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Abstract—Eigenvalue-based analysis of small-signal dynamics
in High Voltage Direct Current (HVDC) transmission systems
requires cable models that are compatible with a state-space
representation. While distributed parameter models accounting
for frequency-dependent effects are inherently incompatible with
a state-space representation, a conventional π-model can only
represent the cable behavior accurately at a single frequency.
Instead, a Frequency-Dependent π-model (FD-π), consisting of a
lumped circuit representation with multiple parallel RL-branches
in each π-section can be utilized to reproduce the frequency-
dependency of the cable characteristics in a specified frequency
range. Based on an evaluation of relevant error metrics for FD-
π models, this paper demonstrates how the number of sections
and the number of parallel branches in each section will influence
the accuracy. From this starting point, an optimization algorithm
for identifying the configuration that fulfills specified accuracy
requirements with the lowest possible model order is introduced.
A similar algorithm for identifying the most accurate FD-π
model within a specified maximum model order is also proposed.
Numerical results for different cable lengths and cross sections
are presented to highlight their effect on the model, and it is
demonstrated how the cable model configuration can influence
the results from small-signal eigenvalue analysis of an HVDC
transmission system.

Index Terms—Cable modeling, HVDC transmission, small-
signal eigenvalue analysis, state-space modeling, vector fitting

I. INTRODUCTION

ASSESSING the small-signal dynamics and stability by

eigenvalue analysis is common practice for large-scale
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ac power systems. With the prospect of future multi-terminal

High Voltage Direct Current (HVDC) transmission schemes

[1], small-signal eigenvalue analysis has been increasingly ap-

plied also for studies of cable-based Voltage Source Converter

(VSC) HVDC systems [2]–[5]. For this purpose, accurate and

linearizable state-space models of each system component

are needed to obtain a linear model expressed as Δẋ =

AΔx + BΔu. Suitable models of 2-level (2L) VSC HVDC

terminals with conventional control systems are already well

established, while models for representing Modular Multilevel

Converters (MMCs) have been recently developed [6]–[10].

However, the state-of-the art models for time-domain simu-

lation of HVDC cables, such as the Universal Line Model

(ULM) [11], have been specifically developed for time domain

simulation by Electro-Magnetic Transient (EMT) software.

In general, such models include time-delays and functions

that are inherently incompatible with a state-space representa-

tion and an eigenvalue-based analysis. Consequently, lumped-

parameter models based on classical cascaded π-sections have

been commonly used for small-signal analysis of VSC HVDC

systems [3], [12]–[15]. However, this approach relies on the

implicit assumption that the cable parameters can be consid-

ered constant within the frequency range of interest [16].

The accurate representation of the cable dc-resistance is

crucial for analysing (low-frequency) oscillations in HVDC

systems. Moreover, in long cable systems the dynamics of the

HVDC converter terminals can reach the same frequency range

as the lowest internal cable resonance frequencies [12], [17].

Therefore, both the the dc-resistance value and the impedance

characteristics within a wider frequency range are important

for cable modelling. Furthermore, it has been recently demon-

strated that traditional cascaded π-section models can gener-

ate misleading assessments of the overall system dynamics

[17]–[19] since the frequency-dependent characteristics of the

HVDC cables are inherently neglected.

Earlier work on transmission system modeling have proved

that lumped parameter networks can be specified to match

cable parameters over a frequency range by using ladder

networks [20]. For instance, ladder-type networks are in-

cluded in the RTDS real-time simulation library for mod-

elling frequency-dependent inductances and resistances [21].

Even though they are mainly developed for the purpose of

time-domain simulations, such lumped parameter models are

directly applicable to state-space modelling and eigenvalue-
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based analysis. More recently, also dedicated modelling ap-

proaches for state-space modelling of HVDC cables have been

proposed. For instance, a coupled π-section model intended for

representing parts of the frequency-dependent cable character-

istics was proposed by [18]. Later, a more general method

obtaining a Frequency-Dependent π-model (FD-π) suitable

for capturing HVDC cable dynamics in the frequency range

of importance for system-oriented small-signal eigenvalue

analysis was developed in [4], [22]. The resulting model

represents the frequency-dependent characteristics of the cable

by utilizing multiple parallel RL-branches in each π-section

and its lumped parameter structure ensures a straightforward

state-space formulation. Furthermore, it has been validated

that FD-π models can provide an accurate representation of

the cable dynamics over the entire frequency range from dc

to frequencies beyond the bandwidth of the HVDC control

system. Thus, the application of FD-π models can significantly

improve the representation of the HVDC cable dynamics

compared to traditional π-section models and can prevent

incorrect predictions of instabilities [19].
The accuracy and validity range of an FD-π model can be

adjusted by varying the number of π-sections and the num-

ber of parallel branches in each section. However, previous

publications introducing and applying FD-π models have only

demonstrated the behavior of a few model configurations in

specific case studies. As an example, the disturbance attenua-

tion of various dc voltage droop control schemes was evaluated

in [23] considering a single section FD-π model. Similarly,

the model utilized in [24] is adapted to account for the first

resonance peak in the design of converter controllers. In [25],

the model was used to evaluate the dynamic performance

of an interline flow controller for HVDC grids. Furthermore,

the impact of the cable model accuracy on the stability was

investigated in [17], but again limited to the analysis of a

single FD-π section. A first analysis of how the accuracy

of an FD-π model of HVDC cables relates to the model

order and the model configuration was presented in [26].

However, no comprehensive analysis of how the model should

be configured for fulfilling predefined accuracy requirements

is available in literature.
This paper systematically addresses how an FD-π model

should be specified for representing HVDC cables in small-

signal eigenvalue analysis of HVDC transmission schemes.

The analysis from [26] is formalized and further extended to

provide a reference for understanding how to configure FD-π
models. First, the influence of the number of π-sections and

the number of parallel branches on the accuracy of the model

is demonstrated in the frequency domain and in the time-

domain. Furthermore, it is shown how the model errors are

related to the model order for examples of FD-π models with

different number of parallel branches. On this basis, the main

contribution of the paper is the formulation of an approach for

selecting the most suitable FD-π model configuration within

a specified frequency range. In particular, two algorithms for

identifying the optimal configuration of an FD-π model under

a specified set of constraints are proposed:

1) An algorithm for identifying an FD-π model of minimum

order according to a desired accuracy requirement within

a given frequency range, i.e. minimization of model order

under accuracy constraint

2) An algorithm for finding the most accurate FD-π model

within a specified frequency range, limited by a maximum

model order, i.e. minimization of error under model order

constraint.

A numerical tool for generating HVDC cable models with

a specific model configuration or by applying the proposed

algorithms is also electronically available together with this

paper 1.

The paper also includes additional contributions support-

ing the proposed approach for optimization of FD-π model

configurations. Firstly, the analysis leading to the proposed

algorithms is based on a systematic evaluation of error metrics

and their impact on the model characteristics. Furthermore,

the parameter sensitivity of the optimal FD-π models is

evaluated by considering a range of cable lengths and var-

ious cable cross-sections. These results provide a basis for

indicating general guidelines and practical recommendations

for selecting suitable model configurations for small-signal

analysis of HVDC transmission systems. Finally, examples of

eigenvalue-based analysis, supported by time-domain verifi-

cation, demonstrate how the obtained minimum order FD-π
model can accurately represent the cable dynamics for system-

oriented studies. Two cases are presented, based on point-

to-point HVDC interconnections with 2L VSCs or MMC-

based converter terminals. The results serve to illustrate how

inaccurate representation of the HVDC cables can cause

misleading results from small-signal eigenvalue-based analysis

and even lead to false prediction of instability. This serves as

a clear illustration of the practical importance of the analysis

presented in the manuscript and the proposed methods for

selecting the cable model configuration.

II. REFERENCE MODELS FOR HVDC CABLES

High fidelity frequency-dependent models for HVDC cables

with distributed parameters are well established in literature,

and will be used as a reference for the presented analysis of

FD-π models. In the following, a Kron reduction is applied,

implicitly assuming an ideal grounding for the armour and

sheath along the entire length of the cable. This reduction

only applies when the voltages in armour and sheath remain

small compared to the conductor voltage [27], which is a re-

alistic assumption for the analysis of small-signal dynamics in

HVDC transmission systems. As a consequence, the analytical

representation of a subsea cable with three conducting layers

(conductor, sheath and armour) reduces to that of an equivalent

conductor.

A. Reference cable model in the frequency domain

The behavior of an HVDC cable can be accurately repre-

sented in the frequency domain by the equivalent circuit model

1This numerical tool is included as interactive content of this paper and
can be downloaded from http://ieeexplore.ieee.org. The tool and any future
updates will also be made available from https://www.sintef.no/fdpi-model
and https://www.esat.kuleuven.be/electa/teaching/fdpi-model
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Fig. 1. Exact π representation of HVDC cable

in Fig. 1. The series and shunt elements, Zπ(s) and Yπ(s) re-

spectively, account for the frequency-dependent characteristics

of the cable parameters and for the functional dependency of

the impedance with respect to the cable length. These circuit

elements can be expressed in the Laplace domain [16], [28],

as:

Zπ(s) = z(s) �
sinh γ(s)�

γ(s)�
, Yπ(s) = y(s) �

tanh γ(s)�
2

γ(s)�
2

(1)

γ(s) =
√

z(s)y(s) (2)

In (1) and (2), z(s) and y(s) are the cable impedance and

admittance per unit length, which also define the propagation

constant γ(s), while � denotes the cable length. The series

impedance z(s) can be expressed as:

z(s) = r(s) + s · l(s) (3)

where both the longitudinal resistance r(s) and inductance l(s)
per unit length are frequency-dependent. It should be noted

that the function z(s) is very smooth in the frequency domain

and easier to fit with a rational approximation than the function

Zπ(s). The transverse admittance can be also decomposed as:

y(s) = g + s · c (4)

In the frequency range of interest for small-signal eigenvalue

analysis of HVDC systems, the conductance g and the capac-

itance c per unit length can be assumed constant [27].

The admittance of the cable terminated on a load impedance

Zl(s) in the Laplace domain can be derived from Fig. 1.

Accounting for the expressions in (1)–(2) leads to:

Yc(s) =
γ(s) coth(γ(s)l) + y(s)Zl(s)

γ(s)Zl(s) coth(γ(s)l) + z(s)
(5)

Thus, the behavior of the cable in the Laplace domain is char-

acterized by a frequency-dependent admittance due to presence

of the hyperbolic functions and the frequency dependence of

the series impedance z. The representation of the cable with

Yc(s) is assumed as a reference model of the cable in the

frequency domain.

B. Cable representation in the time-domain
The response of the cable to a unity voltage step applied on

uin can be expressed in the Laplace domain as:

iin(s) =
Yc(s)

s
(6)

The response in the time-domain can be obtained numerically

via the Inverse Numerical Laplace Transform (INLT). In

this paper, results obtained with the INLT implementation

presented in [29] are assumed as a reference for the time-

domain response of a single cable. Thus, the INLT of (6) with

Yc(s) defined by (5) is used for evaluating the accuracy of the

FD-π models in the time-domain.
It can be noted that the INLT is not easily applicable for

simulating a complex power system configuration. Therefore,

when analyzing complete HVDC transmission schemes in-

cluding ac-side dynamics and the control of the converter

stations, the reference for the time-domain response will be

more pragmatically obtained with an ULM as a state-of-the-

art model for simulating the cable [11].

III. ANALYSIS OF THE FD-π MODEL

Established EMT modelling approaches (e.g. wide band

models or the Bergeron model) are not compatible with a

state space representation as necessary for the eigenvalue-

based analysis of small-signal dynamics, while traditional

cascaded π-section models can accurately represent the cable

characteristics only at a single point in the frequency domain.

The FD-π model overcomes these two limitations since it

is based on a lumped circuit structure that can be easily

translated into state space form while also approximating the

cable characteristics associated with the frequency dependency

of the cable parameters. A general circuit representation of the

FD-π model from [19], [22] is shown in Fig. 2. The number

of cascaded π-sections n and the number of parallel branches

m represent two degrees of freedom in the configuration of

a FD-π model. The total model order N for the resulting

representation of the cable can be expressed as:

N = n ·m+ n+ 1 (7)

In the following, the model order N will be utilized as a

simplified and pragmatic approach to represent with a single

scalar quantity the complexity of the cable model when

utilized as part of a larger system. Indeed, a higher model

order for the overall system will in general imply a longer

time and more memory requirements for the calculation of

eigenvalues.
Since the shunt conductance and capacitance of the cable

can be assumed constant in the frequency range of interest

for system-oriented eigenvalue analysis, their values for each

section of the FD-π model can be determined directly accord-

ing to the length of the cable and the number of π sections

n. The values for the longitudinal parameters in the model

of Fig. 2 are obtained so that the parallel RL branches can

reproduce the frequency-dependence of the series impedance

per unit length z, approximated as [22], [28]:

1

z(s)
≈

m∑
i=1

1

ri + sli
(8)
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Fig. 2. Circuit representation of the FD-π model

As proposed in [22], the longitudinal parameters for the

parallel branches per unit length are determined by applying

vector fitting [28], [30]. The parameters of each of the m
parallel branches will then result from the cable length and

the selected number of π sections.

With a model configuration determined by n and m and the

corresponding parameter values, a state-space representation

of the FD-π model on the form ẋ = Ax + Bu can be

easily established directly from the structure shown in Fig. 2,

as further explained in [22]. The accompanying numerical

tool can generate such models starting from the frequency-

dependent cable characteristics2.

A. Impact of model configuration on accuracy in the
frequency- and time-domain

The modeling of a 400 km XLPE HVDC cable with data

from [31] is considered in this section as an example for

assessing the accuracy of different FD-π model configurations.

The ratings and dimensions of the cable are given in Appendix,

labelled as Cable 1. For the following analysis it is assumed

that the end of the cable is short-circuited. However, as

demonstrated by the preliminary investigation in [26], the

general characteristics of the results would be similar, with

only minor numerical differences, if an open-ended cable was

assumed.

In Fig. 3, the frequency characteristics of the reference

model from Fig. 1 is compared in amplitude and phase to

the impedance of an FD-π model with 10 cascaded sections,

for 5 cases with different number of parallel branches. The

standard cascaded π-section model (m = 1), with parameters

chosen to get an accurate dc representation clearly results in

a poor representation of the cable resonance frequencies with

much less damping than the reference model. Already with

m = 2, the FD-π model is able to approximately reproduce

the 3 to 4 first resonance frequencies. Increasing the number of

parallel branches improves the accuracy especially in the range

between 10 Hz and 100 Hz. However, the frequency range

where the resonances of the reference model are correctly

represented remains approximately limited to about 1 kHz.

Indeed, all examples consider the same number of FD-π-

sections, thereby leading to the same modelling bandwidth.

The accuracy appears to increase only marginally when adding

more than 5 parallel branches.

2See footnote on page 2.
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Fig. 3. Impedance comparison of a 400 km XLPE HVDC cable with n = 10
FD-π-sections and varying number of parallel branches m.

The behavior of the FD-π model is compared to the refer-

ence model in the time-domain in Fig. 4, where the current

iin is displayed for a unity step in the voltage vin. The figure

reports also the integral of the absolute error (IAE) defined as:

IAE(t) =

∫ t

0

|iin,ref (τ)− iin,n,m(τ)|dτ (9)

The FD-π models with m ≥ 2 are generally accurate in

reproducing the transient behavior in the first milliseconds

after a perturbation and the steady-state response or any slowly

varying dynamics remaining after several seconds. However,

the number of parallel branches is critical for obtaining an

accurate representation in the time range between 0.1 and 1.5

s after the perturbation.

The reference cases are also compared to FD-π models

with several different numbers of cascaded π-sections n while

maintaining a fixed number of parallel branches m = 5. The

corresponding results in the frequency domain and in the time-

domain are reported in Fig. 5 and Fig. 6, respectively. These

figures reveal that the number of π-sections n is tightly linked

to the maximum frequency range that the model can capture.

Thus, a higher value of n is crucial to allow the model to

represent fast transients and the high frequency behaviour of

the cable. This is confirmed in the time-domain where the
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Fig. 4. Comparison of time-domain response for a 400 km XLPE HVDC
cable with n = 10 FD-π-sections and varying number of parallel branches m.
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Fig. 5. Cable impedance comparison of a 400 km XLPE VSC HVDC cable
for varying number of FD-π-sections n and 5 parallel branches m.

differences between the transient responses, especially for low

values of n, are almost negligible in the seconds time range

but still noticeable in the first milliseconds.

The presented results show that the use of multiple parallel

branches in the FD-π model generally improves the represen-

tation of the frequency-dependent behavior of the cable within

the lower frequency range. However, independently from the

number of parallel branches or π-sections, the FD-π model

has a natural limitation for frequencies outside of the model’s

bandwidth. This can be noticed in Fig. 3 and Fig. 5, where

the amplitude of the FD-π model rolls off at high frequencies,

while the amplitude of the reference model tends towards

a constant value. As discussed in more detail in Section V,
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Fig. 6. Time-domain response of a 400 km XLPE VSC HVDC cable for
varying number of FD-π-sections n and 5 parallel branches m.

representing the cable correctly in the kHz range implies using

a higher order model with an increased bandwidth, which is

attained by an increased number of π-sections and, to a lesser

extent, an increased number of parallel branches.

It can also be noticed from the figures above that the time-

domain results do not directly lead to a simple approach for

in-depth model accuracy comparison, since a comparison at a

single point in time will not be a suitable general measure of

accuracy, while the differences in the IAE are only visible on

the short time scale and/or in the steady state. Furthermore,

the results can be influenced by the accuracy of the numerical

method used to solve the differential equations of the model.

B. Impact of model configuration on eigenvalues of cable
state-space models

The lumped parameter circuit equivalent of an FD-π model

shown in Fig. 2 allows a straightforward expression of the

model in a linear state-space form, as outlined in Appendix

A.2. The eigenvalues of the FD-π cable model presented in

the previous subsection are shown in the Fig. 7 and in Fig. 8

for the specified values of m and n, respectively.

It should be noted how the complex conjugate eigenvalues

for the configuration with m = 1 in Fig. 7 are confined in a

limited area close to the imaginary axis compared to the cases

with a higher value of m. These eigenvalues correspond to

poorly damped oscillations in the dynamic response. Already

increasing the value of m to 2 ensures a better damping and

values of the oscillation frequencies for the complex conjugate

eigenvalues quite close to the cases with higher values of m.

With an increasing m, the complex conjugate eigenvalues tend

to form two almost straight lines, where the modes with the

highest oscillation frequencies will correspond to transients
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Fig. 7. Influence of number of parallel branches m on eigenvalues of state-
space model with n = 10.

Fig. 8. Influence of number of π-sections n on eigenvalues of state-space
model with m = 5.

with shorter settling times. The same trend is revealed in

Fig. 8 where the increased number of π-sections adds more

eigenvalues along these two traces. This fits with the behaviour

of the reference model in the frequency domain where the

damping of the internal resonances of the cable increases

with the frequency. It can also be observed that for higher

values of m and n the eigenvalues with lower frequency and

lower time constant remain almost in fixed positions while the

main variations can be observed for poles characterized by

higher oscillation frequency and more negative real parts (i.e.

lower time constants). This implies that the changes will affect

mostly the fast transients and hence, will be less noticeable in

the time-domain response.

IV. MODEL ACCURACY EVALUATION

Considering the expected deviations between the reference

model and the FD-π model at very high frequencies, the

accuracy should be evaluated within a specified frequency

range. Thus, for assessing the accuracy in the frequency

domain, a sufficiently wide frequency window to include all

the dynamics that can have an effect on the small-signal

stability of the HVDC transmission scheme should be defined.

Since oscillations with very low frequency can occur in large-

scale power systems, the frequency window should span from

dc to an upper frequency limit fB , which should be above the

maximum bandwidth of the control systems for the individual

HVDC converter terminals.

The accuracy of the model could generally be assessed by

calculating an averaged or weighted error over the frequency

range of interest. However, the objective of state-space mod-

eling for small-signal stability analysis is typically oriented

towards detecting possible undesired interactions or poorly

damped oscillations. Thus, a high error at any frequency of

interest might not be acceptable, since it could significantly

influence the location of one or more eigenvalues, even if

the average error is within a given specification. Hence,

the accuracy of the model is assessed in the following by

evaluating the maximum error in amplitude and phase within

a given frequency range. Specifically, the model accuracy is

quantified by the maximum error between the FD-π model and

the reference model for the impedance magnitude and phase

angle, expressed as:

εabsn,m = max
ω≤ωB

20 log10 |Z(ω)− Zn,m(ω)| (10)

εangn,m = max
ω≤ωB

|∠Z(ω)− ∠Zn,m(ω)| (11)

where ωB is the angular frequency (in rad/s) corresponding

to the upper frequency limit fB , Z is the impedance of the

reference model and Zn,m the impedance of the FD-π model

with n cascaded sections and m parallel branches.

The IAE over a period of 3 seconds is chosen as a relevant

metric for assessing the time-domain error.

A. Accuracy evaluation in the frequency domain

The maximum amplitude and phase errors of various FD-

π models with different values of m are shown in Fig. 9

as a function of the model order N . The results are shown

for a 400 km long cable, with an upper frequency limit

fB set to 500 Hz in order to study typical medium- or

low-frequency stability problems below the bandwidth of the

converter controls. The case with m=1 is not shown in the

figure as the error is always higher than reasonable bounds

for the model to be valid.

The results in Fig. 9 confirm that increasing the model

order can improve the accuracy and also indicate a pattern in

the accuracy associated with the configuration of the model.

Indeed, an increasing number of π-sections n as well as a

higher number of parallel branches m can improve the model

accuracy. It can be observed that for a fixed number of parallel

branches m ≥ 3, increasing the number of cascaded π-sections

n and, thus, the order of the model, reduces the error until it

reaches an asymptotic value. This asymptotic value decreases

with increasing the number of parallel branches m. It should

be noted that the curves with lower values for m cross the

curves with higher values, which creates a Pareto front of

error versus model order. The crossing points indicate when

it is preferable to increase the number of parallel branches

m, rather than the number of π-sections, to obtain a higher

accuracy. For configurations below such crossing points, a

lower number of parallel branches m, and consequently a

higher number of π-sections n, results in a more accurate

model for the same order N .

The results shown in Fig. 9 are obtained with a short-

circuited cable, and slightly different curves would result from

the same analysis of an open-ended cable, as presented in

[26]. In general, the same model configuration will lead to

slightly higher maximum errors for short-circuited cables at
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below 500 Hz as function of the model order for different number of parallel
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low model orders. Thus, the assumption of a short-circuited

cable is suitable as a conservative approach for designing FD-π
models within a limited frequency range. However, the open-

ended and short-circuited conditions result in approximately

the same error for very high model orders. This is reasonable

since the validity of a highly accurate cable model should not

be dependent on the load impedance.

B. Accuracy evaluation in the time-domain

The IAE for a step response as defined in (9) is evaluated

over a period of 3 seconds. This time frame is sufficient to

include any noticeable transients, as seen from Fig. 4 and

Fig. 6. The obtained results are displayed in Fig. 10 as a

function of the model order for several numbers of parallel

branches m.

Fig. 10 reveals that the evaluation in the time-domain mainly

indicates the accuracy improvement provided by a higher

number of parallel branches. Since all the curves appear as

almost horizontal lines, they fail to capture the effect of the

number of π-sections n at the beginning of the transient.

This behavior is coherent with what has been reported in the

previous section, namely that the parameter n acts mostly

on the millisecond range. Indeed, the effects of n becomes

practically negligible once the error is integrated over time.

This implicit bias towards the influence on the slower time

response could be corrected by weighting factors or by a

logarithmic sampling. Such an approach would correspond

to an increased weight for the high-frequency components

and would, therefore, reduce the differences compared to the

metrics directly defined in the frequency domain. Furthermore,

the metrics in the time-domain involve higher computational

efforts compared to the metrics in the frequency domain.

On this basis, accuracy assessments in the time-domain are

discarded when considering methods for optimization of FD-

π model configurations.

V. OPTIMIZED MODEL CONFIGURATIONS

The configuration of cable models for small-signal analysis

of HVDC transmission systems should be balanced between

the two conflicting needs of ensuring a high fidelity within

the frequency range of interest while limiting the model

complexity. Since the FD-π model offers n and m as two

degrees of freedom, the configuration can be subject to op-

timization. Metrics for quantifying the model fidelity have

been introduced in the previous section while the model order

can be utilized as a simple scalar indication of the model

complexity.

A first natural framework for optimizing the cable model is

to identify the configuration with lowest order while imposing

a constraint on the model accuracy by specifying the maximum

model error over a predefined frequency range. Alternatively,

a constraint on the model order could be imposed to limit

the model complexity while searching for the configuration

ensuring the lowest errors. Both these approaches can be

considered as constrained discrete optimization problems in

the space of the model configurations. This section presents

two algorithms that identify the optimal solution for a specified

set of constraints. The obtained solutions correspond to model

configurations on the Pareto front representing the minimum

achievable error as a function of the model order. The algo-

rithms are both implemented in the accompanying numerical

tool.

A. Minimum order configuration with error constraints

The behavior shown in Fig. 9 can be effectively visualized

by the Pareto fronts of the model configurations with minimum

error as a function of the total model order N . A set of

examples for different cable lengths is shown in Fig. 11. The

numbers near the markers of each model along the Pareto front

report the number of parallel branches m associated with the

specific configuration.

The optimization problem of finding the model configu-

ration with the minimum model while respecting maximum

error constraints within the specified frequency range can be

mathematically expressed as:
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Fig. 11. Amplitude error and phase error for the configuration of minimum order as function of the model order for several cable lengths.

minimize N(n,m), (12)

subject to εabs(n,m) ≤ εabsmax, (13)

and εang(n,m) ≤ εangmax. (14)

However, the boundary conditions expressed in (13)–(14)

cannot be expressed analytically, as they are defined as single

numbers over the predefined frequency range according to

(10)–(11). Consequently, a search algorithm is applied in order

to find the optimal model configuration.

The conceptual structure of the algorithm proposed for

optimizing the configuration of the FD-π model is visualized

by the flowchart in Fig. 12. The algorithm starts with the

lowest possible order, N = 3, which corresponds to a single

conventional π section, and is designed to increase the model

order until a configuration satisfying the error constraints is

identified. As a first step, all the configurations of order N
are identified. This corresponds to a search for all the sets

of integers n and m satisfying (7). The amplitude and phase

errors εabsn,m and εangn,m are calculated for each configuration.

If both errors are lower than the specified maximum errors,

the associated configuration is considered as a valid solution,

otherwise it is discarded. Once all the configurations of order

N have been processed, it is verified whether at least one valid

configuration has been identified. In case the analysis results

in no valid configuration, the algorithm increments the model

order and repeats the procedure. In case more than one valid

configuration is detected, the configuration with minimum

phase error is selected. It should be noted that typically only

one configuration satisfies the constraints and that a different

selection criterion would have a very marginal impact on the

results.

B. Minimum error configuration with model order constraint

Instead of searching for an optimized model configuration

fulfilling an accuracy requirement, it can also be relevant to

identify the most accurate model that can be achieved within

a predefined model order. The corresponding optimization

problem can be mathematically expressed as:

minimize εχ(n,m) with χ ∈ {abs, ang} (15)

subject to N(n,m) ≤ Nmax, (16)

with the function εχ(n,m) to be minimized being either

εabs(n,m) or εang(n,m) as defined in (10) or (11), respec-

tively.

Since εχ(n,m) cannot be written in an analytical form,

the most accurate model for a defined maximum order can
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Fig. 12. Overview of algorithm for identifying optimal model configuration
for a specific accuracy criteria

again be identified by a search algorithm. The structure of

the proposed algorithm is illustrated in Fig. 13. As seen from

the figure, the algorithm is starting from the lowest possible

model order, N = 3, and is increasing the model order until the

specified order constraint is reached. For each model order N ,

all possible configurations are evaluated and their associated

errors compared to the error of the most accurate configuration

already examined. The most accurate configuration is then

continuously updated for each iteration until the maximum

model order is reached. This searching procedure is necessary

since a configuration with the maximum order will not always

provide the most accurate model. Thus, the algorithm follows

the Pareto-front of the minimum error until the maximum

order is reached, and selects the most accurate available model

configuration. As indicated in the flowchart of Fig. 13, it can

be specified whether the algorithm should return the solution

with the lowest amplitude or phase error in case they occur

for different model configurations.

C. Parameter sensitivity analysis

The analysis of the model configuration along the Pareto

front in Fig. 11 can be utilized to assess the impact of

N = 3

Increment model 
order N

Find possible (n,m) with
N = n·m + n + 1
n, m  ℕ 

Calculate

Discard 
configuration

Update best 
configuration

More 
configurations
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Examine next 
configuration

Maximum 
model order

Select best 
configuration for phase 

or frequency error

,
ang ang
n m best,,

,
abs abs
n m best,, YESNO

YES

NO

NO

YES

, ,or abs ang
n m n m, ,or orn m n m, ,o  

or

Fig. 13. Overview of algorithm for identifying optimal model configuration
with a specified maximum model order N

Fig. 14. Minimum model order as function of the upper frequency limit for
different cable lengths

parameters such as the cable length, the cable cross section

and the upper frequency limit fB on the optimal model

configuration. As an example, the minimum model order as a

function of fB is displayed in Fig. 14 for a set of different

cable lengths, with a tolerance on the amplitude error εabsn,m of

1 dB and a tolerance on the phase error εangn,m of 15◦. For high

values of the upper frequency limit fB and/or long cables, it

can be noticed from the curves in Fig. 14 that the required

model order N is increasing approximately linearly with fB .

In general, the model order is heavily affected by the num-
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Fig. 15. Minimum model order as function of cable length for different upper
frequency limits fB

ber of cable resonances falling within the frequency window

specified for the evaluation of the model error. Moreover,

resonance peaks are shifted to lower frequencies when the

cable length is increased. For illustrating this effect, the

minimum model order N is plotted as a function of the cable

length for various values of fB in Fig. 15. For high values of

fB , the minimum model order starts increasing noticeably with

the cable length when the first cable resonances fall within

the frequency window. However, the minimum model order

does not increase much with the cable length for very low

values of fB . The reason is that accurate modelling of even the

longest cables require only representation of the first resonance

peak. After the first resonance peaks have been included in

the frequency window of a case with a long cable and/or high

values of fB , increased cable length mainly requires a higher

number of π-sections for fulfilling accuracy requirements.

Thus, the minimum model order starts increasing linearly with

the cable length when fB and the cable length are above

certain values. For such conditions, the general trend of the

required model order N can be expressed as:

N ∝ �fB (17)

Analysing the values of n and m for the results shown

in Fig. 14 and Fig. 15 reveals that the configurations on the

Pareto fronts with fB above about 500 Hz are characterized by

a higher number of π-sections n compared to shorter cables

for the same model order, implying a lower number of parallel

branches m [26]. It should also be noted that for long cables,

the increase of the model order N is mostly due to the increase

in the number of required cascaded π-sections n, while the

number of required parallel branches m usually stays between

2 and 5. Indeed, as for traditional phasor-based π-equivalent

representation of ac transmission lines, a higher n for longer

cables is necessary to achieve a good approximation, due to

higher influence of the non-linear hyperbolic terms in (1)–(2).

Another example of how the optimal model configuration

is influenced by the system parameters is shown in Fig. 16. In

this figure, the axes are defined in logarithmic scale, and the

values at the markers for each optimal model configuration

indicate the number of parallel branches m. The length of

the cable is maintained constant at 400 km, while the cable

parameters are changed according to the cross sections given

in Table II in the Appendix. From this figure it can be clearly

seen that the general trends of the FD-π models at the Pareto

front of the model order are relatively similar for different

TABLE I
PARAMETERS OF POINT-TO-POINT HVDC TRANSMISSION SYSTEM

Parameter Value Parameter Value
Rated ac voltage 380 kV P gain vdc,a (2L) 12.0
Rated power 900 MW I gain vdc,a (2L) 2.0 ∗ 103

Rated frequency 50 Hz P gain vdc,a (MMC) 0.882
Dc bus capacitance (2L) 62.7 μ F I gain vdc,a (MMC) 8.82
P gain iac,a (2L) 0.174 P gain iac,b 0.209
I gain iac,a (2L) 0.950 I gain iac,b 1.14
P gain iac,a (MMC) 0.209 P gain pac,b 0.100
I gain iac,a (MMC) 1.14 I gain pac,b 40.0

types of cables. Indeed, all the cable geometries evaluated in

Fig. 16 follow a similar trend as shown in linear scale for 400

km of Cable 1 in Fig. 15, with some small individual variations

depending on the location of the resonance frequencies of the

different cables.

VI. EIGENVALUE-BASED ANALYSIS OF HVDC

TRANSMISSION SYSTEM

Two examples of point-to-point HVDC connections with

different converter models are evaluated in the following.

These examples are presented to illustrate how the cable

representation can significantly influence the eigenvalues of

a small-signal model of an HVDC transmission system and to

demonstrate how results from the presented analysis can be

utilized.

The system configuration used for the examples is indicated

in Fig. 17. This is a simple point-to-point HVDC transmission

system where one converter terminal controls the dc-voltage

while the other controls the power flow. For studying the

impact of the cable model on different system configurations,

the following two different cases are considered: 1) A case

where both converters are MMCs represented by the simplified

zero-sequence model from [7]. 2) A case where both con-

verters are assumed to be 2L-VSCs represented by traditional

average models. It should be noted that these examples are

not intended to be a comparison between MMC and 2L VSC

point-to-point schemes, but are introduced to highlight the

potential consequences of an inadequate cable model. These

consequences can range from the presence of poorly damped

high frequency oscillations to even instabilities, which a more

accurate cable model does not display.

The ratings and main controller parameters of the system are

listed in Table I. The control systems and the corresponding

small-signal models of the MMCs are the same as in [32],

while the models of the 2L VSCs are based on [19]. The

main parameters of the system are obtained from [32]. The

state equations used for obtaining the evaluated small-signal

models are fully documented in Appendix A.2 for the 2L

VSCs, and the specific adaptations for modelling of the MMCs

are presented in Appendix A.3. For the considered case, the

HVDC cable is a 100 km long section of Cable 1 from Table

II in Appendix.

The impact of the cable model on the eigenvalues of two

different HVDC systems is investigated by considering 4

different model configurations:

(i) A traditional π-model with 15 sections (m = 1, n = 15)
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Fig. 16. Minimum model order as function of the upper frequency limit for 400 km of cable with different cross sections.

∼
=
a

vdc control

=
∼
b

pac control

100 km

Fig. 17. Example case with point-to-point HVDC transmission system

(ii) An FD-π model with 15 sections and 2 parallel RL-

branches per section (m = 2, n = 15)

(iii) A high-order FD-π model with 15 sections and 10 parallel

RL-branches per section (m = 10, n = 15)

(iv) An optimized FD-π model obtained by the minimum

order selection algorithm from Fig. 12

For the optimized FD-π model of case (iv), an upper

frequency limit of 500 Hz has been specified, together with

a requirement of a maximum amplitude error of εabsn,m = 0.5

dB and a maximum phase error of εangn,m = 5◦. This results in

a model with 5 parallel branches and 5 sections (m = 5, n
= 5). It should be noticed that a value of m equal to 5 is in

general quite high, but this is a consequence of the relatively

short length of the cable and the high accuracy requirements

(i.e. the low values of εabsn,m and εangn,m).

A. Analysis of system with MMC-based converter terminals

The eigenvalues for the linearized state space model of the

MMC-based point-to-point connections with different config-

urations of the FD-π model is displayed in Fig. 18. As seen

from the figure, the system is stable, since all the eigenvalues

are located in the left half of the complex plane. However, it

can be easily noticed that the lowest order FD-π models are

characterized by the presence of poorly damped modes. For

the cases with m = 1 or m = 2, these modes appear along two

almost vertical lines with the margin to the stability limit being

very low for the case of m = 1. For the higher order models,

the modes associated to the cables have significantly higher

damping and appear on a more diagonal line corresponding

to an increased damping and a reduced settling time for

Fig. 18. Comparison of eigenvalues for MMC-based HVDC system with
different cable models

the modes with the highest oscillation frequency. The modal

analysis indicates that the choice of a low order model in this

configuration with MMC terminals does not lead to a wrong

stability assessment but could result in poorly damped modes

that would be only an artifact of the cable model.

The behavior of the FD-π models evaluated in the previous

sub-section has been confirmed with time-domain simulations.

As a reference for the time-domain results, the complete model

for the point-to-point transmission link has been implemented

in the Matlab-Simulink environment and simulated with a

fixed time step of 0.5 μs. The cable is represented with a

ULM model.

The system starts from steady state and is perturbed at t = 0
with a current injection of 0.1 pu imposed directly at the output

of the voltage controlling terminal. Results from time-domain

simulations showing the response in the dc-voltage at the same

terminal with different cable models are presented in Fig. 19.

The results confirm that the system is always stable and that

all FD-π models behave similarly. However, it can be noticed

that the classical π-model presents a high frequency oscillatory
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Fig. 19. Verification of small-signal state-space models of MMC HVDC
system in comparison to electrical simulation with ULM representing the
cable

Fig. 20. Comparison of eigenvalues for 2L VSC-based HVDC system with
different cable models

mode that dampens in approximately 0.2 s and that is not

visible with the other models. This is even more evident in the

zoomed figure inset. These oscillatory modes are present also

in the eigenvalues of the linearized system that is displayed in

Fig. 18 and can be effectively excited during a transient, but

do not represent a dynamic behaviour of the actual system.

B. System with 2L VSC terminals

The eigenvalues of the system with converter stations based

on 2L VSCs are shown in Fig. 20 for the 4 different cable

models. The tuning of the controllers and the configuration

have been designed to provide a clear example where the effect

of an inadequate cable model can lead to a wrong stability

assessment. From the zoomed view in the lower part of the

figure, it can be clearly seen that the traditional π-model results

in one unstable oscillatory mode at approximately 120 Hz (750

rad/s), which is far away from the eigenvalues of the more

accurate cable models. It can also be noted that the system

with the traditional π-model presents another unstable mode

with an oscillation frequency of 29 Hz (185 rad/s) which is

clearly avoided by introducing a more accurate cable model.

From the general overview of the eigenvalues of the HVDC

transmission system with the different cable models, it can also

Fig. 21. Verification of small-signal state-space models of 2L VSC HVDC
system in comparison to electrical simulation with ULM for representing the
cable

be noticed that the traditional π-model results in excessively

low resonant frequencies and low damping ratios for the

eigenvalues associated with the cable, as expected from Fig. 3

and Fig. 7. Introducing two parallel branches ensures that false

predictions of instability are avoided and that the oscillation

frequencies are more accurately represented, even though

the damping is still noticeably incorrect for the eigenvalues

associated with the cable. The figure also shows that the

optimized model (with m = 5, n = 5) ensures a reasonable

approximation of the higher order model (with m = 10 and

n = 15), even if it is not representing the eigenvalues with

the highest frequencies that are captured by the more detailed

model. However, these high frequency modes are well damped

and with short settling times. Moreover, they appear outside

the frequency range where interactions with the HVDC control

loops are typically to be expected and, hence, of less interest.

Similarly to the MMC case, the modal analysis has been

confirmed with time-domain simulations. The system starts

from a steady state condition and is perturbed at t = 0 with

a step of 0.01 pu in the dc voltage reference. The same per-

turbation is applied to the linearized state-space models of the

system. An example of results obtained from all the simulated

models is presented in Fig. 21. This figure shows the transient

response of the dc bus voltage at the converter controlling

the voltage with the response of the reference model plotted

in black. In general, the response of the linearized models

provides a reasonably accurate representation of the reference

model, except for the classical π-model, which is unstable.

The frequency of the oscillations is well represented also for

the model with m = 2 in accordance with the remark of

the previous subsections. The results also demonstrate how

the optimized FD-π model provides similar accuracy for the

dynamics of interest as the more detailed model, but with

a significantly lower model order. Thus, false instabilities

resulting from the traditional π-model can be avoided while

ensuring good accuracy if an appropriately designed FD-π
model is utilized.

VII. CONCLUSION

This paper proposes an approach for identifying the most

suitable configuration of frequency-dependent π (FD-π) mod-

els for representing HVDC cables in small-signal eigenvalue
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analysis of HVDC transmission systems. On this basis, two

algorithms are presented for finding optimized configurations

of FD-π models under constraints on either the model error

or the model order. The presented approach and the resulting

optimization algorithms are based on studies of the trade-off

between accuracy and model order for FD-π models. For this

purpose, the accuracy of different FD-π model configurations

is evaluated in the frequency-domain and in the time-domain

as basis for defining suitable accuracy metrics that can be

utilized for identifying the most suitable model configuration

for a specific purpose.

The number of parallel branches m and the number of

π-sections n fully specify the FD-π model configuration.

In general, these two parameters can be associated with a

well-distinct role in terms of their physical interpretation.

Indeed, the parameter m defines the degree of accuracy in the

representation of the frequency dependency of the longitudinal

parameters. In principle, a stronger frequency-dependency

would require a higher value of this parameter. The parameter

n is instead associated with the representation of the travelling

waves propagating along the cable. However, the influence

of these two parameters on the model accuracy is not fully

decoupled when considering a specified accuracy within a

frequency range. Thus, separate guidelines for determining

n and m independently cannot be generally specified as

reliably as the results that can be obtained with the algorithms

presented. For long cables and when requiring high accuracy

for a large frequency window, the results show that the optimal

model order will increase proportionally with the cable length

and the upper frequency limit where the accuracy is specified.

In practical terms the results indicate that FD-π models with 3

or 4 parallel branches in each section and a number of sections

depending on the length of the cable usually provides a good

compromise between accuracy and model order.

Examples of small-signal eigenvalue analysis of two dif-

ferent HVDC interconnections are presented to illustrate how

an optimized FD-π model can ensure accurate representation

of the oscillation modes in the system for cases where too

simple models can lead to underestimation of the damping

and even false prediction of instability. The presented analysis

and the proposed algorithms for identifying optimal FD-π
model configurations are developed for HVDC cables, but it

is expected that similar methodologies can be developed for

HVDC overhead lines as well as for three-phase cables or lines

in ac systems.
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APPENDIX

A.1 Cable parameters

The cross section geometry and the rated voltage of

the HVDC cables used for the examples presented in this

manuscript are listed in Table II.

TABLE II
CABLE CROSS SECTION DATA

Voltage Radius dimension [cm]
[kV] Core int/ext Insul. Sheath Insul. Armour Insul.

1 320 19.5 4.87 5.17 5.47 5.87 6.37
2 400 1.25/3.47 5.72 6.50 7.24 7.81 8.00
3 400 1.25/2.98 4.73 5.36 5.96 6.37 6.60
4 320 2.21 4.86 5.17 5.59 6.19 6.49
5 320 1.67 4.32 4.63 50.5 56.5 6.00

A.2 State-space modelling of HVDC link with 2L VSCs

The state space model of the 2L VSC system used to

obtain the small-signal models evaluated in this manuscript

are based on the scheme evaluated in [19]. For transparency

and reproducibility of the results, the detailed non-linear state-

equations of this system are presented in the following. The

A- and B-matrices of the small-signal model can be directly

obtained by linearization of these equations.

A.2.1.State-space model of 2L VSC with dc voltage control:
The state equations for representing the converter terminal

operating with dc voltage control are based on the block

diagram presented in Fig. 22. It should be noted that all

electrical variables (i.e. il, vo and io) are represented in the

synchronously rotating dq reference frame defined by the

PLL. The variables of the electrical system and the control

system are indicated in the figure, except for the state variables

associated with the PLL, which are defined in Fig. 23 [33].

Thus, the internal state variables of the control systems are

mainly γd,q representing the integrator states of the current

controllers, κ representing the integrator state of the dc voltage

controller, and ε representing the integrator of the PI-controller

of the PLL. In addition, the control system includes low-pass

filters on the measured power and dc voltage (pac,m, vdc,f ),

and a simple algorithm for voltage-based active damping (AD)

of LC-filter oscillations, which is based on low-pass filters

with states defined as φd,q . It can be seen from Fig. 22 that

the control system for generality includes a power-based droop

function in the dc voltage reference, but the droop gain kδ,pac

is set to zero in the results presented in the manuscript.

For time-invariant modelling of the system, the phase angle

between the grid voltage and the reference frame orientation of

the PLL must be represented instead of the phase angle θ from

the PLL which is used for the reference frame transformations

indicated in 22. The state equation defining this relative phase

angle displacement is defined as:

δ̇θ = (ωPLL − ωg)ωb (18)

Based on the presented figures and considerations, the

model of the 2L VSC terminal controlling the dc voltage can

be defined by 18 state variables, as listed in the following:

1) v̇o,d =
ωb

cf
il,d − ωb

cf
io,d + ωbωgvo,q

2) v̇o,q =
ωb

cf
il,q − ωb

cf
io,q − ωbωgvo,d
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Fig. 22. Overview of control system for 2L VSC with dc voltage control

3) i̇l,d = −kp,c + rf
lf

ωbil,d − ki,PLLωbεPLLil,q

− kp,PLLωb tan
−1

(
vPLL,q

vPLL,d

)
il,q

− kAD − kFF,v + 1

lf
ωbvo,d +

kADωb

lf
φd

+
kδ,packp,ckp,vdc

ωb

lf
pac,m +

ki,cωb

lf
γd

− ki,vdckp,cωb

lf
κ+

kp,ckp,vdc
ωb

lf
vdc,f

− kp,ckp,vdc
ωb(kδ,pac

p∗ac + v∗dc)
lf

4) i̇l,q = ki,PLLωbεPLLil,d + kp,PLLωb tan
−1

(
vPLL,q

vPLL,d

)
il,d

− kp,c + rf
lf

ωbil,q +
i∗l,qkp,cωb

lf

− kAD − kFF,v + 1

lf
ωbvo,q +

kADωb

lf
φq +

ki,cωb

lf
γq

5) γ̇d = −il,d + kδ,packp,vdc
pac,m − ki,vdcκ

+ kp,vdc
vdc,f − kp,vdc

(kδ,pacp
∗
ac + v∗dc)

6) γ̇q = −il,q + i∗l,q

7) i̇o,d = −rgωb

lg
io,d + ωbωgio,q

− v̂gωb

lg
cos(δθPLL) +

ωb

lg
vo,d

8) i̇o,q = −ωbωgio,d − rgωb

lg
io,q

+
v̂gωb

lg
sin(δθPLL) +

ωb

lg
vo,q

9) φ̇d = ωADvo,d − ωADφd

10) φ̇q = ωADvo,q − ωADφq

11) v̇PLL,d = ωLP,PLLvo,d − vPLL,dωLP,PLL

12) v̇PLL,q = ωLP,PLLvo,q − ωLP,PLLvPLL,q

13) ε̇PLL = tan−1

(
vPLL,q

vPLL,d

)

14) δ̇θPLL = ki,PLLωbεPLL + kp,PLLωb tan
−1

(
vPLL,q

vPLL,d

)

15) v̇dc =
kp,cωb

cdcvdc
il,d

2 − kADφd

cdcvdc
ωbil,d

− kp,ckp,vdc
kδ,pac

(pac,m − p∗ac)
cdcvdc

ωbil,d

− kp,ckp,vdc
(vdc,f − v∗dc)− kp,cki,vdcκ

cdcvdc
ωbil,d

− ki,cγd
cdcvdc

ωbil,d +
kAD − kFF,v

cdcvdc
ωbil,dvo,d

+
kp,cωb

cdcvdc
il,q

2 − kp,ci
∗
l,q + kADφq + ki,cγq

cdcvdc
ωbil,q

+
kAD − kFF,v

cdcvdc
ωbil,qvo,q +

ωb

cdc
idc,s

16) v̇dc,f = ωvdc
vdc − ωvdc

vdc,f

17) κ̇ = −kδ,pacpac,m − vdc,f + kδ,pacp
∗
ac + v∗dc

18) ṗac,m = ωpacil,dvo,d + ωpacil,qvo,q − ωpacpac,m

A.2.2.State-space model of 2L VSC with ac-side power
control: The structure of the control system for the power-

controlled converter terminal is the same as for the dc-voltage

controlled terminal from Fig. 22. Thus, the main difference
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is that an active power controller instead of a dc-voltage

controller is providing the d-axis current reference. A dc-

voltage droop equivalent to the ac power droop shown in Fig.

22 is also included in the control system for generality. The

integrator state of the PI-controller used to regulate the ac

power flow is in this case labelled as κ, and the dc voltage

droop gain is labelled as kδ,vdc .

Most of the state equations for modelling the converter

terminal with ac power control are the same as for the dc-

voltage controlled terminal, except for the states that are

influenced by the ac power controller. Thus, only the state

equations that are different from the model of the dc-voltage

controlled converter terminal are listed in the following:

3) i̇l,d = −kp,c + rf
lf

ωbil,d − ki,PLLωbεPLLil,q

− kp,PLLωb tan
−1

(
vPLL,q

vPLL,d

)
il,q

− kAD − kFF,v + 1

lf
ωbvo,d +

kADωb

lf
φd

− kδ,vdckp,ckp,pac

lf
ωbvdc,f +

ki,cωb

lf
γd

+
ki,pac

kp,cωb

lf
ρ− kp,ckp,pac

ωb

lf
pac,m

+
kp,ckp,pac

(kδ,vdcv
∗
dc + p∗ac)ωb

lf

5) γ̇d = −il,d − kδ,vdckp,pacvdc,f + ki,pacρ

− kp,pacpac,m + kp,pac(kδ,vdcv
∗
dc + p∗ac)

15) v̇dc =
kp,cωb

cdcvdc
il,d

2 − kADφd

cdcvdc
ωbil,d

− kp,ckp,pac
kδ,vdc(v

∗
dc − vdc,f )

cdcvdc
ωbil,d

− kp,ckp,pac
(p∗ac − pac,m)

cdcvdc
ωbil,d

− ki,pacρ+ ki,cγd
cdcvdc

ωbil,d +
kAD − kFF,v

cdcvdc
ωbil,dvo,d

+
kp,cωb

cdcvdc
il,q

2 − kp,ci
∗
l,q + kADφq + ki,cγq

cdcvdc
ωbil,q

+
kAD − kFF,v

cdcvdc
ωbil,qvo,q +

ωb

cdc
idc,s

17) ρ̇ = −pac,m − kδ,vdcvdc,f + p∗ac + kδ,vdcv
∗
dc

A.2.3.State-space model of the FD-π cable model: A main

feature of the FD-π model is its representation with a lumped

circuit as shown in Fig. 2. For the model configuration studied

in this paper, it should be noted that the equivalent capacitance
C
2 at the the cable ends is directly added to the dc-side

capacitance of the corresponding converter terminal. Thus,

the inputs to the cable model will be the voltages vin and

vout. From inspection of the circuit, the model can be directly

formulated on general state space form as:

i̇1,j =
1

Lj
(vin − v1 −Rji1,j), ∀ j : 1 ≤ j ≤ m

i̇i,j =
1

Lj
(vi−1 − vi −Rjii,j),

∀ i : 2 ≤ i ≤ n− 1, ∀ j : 1 ≤ j ≤ m

i̇n,j =
1

Lj
(vn−1 − vout −Rjin−1,j), ∀ j : 1 ≤ j ≤ m

v̇i =
1

C

m∑
j=1

(ii,j − ii+1,j)− G

C
vi, ∀ i : 1 ≤ i ≤ n− 1

A.2.4.Interconnection of models: For interconnecting the

converter models and the cable model listed in the previous

sections, the dc-side terminals of the converters must be

associated to the cable terminals. In this case, we define

vdc,1 = vin and vdc,2 = vout, where "1" refers to the dc

voltage controlled terminal while "2" refers to the power

controlled terminal. Finally the sum of the inductor currents

in the parallel RL-branches at the end sections of the cable

must be equaled to the dc-side currents for the corresponding

converters. Thus, the models are interconnected by defining:

idc,s,1 = −
m∑
j=1

i1,j

idc,s,2 =
m∑
j=1

in,j

A.3 State-space modelling of HVDC link with MMCs

The same general control structure is assumed for the

MMC-based converter terminals as for the 2L VSCs. For

simplicity, also the ac-side model is considered identical,

although with different parameters. Thus, the main differences

compared to the 2L VSCs is the dc-side interface and the

internal dynamics of the MMC. For the purpose of the analysis

presented in this paper, a simplified model of the MMC as

proposed in [7], [10] is suitable. This applied model represents

only the zero sequence dynamics of the total energy (wΣ)

stored in the MMC and the zero sequence circulating current

(ic,z) which is equal to the current at the dc terminals, and the

corresponding control loops.

An overview of the control structure assumed for the

MMC-based terminals is shown in Fig. 24. This figure shows

that a control loop for the total sum energy is assumed to

provide the zero sequence circulating current reference i∗c,a.
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A circulating current controller is also included, but under

the assumptions introduced in [7], [10], only representation

of the zero sequence circulating current control is necessary

to obtain an accurate model of the dynamic behavior at the

ac- and dc-side terminals. When applying PI-controllers for

the sum energy and the zero sequence circulating current,

the MMC model will include four additional states compared

to the equivalent models of the 2L VSC terminals. In the

following only these four additional state equations and the

equations that are influenced by these states are presented to

document the state-space models of the MMC-based HVDC

converter terminals. Indeed, all the other state equations are

identical to the equations presented for the corresponding 2L

VSC cases.

A.3.1 State-space model of a MMC with dc-side voltage
control: For the MMC terminal with dc voltage control, the

following equations differ from the model already presented

for the equivalent 2L VSC:

15) v̇dc = − ωb

cdc
(4ic,z − idc,s)

19) i̇c,z = −kp,cz + ra
la

ωbic,z +
1− kFF,dc

la
ωbvdc

+
ki,czωb

la
ξz +

ki,wΣ,zkp,czωb

la
κΣ

− kp,czkp,wΣ,z
ωb

la
(wΣ,z − w∗

Σ,z)

20) ẇΣ,z =
kp,czωb

2ceq
ic,z

2 +
kFF,dcωb

2ceq
ic,zvdc

+
kp,cz (kp,wΣ,z (wΣ,z − w∗

Σ,z)− ki,wΣ,zκΣ)

2ceq
ic,zωb

− ki,czξz
2ceq

ic,zωb +
kp,cωb

8ceq
il,d

2

− kADφd + kδ,packp,ckp,vdc
(pac,m − p∗ac)

8ceq
ωbil,d

− ki,cγd − kp,cki,vdcκ

8ceq
ωbil,d

+
kp,ckp,vdc

(v∗dc − vdc,f )

8ceq
ωbil,d

+
il,dvo,dωb(kAD − kFF,v)

8ceq
+

kp,cωb

8ceq
il,q

2

+
kAD(vo,q − φq)− kFF,vvo,q

8ceq
ωbil,q

− kp,ci
∗
l,q + ki,cγq

8ceq
ωbil,q

21) κ̇Σ = −wΣ,z + w∗
Σ,z

22) ξ̇z = −ic,z + κΣki,wΣ,z
− kp,wΣ,z

(wΣ,z − w∗
Σ,z)

It can be noted that the interconnection with the cable

model is identical to what is already described for the 2L

VSC. However, since the MMC can be operated without an

explicit dc-side capacitor, the equivalent value of cdc will

be much smaller than for the 2L VSC. Thus, the equivalent

capacitance of the cable model, which should be included in

cdc as explained in section A.2.3 and A.2.4, can become the
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dominant capacitance on at the dc terminals of the converter

station.

A.3.2 State-space model of a MMC with ac-side power
control: For the MMC with ac-side power control, the only

state equation that will be different from the previous cases is

the dynamic equation for the total sum energy. This equation

is given as:

20) ẇΣ =
ic,z

2kp,czωb

2ceq
+

ic,zkFF,dcvdcωb

2ceq

+
kp,cz (kp,wΣ,z (wΣ,z − w∗

Σ,z)− κΣki,wΣ,z )

2ceq
ωbic,z

− ki,czξz
2ceq

ωbic,z +
il,d

2kp,cωb

8ceq
− il,dωbkADφd

8ceq

− il,dωbkp,ckp,packδ,vdc(v
∗
dc − vdc,f )

8ceq

− il,dωbkp,c(p
∗
ac − pac,m)

8ceq
− il,dωbkp,cki,pacρ

8ceq

− il,dωbγdki,c
8ceq

+
il,dvo,dωb(kAD − kFF,v)

8ceq

+
il,q

2kp,cωb

8ceq
− il,qωb(i

∗
l,qkp,c + kADφq + γqki,c)

8ceq

+
il,qvo,qωb(kAD − kFF,v)

8ceq

All other equations needed for representing this case are

already defined for either the dc-voltage controlled MMC

terminal or for presented cases with 2L VSCs.
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