravate the damage and lead to 
multiple outages and severe consequences. In fact, missing, un-
successful or unintended actions of protection and control systems is an 
important contributor to power interruptions in general [56] and major 
blackouts in particular [1,37]. The successful operation of protection 
systems can thus be considered as a barrier that prevents a failure event 
from propagating. 

In this implementation, we consider models for two types of failures 

of such a barrier: 1) Missing operation: Primary failure of primary 
equipment combined with fault in circuit breaker or secondary equip-
ment, leading to missing operation of circuit breaker. 2) Unwanted 
unselective tripping: Primary failure of primary equipment combined 
with fault in circuit breaker protection system, leading to unwanted 
unselective tripping of circuit breaker. The definition and modelling of 
these protection system failure scenarios builds upon previous work 
done in the context of analytical power system reliability analysis  
[40,41,57]. 

The model for missing operation as a transition mechanism associ-
ates a conditional probability pm to a transition from a fault state for a 
branch to the contingency state where this and a neighbouring branch 
are in an outage state. The right-hand side of Fig. 4 illustrates how the 
construction of the graph proceeds when considering this transition 
mechanism for a simple 4-bus test system. In this example, branch 2 is 
initially in a fault state, indicated by a red colour for the branch in the 
single-line diagram. This contingency state is denoted {2 } and asso-
ciated with vertex v1. (The left-hand side of Fig. 4 illustrates the se-
quence of events without considering protection and control system 
failures.) From the state =C {2 }v1 two things can happen: i) The system 
can either transition to the outage state =C {2}v2 if the protection 
system clears the fault correctly (here with probability =p p1 m), or 
ii) it can transition to the contingency state =C {2, 4}v3 if the fault at 
branch 2 has to be cleared by back-up protection systems due to missing 
protection system operation ( =p pm) which causes the additional 
outage occurrence of branch 4. Both these cases are presented in one 
graph on the right hand side of Fig. 4. 

The model for unwanted unselective tripping as a transition me-
chanism associates a conditional probability pu to the transition from an 
outage state for a branch to the contingency state where an additional, 
neighbouring branch are in an outage state. Fig. 5 illustrates how the 
construction of the graph proceeds when considering this transition 
mechanism. After the system has transitioned from =C {2 }v1 to 

=C {2}v2 , where the protection system has cleared the primary fault as 
intended, the system may transition further to =C {2, 4}v3 with prob-
ability =p pu due to the unintended action of the protection system for 
the neighbouring branch 4. 

3.3. Failure of corrective actions (generation rescheduling and controlled 
load shedding) 

When estimating the consequence Y associated with a contingency 
state Cv one needs to make some assumptions about the system response 
and corrective actions taken by the system operator [45]. These actions 
may include e.g. generation rescheduling, grid reconfiguration, gen-
eration rejection and load shedding [44,45,58]. Typically, corrective 
action models will assume that the corrective actions are successfully 
operated and that afterwards, any operational security limit violations 
following from the contingency will have been alleviated. However, 

Fig. 4. Illustration of graph construction representing protection and control 
system failures (missing operation). 
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corrective actions may fail to operate successfully. This failure of cor-
rective actions may cause the system to transition from the state Cv to 
another state Cv (e.g. where additional branches are in the outage 
state) for which consequences may be more severe. There is currently a 
lack of data on corrective action failures [44], and only a few research 
works [46,47] are published that explicitly models the possibility of 
failure of corrective actions. 

Adopting some of the formalism of [44], we can denote the event 
that corrective actions fail to operate (i.e. missing operation) by Xc. The 
conditional probability that the corrective actions fail to operate given 
that a contingency Cv has occurred during initial operating state i is 
then given by X C O( | ( , ))v ic . Here we will assume that Xc and Cv are 
independent events so that the probability of corrective action failure is 

=X C O X p( | ( , )) ( )v ic c c (13)  

For this implementation, we focus on generation rescheduling and 
controlled load shedding as corrective actions for alleviating an over-
loaded branch. We consider a simple model where the failure of these 
corrective actions leading to tripping of the overloaded branch. The 
modelled transition mechanism is illustrated in Fig. 6. For each con-
tingency state Cv an AC power flow calculation is carried out to check 
for branch overloads for each initial operating state i. If for any i a 
branch k is overloaded, and corrective actions thus would be needed to 
alleviate this overload, an auxiliary contingency state Cv is added to 

represent a state with the same topology as Cv but with overload on 
branch k. In the example in Fig. 6, =C {2}v , and we have denoted the 
auxiliary contingency state by =C {2, 3 }v , where the overloaded 
branch =k 3 is indicated by an orange colour in the single-line dia-
gram. (Branches are assumed to have 135 MW power transmission 
capacity in this example, and load and generation is indicated in the 
topmost single-line diagram in Fig. 6.) 

In the model, the edge =e v v( , ) is added to join the states. This 
edge is assigned a conditional probability =p 1e i, for those operating 
states i where overloading occurred and =p 0e i, for those where it did 
not. 

Another edge =e v v( , ) assigned the conditional probability 
=p pe i c, is added to join the overload state Cv and the contingency state 

where the branch k has been tripped due to the failure of corrective 
actions. In the example in Fig. 6, =C {2, 3}v , and the failure of cor-
rective actions leads to the loss of all load in the system ( =Y 175 MW). 
If on the other hand corrective actions are successful, controlled shed-
ding of some of the load will alleviate the branch overload 
( =Y 40 MW). Consequence vertices v Vcons are shown in red. 

In this exemplary implementation, e generically represents a me-
chanism that leads to the tripping of the overloaded branch after failure 
of generation rescheduling and/or controlled load shedding. In practice 
such tripping could occur due to delays to the corrective actions being 
effectuated, e.g. due to lack of situational awareness, or due to human 
(operator) error (e.g. for manual generation rescheduling) or computer 
or communication error (for automatic generation rescheduling) [6–8]. 

According to this model, the possibility of corrective action failures 
is not relevant for those operating states C O( , )v i where the power flow 
calculation do not result in branch overloads. For these operating states, 
the consequence is therefore assumed to be zero. For book-keeping 
purposes, a consequence vertex with =Y 0 MW is thus added if this is 
the case for any i. This consequence vertex with zero consequence is 
joined to the contingency state vertex Cv by an edge e with =p 1e i, for 
those i where no overloads occur. (Not shown for the initial operating 
state considered in Fig. 6). 

3.4. Failure of islanding 

An island is defined as a portion of a power system that is dis-
connected from the remainder of the system but remains energized  
[59]. Failure of islanding is here used to describe a general mechanism 
whereby generators are tripped in a (potential) island after (uninten-
tional) system separation. To avoid the consequences of such an event, 
system operation must remain stable for each island and the islands 
have to be able to operate separately (in island mode). In a real power 
system, the success or failure of islanding depends on a number of 
factors, such as the load/generation imbalance (i.e. the operating state) 
in the island prior to the contingency and the dynamic characteristics of 
the island [1,3,49]. 

In the spirit of the general approach presented in the preceding 
sections, we will in the current implementation forego detailed dy-
namic simulations for the following simplifying and transparent model: 
A probability pi is assigned to the failure of the island that does not 
contain the swing bus. The island with the swing bus is on the other 
hand assumed to always survive islanding [45]. This assumption is 
justified when the concept of a swing bus makes physical sense [60], 
that is, when the swing bus represents a bus with large generation units 
capable of controlling the system frequency and supporting island 
mode. One should however be aware that this assumption does not hold 
true generally. 

The model for this transition mechanism represents the network 
topology as a graph Gnetwork. When evaluating each contingency state 
vertex v for possible transition mechanisms and consequences, one 
identifies whether Gnetwork is disconnected and contains several graph 
components [52] (i.e. potential islands) each having generators and 
delivery points. Fig. 7 shows an example where a failure occurs at 

Fig. 5. Illustration of graph construction representing protection and control 
system failures (unwanted unselective tripping). 

Fig. 6. Illustration of graph construction representing failure of corrective ac-
tions. 
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branch 1 during a prior outage of branch 4. In the resulting contingency 
state =C {1, 4}v , the network separates into two islands: one including 
the swing bus to which generator 1 is connected, and the other in-
cluding generator 2. As illustrated in Fig. 7, there is a probability pi that 
islanding will fail for the island with generator 2 and that the system 
thus transitions to state =C {1, 4, G2}v in which generator G2 is 
tripped. In this state, there is no generation to supply the load in the 
island (75 MW), and the load is lost (consequence vertex v2 ). On the 
other hand, there is a probability p1 i that islanding succeeds for both 
islands and that there is no load lost (consequence vertex v1 ). 

4. Case study 

In this section we illustrate the application of the vulnerability 
analysis framework considering the exemplary implementation de-
scribed in Section 3. Details on the software implementation of the 
modelling framework are given in Section 4.1, and the test system 
considered is described in Section 4.2. Results of the case study are 
presented and discussed in Section 4.3. 

4.1. Software implementation 

The modelling framework is implemented using the Python library 
graph-tool [61] for constructing and analysing the graph G. To estimate 
consequences of contingency states and represent the possibility of 
corrective action failures, the implementation is interfaced with the 
consequence analysis models described in [45,57]. These models offer a 
set of options for quasi-static simulations of the system response to 
contingencies and use MATPOWER [62] for AC power flow calcula-
tions. Lost load Y for consequence vertices are evaluated by an AC 
optimal power flow model for generation rescheduling and load shed-
ding [45], representing successful operation of corrective actions. 
Failure of corrective actions to alleviate branch overloads is represented 
by running an AC power flow calculation and tripping of the most 
overloaded branch [45]. 

4.2. Test system and case set-up 

The network model considered for the case study is a 25-bus test 
system that represents a power system with four distinct areas. The 
single-line diagram for the model is shown in Fig. 8. This test system 
represents small regions of the Nordic power system, and it has been 
developed and used for integrated power market and reliability ana-
lyses [45,57,63]. In this case study we use a variant of the network that 
has additional branches and thus is relatively reliable; this is the same 

variant as used in [45]. Branch impedances and other data for static 
power flow analysis are available online [64]. Failure rates and outage 
times for the branches are also included with the data set. The branch 
numbers are given in red labels in Fig. 8. The swing bus is bus 30019. 

The case study includes 12 operating states, where each operating 
state represents 10 a.m. on a Monday for all months in a year. 
(Operating state data are also available online [64].) These operating 
states are based on representative time dependence of load demand in 
the Norwegian power system. Data for the time-dependence of failure 
rates are based on the Norwegian standardised system FASIT for col-
lection, calculation and reporting of disturbance and reliability data  
[65] and implemented according to the methodology described in  
[40,57,66]. 

We include the transition mechanisms described in Section 3, and 
these are listed in Table 1 together with their conditional probabilities 
p . The probabilities for protection system failure (pu and pm) are based 
on the assumptions used in [41]. The values for the probabilities for 
failure of corrective actions and islanding (pc and pi) are simply chosen 
to be somewhat smaller than those for protection system failure. This 
choice is made for the purpose of illustration in the absence of data  
[44]. However, the lack of data is represented in the uncertainties as-
signed to the probabilities, which are also specified in Table 1. For 
simplicity we choose a triangular possibility distribution p( ), where 

+p p[ , ], , is the interval of values that are considered possible 
( >p( ) 0), and =p( ) 1,0 for the value p ,0 that is our “best guess” for 
the value of p . In practical applications of the methodology, the values 
of these parameters can be assigned through an expert elicitation pro-
cess with power system operator or other stakeholders. 

4.3. Results 

The software implementation described in Section 4.1 is used to 
construct the graph G for the case described in Section 4.2. The full 
graph G is not shown here since it is too large to visualize in a way that 
provides any insight. It is however formed by state transitions as illu-
strated in Section 3, including failures of power system components, 
clearing of faults, protection system failures, overloading, failure of 
corrective actions, and failure of islanding. Results in the form of sub-
graphs of G that serve to visualize critical sequences of events and 
provide insights into the vulnerability of the system are shown in Sec-
tion 4.3.2. 

Results obtained from G are first presented in the form of risk dia-
grams, first considering a single operating state in Section 4.3.1 and 
then multiple operating states in Section 4.3.3. The methodology also 
allows for visualizing the uncertainties associated with the likelihood 

Fig. 7. Illustration of graph construction representing the failure of islanding.  Fig. 8. Test network considered in the case study (based on [63]).  
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dimension, but for the purpose of clarity, uncertainty estimates are not 
included until Section 4.3.5. Section 4.3.4 analyses vulnerabilities by 
considering all the identified critical sequences of events. 

4.3.1. Identifying sequences of events (one operating state) 
To illustrate the benefits of the proposed approach, we first compare 

the results of our methodology with results from a more conventional 
contingency analysis. In the risk diagram in Fig. 9, the green data points 
are obtained using our methodology but neglecting the possibility of 
barrier failures, i.e. setting = = = =p p p p 0m u c i . Each data point in 
the risk diagram corresponds to an event P i( , ). For clarity, only results 
for a single operating state ( =i 1, which is in January) has been in-
cluded here. 

The results without barrier failures in Fig. 9 (green) can be com-
pared with the blue data points. These results are obtained assuming 
the conditional probabilities of barrier failures given in Table 1. The 
possibility of prior outages is included for both sets of results. 

Comparing the two sets of results in Fig. 9 one observes that ac-
counting for barrier failures introduces new events in the risk diagram 
with higher consequences and higher likelihoods. Because there are 
many events with similar consequence and likelihood estimates, the 
blue data points are drawn partly transparent to better see the density 
of events in the risk diagram. The criticality threshold chosen for this 
case study ( =Y 500MWcrit ) is shown as a dashed line in the figure. This 
figure illustrates the advantage of implementing several transition 
mechanisms in the modelling framework: It can be seen how including 
the possibility of barrier failure in this case is essential to be able to 
identify events with critical consequences. 

The results accounting for barrier failures also reveal the possibility 
of events with very severe consequences (1811 MW lost load) at the far 
right-hand side of Fig. 9. These groups of events are labeled in the 
figure for later reference. Although the events are associated with low 
likelihoods of occurring, the estimated likelihoods are higher than for 
many of the events with lower consequences. 

4.3.2. Understanding critical sequences of events 
We next inspect the results underlying in Fig. 9 more closely to gain 

insight into sequences of events that may lead to critical consequences. 
We focus on the events (a), (b), (c1) and (c2) in Fig. 9 ( =Y 1811 MW), 
and Fig. 10 depicts the critical paths corresponding to these events. 
These paths were obtained by first searching for the critical con-
sequence vertices v and then searching for the set of paths SP

v using Eq.  
(3). In this case, SP

v comprises three disconnected subgraphs of G and 
three such critical consequence vertices v . Each of these subgraphs can 
be regarded as a fault tree describing different sequences of events 
through which a given critical consequence might come about. One can 
note that all the sequences of events in Fig. 10 involve the failure of 
islanding, i.e. the paths include an edge with weight pi. 

In subgraph (a) in Fig. 10, the overlapping outage of branches 22 
and 27 leads to branch 19 (which is parallel to 22) being overloaded. 
Tripping of branch 19 would then lead to generators at bus 30015 and 
30019 (which amount to over 20% of the generation capacity in the 
system) to be separated from the rest of the system. Failure of the rest of 
the system to survive the system separating into an upper and a lower 
part would could then cause a loss of 1811 MW of load. This can be 
regarded as an extreme scenario, but then the estimated likelihoods 
associated with these events are also extremely low: around 

= ×4.6 10 yearP i,
11 1 for =i 1. The reason is that these events re-

quire a prior outage, corrective action failure and the failure of is-
landing to occur. 

As mentioned in Section 3.4, the likelihood of failure of islanding in 
practice depends on several factors, including the generation/load im-
balance and the capabilities of the individual power plants involved. 
Considering such factors in more detailed simulations could therefore 
be a natural next step after identifying potentially critical events. A 
subsequent and more detailed analysis of the event could then be car-
ried out to improve the preliminary estimate of the likelihood. It might 
for instance uncover that for this particular event, with the upper part 
of the system (areas 1 and 2 and most of area 3) containing many large 

Table 1 
Conditional probabilities p with uncertainty representation assumed for the case study for transition mechanisms .      

Transition mechanism Best-guess probability p ,0 Lower probability p , Upper probability +p ,

Missing protection system operation (pm) 0.0205 0.01 0.04 
Unwanted unselective tripping (pu) 0.007 0.004 0.02 

Failure of corrective actions (pc) 0.02 0.005 0.04 
Failure of islanding (pi) 0.01 0.002 0.04 

Fig. 9. Risk diagram with sequences of events with and without considering 
barrier failures, including only results for a single operating state ( =i 1). 

Fig. 10. Graphical representation of the paths for the most critical sequences of 
events shown in Fig. 9. ×G 30 denotes all generators except those at buses 
30016 and 30019 (30 generators), and ×G 33 denotes all generators except 
that at bus 30019 (33 generators). 
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generation units, the failure probability pi would be even lower than 
the general assumption in Table 1. 

We next consider the subgraphs (b) and (c) in Fig. 10, where only 
the generator at bus 30019 is isolated from the rest of the system. In 
comparison with the situation in the leftmost subgraph, this situation 
can occur through a larger number of paths, and the estimated like-
lihoods are higher. For instance, the sequence P i( , ) initiated by a 
failure of branch 27 and followed by missing protection system op-
eration (pm) and subsequent tripping of branch 26 has 

= ×4.1 10 yearP i,
7 1 for =i 1. The four paths (c2) in Fig. 10 that have 

edges with weights pm or pu correspond to the four events labelled (c2) 
in Fig. 9. These four events have much higher likelihood than the events 
in Fig. 9 corresponding to paths in (a), (b) or (c1). The reason is that in 
contrast to the other paths in Fig. 10, c2) involve protection system 
failures. In other words, because branches 26 and 27 are adjacent, the 
consequence vertex corresponding to this critical consequence in  
Fig. 10 is not dependent upon prior outages to be reached. The system 
therefore has a vulnerability with respect to these sequences of events 
involving protection system failures. A possible barrier that could be 
put in place to mitigate this vulnerability could be to pay extra atten-
tion to protection system settings for branches 26 and 27. 

4.3.3. Identifying sequences of events (multiple operating states) 
The results above were only considered for a single operating state 

( =i 1), and we now consider results for all =n 12os operating states. 
The resulting risk diagram is shown in Fig. 11. There are in total 2187 
events with non-zero consequences shown in the risk diagram in  
Fig. 11, and these events are described by 534 distinct paths in the 
graph G. 

It can be observed from Fig. 11 that events represented by (c2) in  
Fig. 10 can be found for all operating states i. The consequences of these 
events are lower for >i 1 than for =i 1 (shown in Fig. 9) because the 
load demand are lower for >i 1 than for =i 1. Events corresponding to 
the paths (a), (b) and (c2) are also possible for other operating states 
than =i 1. These are found in Fig. 11, below (c2) in the risk diagram. 
However, in contrast to (c2), not all of these events are found for all 
operating states >i 1. The reason is that branch 19 cannot be over-
loaded in operating states with significantly lower system load, and the 
edge e corresponding to overloading in the paths (a) therefore has 

=p 0e i, for these operating states. Or simply put, the paths are not 
possible sequences of events for all operating states. 

4.3.4. Identifying vulnerabilities 
Using the methods in Section 2.2.3, we find that 412 of the 2187 

events in Fig. 11 lead to consequences regarded as critical. The 

identified events include all the events that are critical for this parti-
cular case and given the transition mechanism models that are im-
plemented. Eq. (8) tells us that almost all (404 out of the 412) critical 
events involve failure of islanding. Branch tripping due to overload and 
failure of corrective actions is on the other hand involved in a much 
smaller proportion of the critical events (64 out of 412). The same 
proportion of the critical events involve protection system failure. 

As mentioned in Section 1.1, previous work [27] has found that the 
set of power system components typically outaged in the initiating 
events is not necessarily similar to the set of components outaged 
during the subsequent sequences of events. We can confirm this for our 
case by considering the edges e and initiating event vertices v as de-
scribed in Section 2.2.4. For instance, we find that branches 26 and 27 
are among the components most commonly involved in initiating 
events (for 80 and 48 events, respectively). On the other hand, branches 
that are involved in critical events in the sense of being tripped due to 
corrective action failures include 11 and 30 (in 26 and 18 events, re-
spectively). These are branches which connect area 1 with area 3. A 
relevant barrier to mitigate this vulnerability could therefore be to in-
crease the power transfer capacity between area 1 and 3. However, 
vulnerability-mitigating measures aiming to reduce branch failure rates 
should rather prioritize branches 26 and 27. 

The results above allow us to make the following conclusions, given 
the assumptions in the case, about the vulnerabilities of the system: 1) 
Protection system failures are important to take into account. 2) The 
system is not particularly vulnerable to failure to alleviate branch 
overloads due to corrective actions failure, and the main reason is that 
the system is relatively strongly meshed. 3) Still, failure of islanding 
remains as a potential vulnerability in the system. The system is made 
up by several large areas that both contain generation and load, and 
generation and load is evenly distributed throughout the system. Thus 
there are few sequences of events through which load and generation 
buses can be separated or large generation deficits can be formed in 
parts of the system. Large-scale load shedding is therefore dependent on 
generators to trip for other reasons. Thus, ensuring that the areas in the 
system are able to operate as islands is important to mitigate critical 
consequences. Whether one estimates such consequences to be likely 
will however depend on the model implemented for failure of islanding. 
Therefore, for real applications, such potential vulnerabilities should be 
subsequently scrutinized using more detailed models. 

Note that the conclusions above are specific to the power system 
model considered in the case study and follow from the characteristics 
of that system. The methodology is general, however, and applied to 
other power system models it could reveal other conclusions about the 
vulnerabilities of those systems. 

4.3.5. Uncertainty of sequences of events 
In Fig. 12 we focus on the critical sequences of events 

( > =Y Y 500MWcrit ) and also include error bars representing the un-
certainty in the estimated P i, . More specifically, the error bars cover 
the range of values considered possible ( = 0) according to the pos-
sibilistic uncertainty analysis of Eq. (11). One can observe that the 
uncertainty associated with the events is very large (of the same order 
of magnitude as P i, itself), as they all are dependent upon one or more 
barrier failures that each have substantial uncertainty. One can never-
theless conclude with certainty, given the assumptions in Table 1, that 
the likelihoods of the four paths (c2) involving protection system failure 
in Fig. 10 are higher than the likelihood of the paths in (a), (b) and (c1). 
Such findings can be helpful in decision making: For a set of identified 
events with the same critical consequence, one can prioritize to 
strengthen barriers against those events one knows are certainly more 
likely. In this case, that could mean that one should prioritize testing 
protection system settings for branches 26 and 27. 

Fig. 11. Risk diagram with all sequences of events for all operating states.  

I.B. Sperstad, et al.   Electrical Power and Energy Systems 125 (2021) 106408

10



5. Conclusions and further work 

In this article we have presented a vulnerability analysis metho-
dology based on a general modelling framework for describing se-
quences of events leading to power supply interruptions. In summary, 
the advantages of this approach that have been demonstrated in this 
article are that i) the vulnerability analysis can be used to identify 
critical sequences of events and barriers, ii) the graph-based re-
presentation allows for exploring sequences of events and under-
standing vulnerabilities, iii) the modelling framework is general and 
can incorporate multiple transition mechanisms, and iv) the analysis 
accounts for the large uncertainty associated with critical sequences of 
events. In concluding the article we will elaborate on each of these 
contributions and suggest some directions for further work. 

i) Vulnerability analysis: The uniqueness of the framework lies in how 
it structures information about the relationship between events, bar-
riers and consequences in a graph representation that allows it to be 
used for vulnerability analysis. We showed how this can be used to 
identify potential critical sequences of events, vulnerabilities in the 
system, and barriers to mitigate them. The case study findings (sum-
marized in Section 4.3.4) illustrated the insights that the methodology 
could provide into the significance of different vulnerabilities. The 
vulnerability analysis methodology is general, but such findings and 
insights are likely to be specific to each power system that is analysed. 
Our approach to vulnerability analysis considers both the consequence 
and likelihood dimension of risk: It focuses on the potential critical 
consequences but also provides estimates of their likelihood. 

ii) Exploring sequences of events: We showed how using a graph-based 
description makes it easier to explore and understand the sequences of 
events. After the graph has been constructed, fault trees or individual 
critical paths can be extracted and visualized as sub-graphs (as de-
monstrated in Section 4.3.2) to better understand vulnerabilities and 
how critical consequence might come about. This approach can be 
contrasted with conventional contingency analyses, which often take a 
given contingency (combination of overlapping component outages) as 
a starting point without considering how that contingency might arise. 

iii) Generality: This article also presented a concrete implementation 
of the modelling framework including exemplary models for protection 
system failures, failure of corrective actions (generation rescheduling 
and controlled load shedding), and failure of islanding. The modelling 
framework presented in Section 2 is however general and not restricted 
to these mechanisms. The exemplary models in Section 3 and the case 
study in Section 4 demonstrates that the modelling framework allows 
multiple mechanisms to be implemented. This means that the 

vulnerability analysis to a greater extent than existing methods can 
reveal the relative significance of different mechanisms. 

One natural extension of this work could be to implement models 
for additional transition mechanisms in the modelling framework. 
Considering for instance unintended interactions between specific 
system protection schemes could allow the analysis to reveal other 
critical events than those identified with the implementation demon-
strated here. In this article, the framework was moreover combined 
with quasi-static contingency analysis, and the graph was used to 
structure results from (static) power flow simulations incorporated as 
part of the transition mechanism models. However, the general fra-
mework could also incorporate dynamic power flow simulations or be 
used to structure the results from existing simulation tools for cascading 
outages [6,13]. It could be used to structure historic outage and power 
interruption data if these include information about the transition 
mechanisms involved in the events. 

iv) Accounting for uncertainties: Another key aspect of the metho-
dology is that it explicitly acknowledges the uncertainty associated with 
critical sequences of events by assigning uncertainty estimates to their 
likelihoods. An advantage of the proposed uncertainty analysis meth-
odology is that the it only requires the graph to be constructed once. We 
illustrated that although the resulting uncertainties may be very large, 
this information allows for prioritization of vulnerability-reducing 
measures. A possible direction for further work could thus be to in-
vestigate the effectiveness of different measures (e.g. grid reinforce-
ment). Another direction could be to reduce the underlying un-
certainties in barrier failure probabilities by incorporating more 
detailed simulation models for specific mechanisms (e.g. failure of is-
landing). 

The present article focused on epistemic uncertainties associated 
with barrier failures, but in future work, the methodology could also be 
extended to account for additional aleatory as well as epistemic un-
certainties. In particular, a promising extension would be to consider 
uncertainties associated with initiating events. One could for instance 
combine the modelling framework with models for the spatio-temporal 
variation of weather-related failure rates [26]. This could allow for 
capturing vulnerabilities to simultaneous failures and correlations due 
to the spatial location of transmission lines. 

This article has demonstrated the methodology on a small but rea-
listic test system to illustrate its advantages in a transparent manner. 
For further research it is proposed to investigate how the methodology 
scales for larger power system models. For large-scale applications of 
the modelling framework it may be necessary to implement fast search 
methods, e.g. based on [28,29], to guide the construction of the graph 
in a more intelligent manner. An interesting extension could be to 
combine the framework with optimization methods for identifying the 
most critical contingencies [35,36]: Considering critical consequences 
due to failure of islanding, one could first apply e.g. graph partitioning 
techniques [32] to identify contingency states with islands with large 
generation deficits, and then one could construct paths “backwards” 
towards possible initiating events. This suggestion for further work is in 
accordance with the underlying principle of the proposed modelling 
framework for vulnerability analysis, namely to focus on the sequences 
of events with potentially critical consequences. 
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