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Abstract
A transition to a bioeconomy implies an increased focus on efficient and sustainable use of biological resources. A
common, but often neglected feature of these resources is their location dependence. To optimize their use, for example
in bioeconomic industrial clusters, this spatial aspect should be integrated in analyses. Optimal design and localization of
a bioeconomic cluster with respect to the various biological and non-biological resources required for the cluster, the
composition of industrial facilities in the cluster, as well as the demands of the outputs of the cluster, is crucial for
profitability and sustainability. We suggest that optimal design and location of bioeconomic clusters can benefit from the
use of a Multicriteria Decision Analysis (MCDA) in combination with Geographic Information Systems (GIS) and
Operations Research modeling. The integration of MCDA and GIS determines a set of candidate locations based on
various criteria, including resource availability, accessibility, and usability. A quantitative analysis of the flow of re-
sources between and within the different industries is then conducted based on economic Input-Output analysis. Then,
the cluster locations with the highest potential profit, and their composition of industrial facilities, are identified in an
optimization model. A case study on forest-based bioeconomic clusters in the Østfold county of Norway is presented to
exemplify this methodology, the expectation being that further implementation of the method at the national level could
help decision makers in the planning of a smoother transition from a fossil-based economy to a bioeconomy.
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1 Introduction

A bioeconomy is “an economy where the basic building
blocks for materials, chemicals and energy are derived from
renewable biological resources” [1]. The need and desire for a
transition from a fossil-based economy to a bioeconomy is
well established at the European [2, 3], Nordic [4], and
Norwegian level [5, 6]. Overall sustainability and a holistic
view of resource optimization across sectors are emphasized
by a Nordic Innovation Report [7]: “bioeconomic innovations
target resource-efficient use of valuable bioresources”. Given

this emphasis on the sustainable use of biological re-
sources, it is likely that land use management will become
a very important issue in the future. In this context, it is
important to keep in mind that plant-based resources are
linked to a specific geographic location. This location may
vary in a range of aspects, affecting for example the qual-
ity, growth rate, renewal rate, and accessibility of the re-
sources. Additionally, time can also create variability, all of
which affects resource exploitation.

This paper deals with the question of how to locate and
design multisectoral industrial clusters in, and closely
linked to, the bioeconomy. The goal is to maximize the
cluster’s collective efficiency while at the same time pro-
vide economic, environmental, and social benefits, which
is an expected and desired outcome from the bioeconomic
transition. This offers a cross-sector perspective on renew-
able resources, in line with both national and international
strategies.

The concept of industrial clusters [8] has its roots in the
field of Industrial Ecology. This concept has a holistic view of
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the industrial system, and emphasis on the biological and ma-
terial flows within and outside the system as basic character-
istics. In this paper, we define a cluster as a composition of
industrial facilities that are geographically located in the same
area or within a defined close distance from each other. A
bioeconomic cluster is in turn a cluster in which the facilities
involved mainly use renewable biological resources. Padmore
and Gibson [9] developed quantitative indicators to evaluate
clusters based on the type of industries, markets, and resources
present in and/or around such locations. In this work, we
mainly follow Raymond and Cohen-Rosenthal [8] in their
main argument that the better use of resources will contribute
to the bioeconomic transition by reducing emissions and
waste, while increasing profitability.

The literature has the common assumption that ideally,
transportation (a) within and (b) outside a cluster should be
minimal. From the definition we adopted, “(a)” follows logi-
cally, whereas for “(b),” it is important that the cluster is lo-
cated near places where biological, human, and energy re-
sources are available. The volume, quality, composition, and
access of biological resources vary across space, and the trans-
port of biomass involves equally varying cost and time.
Furthermore, “when focusing on innovation in the area of
bioeconomy, it must be taken into account that biobased raw
materials are a highly local issue, and best competence on
understanding the local raw materials and ecosystems is often
local” [7].

Based on the above, how to best locate a cluster for access
to resources and external markets is a geographical site selec-
tion problem where the decision involves explicit spatial al-
ternatives, the location of clusters. A combination of methods
is proposed to capture both the geographic and economic fac-
tors involved. The problem to be solved can be formulated as a
search for the spatial unit(s) that maximize(s) the overall ben-
efit from using renewable resources (supply, availability, sus-
tainability, usability, and access to markets for biomass and
related resources), with minimum transport costs and environ-
mental side effects.

In this paper, we have used a combination of
Geographic Information Systems (GIS), Multicriteria
Decision Analysis (MCDA) and Operations Research
(OR) methods to select the most suitable location and
composition of bioeconomic industrial clusters within a
geographic region. These tools have been frequently
employed separately. What this study aims to contribute
to the field is a combined methodology that will improve
the decision-making in the context of bioeconomic clus-
ter planning. This combination adds valuable pieces
compared with what can be achieve by each of the
methods independently. We illustrate the method with a
case study on forest biomass, given its importance to
Norway’s economy, wide distribution, political interest,
and range of uses.

2 Theoretical Framework

2.1 GIS-MCDA

GIS has long been serving as a tool for spatial decision support
systems [10, 11], with its strong capabilities of acquiring, stor-
ing, andmanipulating spatial data. A decision analysis process
where multiple criteria are evaluated for one or multiple ob-
jectives is referred to as MCDA. Malczewski [12] states that
“MCDA provides a rich collection of techniques and proce-
dures for structuring decision problems, and designing, eval-
uating and prioritizing alternative decisions.” According to
Allain et al. [13], “the unaddressed issue of landscape-level
MCDAs is strikingly the question of distribution and hetero-
geneity”, i.e., how benefits are distributed in space, time, and
between social actors. The integration of GIS and MCDA
strengthens the handling of criteria that have a spatial dimen-
sion through GIS and the handling of values or preferences
throughMCDA [14]. The combination of the two terms meets
the unaddressed issue forwarded by Allain et al. [13]. A GIS-
based MCDA (GIS-MCDA) can be defined as a process that
transforms and combines geographical information and value
judgments, to obtain information for decision-making [12].

The spatiality is explicit in site selection problems.
Selecting sites for a new industry [15], for specific agricultural
land use [16], solar farms [17], a biogas plant [18], or a new
park [19], are some examples. In these studies, GIS-MCDA
proved useful for selecting suitable sites. For bioeconomic
cluster site selection, also, aspects of cost-benefit and sustain-
ability analyses are crucial in the decision analysis related to
economic activities. MCDA lacks explicit rules of cost and
benefit comparison [20]; it is thus necessary to include a meth-
od complementing that aspect of the analysis.

2.2 Operations Research in Bioeconomics
and in Clusters

Operations Researchmethods are a useful way to include cost-
benefit comparison in the analysis. According to Bjørndal
et al. [21], “OR methods for bioeconomics” is indeed its
own field of study, describing methods applied to agriculture,
fishing, forestry, and mining. Despite rather different time
scales of the production systems, objectives, and resources,
there are commonalities, specifically, the need for multicriteria
approaches, and explicit consideration of the environment.

Designing eco-industrial clusters is a topic getting more
and more attention. Boix et al. [22] state that most research
studies focus on the optimal design of an industrial cluster
network while taking into account separately water, energy,
and materials. Linear and non-linear programming are used to
analyze and decide on optimal design, e.g., multiobjective
linear programming approach for forest management [23],
optimal exploitation of fish considering environmental factors
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[24], and cost-efficiency linking of farming nutrients, live-
stock, land use, and water quality [25]. Other relevant works
on industrial clusters are summarized in Table 1.

In Hauknes [36], a process for identifying and defin-
ing clusters in an aggregated Input-Output (I-O) network
based on resource exchange between industries is sug-
gested, where the full I-O table is reduced by
winnowing out weak links and small sectors. In
Lindberg et al. [37], the authors perform an I-O analysis
of Nordic countries and regions to understand the na-
tional and regional impacts of developments within the
bioeconomy. Lindberg et al. [37] also looks at value-
added multipliers and employment effects of the
bioeconomy by applying national and regional I-O
models of the economy/production. A study more close-
ly related to our work is found in Yazan et al. [38],
who study the concept of industrial symbiosis on indus-
trial areas, which share characteristics with our
bioeconomic industrial clusters. Environmental concerns
and I-O models are successfully merged, which has led
to the development of the now called environmentally
extended input-output (EEIO) analysis, of which a sig-
nificant body of literature already exists [39].

2.3 Multidisciplinary Approaches

A combination of methodologies for a bioeconomic cluster
site selection problem can draw from the strengths of both
GIS-MCDA and OR, which complement each other well.
There are several examples of GIS-MCDA used together with
special linear programming models to solve specific prob-
lems. For example, Bryan and Crossman [40] use GIS-
MCDA and a minimum set algorithm to achieve a more ho-
listic approach to regional resource management than spatial
models or linear programming models can do alone. In Orsi
et al. [41], a mixed integer linear programming (MILP) ap-
proach was used to maximize areas for reforestation given
constraints on budget and several other aspects. Suitability
maps generated through a combination of ecological criteria

were given as input to theMILPmodel. Also, Zhang et al. [42]
proposes an integrated GIS, simulation, and optimization tool
for location and operation of biofuel plants. The GIS model
chose potential locations, the simulation tool analyzed flows
and proposed feasible networks and their costs, and the opti-
mization model selected among these the network which op-
timized flows and costs. In our study, the use of GIS in the
analysis of potential bioeconomic cluster locations is extended
to explicit GIS-MCDA.

3 Method

In this section, we present a methodology to solve the
bioeconomic cluster location challenge, designed to be both
case-independent and as comprehensive as possible. First,
potentially suitable sites are identified through the coupling
of GIS and MCDA. The GIS-MCDA takes into account
biological as well as more abstract resources. The latter
might be resources less suitable for optimization models,
such as human resources. The OR method, based on inputs
such as location and volume of resources, transport infra-
structure, and economic I-O industry relationships, finds
the optimal sites from among the suitable ones. These opti-
mal sites give the highest total profit for the whole region
under consideration, once costs and incomes are included.
Figure 1 shows a flow diagram illustrating the coupling of
methods.

3.1 GIS-MCDA

The GIS-MCDA procedures applied in this study is theo-
retically explained by Eastman [43] and reviewed by
Malczewski and Rinner [14]. In GIS-MCDA commonly,
a number of specific objectives are defined. Multiple al-
ternatives are evaluated with respect to the defined objec-
tives based on a set of criteria. The criteria are measured
with a set of attributes that is factors that directly or indi-
rectly affect the objective and constraints.

Table 1 Literature on OR
methods in industrial clusters Reference and context Notes

Western Rotterdam port, Netherlands [26] Optimization, reduction of costs, pollution control

Central Massachusetts cluster, USA [27] Energy use reduction, government stimuli

General Cluster design [9] Composition, resources, markets, competition

Six Dutch and American clusters [28] Comparisons on costs, impact, expectations

Puerto-Rican cluster [29] Resource and by-product exchange, challenges

Cluster in Kalundborg, Denmark [30] Water and commodities focus, alternatives

Le Havre port, France [31, 32] Maximize flows, profits, minimize pollution and waste

Tjelbergodden industrial cluster, Norway
[33, 34]

Optimization of the profits of the natural gas powered industries

Beijing and surroundings, China [35] Optimization of the allocation of industries
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3.1.1 Alternatives

Let Li be a potential cluster location with i ∈ (1, 2, 3,…, n).
Each Li is characterized by a two-dimensional location vector
defining the center of the spatial unit supported by an area, i.e.,
Li defines a spatial unit such as an administrative division
(e.g., municipalities) or, in our case, equally sized and uni-
formly spaced square grid cells.

For each location Li, there are M attributes and K con-
straints parameterizing it in relation to the objectives. Also,
for each Li, the value of each attribute Aj, j ∈ (1, 2, 3,…,
M) and each constraint Ck, k ∈ (1, 2, 3,…,K) is evaluated.
Attributes Aj take values in different scales and ranges, while
a constraint Ck might only take binary values (0 or 1).

3.1.2 Attribute Scaling

The original values of the attributes often inherently differ
from each other both in terms of their measurement units
and ranges of values. These differences can be problematic
during the aggregation or combination of the attributes for
the final evaluation of the alternatives. To ensure comparabil-
ity, the attributes are standardized to the samemeasuring scale,

intervals, and ranges. The intervals [0,1] and [0,100] are often
preferred for simplicity. This standardization of attributes is
one of the critical parts of the MCDA as outlined in several
key studies [14, 43, 44].

There are many scaling techniques used to standardize the
raw data. Very often value functions that relate the raw values of
the attributes to the standardized scale are used. The value func-
tion measures the preference or worth or desirability of the
alternative with respect to the criterion [14], for example, the
desirability of a given site or a municipality with respect to
forest biomass supply. The value function can be linear or ex-
ponential, depending on the sensitivity of the preference to the
changes in the value of the criteria. Some of the preferences aim
at maximizing attribute values while others aim at minimizing
them; in this case, biomass supply can be an example of the
criterion to be maximized, and the distance to the nearest road
can be an example of the criterion to be minimized.

For the jth criterion to be minimized, the value function can
be approximated as

V Aij
� � ¼ maxi Aij

� �
−Aij

maxi Aij
� �

−mini Aij
� �

" #ρ
ð1Þ

Fig. 1 Steps followed in linking the GIS-MCDA and the OR models. a)
Aerial photograph of the study area, b) data on resources, c) value scaling,
weighting and combining of resource data, d) selected alternatives based

on high suitability score, for input to e) OR model, providing f) final
optimal cluster locations
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while the value function for maximization can be approximat-
ed as

V Aij
� � ¼ Aij−mini Aij

� �
maxi Aij

� �
−mini Aij

� �
" #ρ

ð2Þ

The denominator in both equations is the range of
the data values of the jth criterion. Although this range
can be obtained from the empirical data, it can also be
set according to the ideal maximum and minimum util-
ities. For example, if the distance to the closest road is
to be minimized and if any resource further away than
10 km from a road is not usable, the distance of 10 km
corresponds with the value of maximum distance and
the distance of 0 km with the minimum distance irre-
spective of whether such a distance is empirically en-
countered or not. The ρ in (1) and (2) is a positive
parameter. Depending on its value, the function can be
linear (ρ = 1), convex (ρ > 1), or concave (0 < ρ < 1).
According to Ligmann-Zielinska and Jankowski [45], ρ
can also be interpreted as the decision maker’s percep-
tion of risk associated with a decision outcome. A con-
cave function is an indication of risk aversion and a
convex function shows a risk-affinity strategy. In this
study, we used a linear value function, which implies
a neutral attitude to risk.

3.1.3 Attribute Weighting

A weight is assigned to an attribute as a measure of the
attributes’ importance relative to the other attributes under
consideration. A number of systematic methods of
assigning weights to attributes are available [14]. The
weights can be assigned either in a spatially explicit or
implicit way. They can therefore be local or global de-
pending on how the assignment of the weights varies with
space. Some examples of the weighting methods are the
ranking method [46, 47], rating method [46], pairwise
comparison, entropy-based, and proximity adjusted [17].
No clear recommendation on appropriateness exists for
particular applications; however, some of them are used
more often than others mainly due to their simplicity.

For bioeconomic applications, due to the straight forward-
ness with regard to the assigning mechanism and interpreta-
tion, we applied the ratingmethod in our analysis. In the rating
method, the decision maker estimates a weight on the basis of
a chosen scale, for example 0 to 1, or 0 to 100. Each attribute
then gets an assigned weight score wj. Finally, the normalized
weight score Wj is computed as

W j ¼ wj= ∑
m

j¼1
wj; ð3Þ

3.1.4 Criteria Combination Method

In the final step of GIS-MCDA, decision-making is based on
the combined value of data and information about the alterna-
tives and the decision makers’ preferences. The criteria are
combined in order to get the final rank or value of the alterna-
tive with regard to the objectives. Several combination rules
are discussed in the literature, for example, the differences
between Boolean statements of suitability, the weighted linear
combination (WLC) and the ordered weighted average as
discussed by Eastman [43], a review of applications using
the approaches weighted summation (i.e., WLC), ideal/
reference point, and outranking methods by Malczewski
[12], and an overview of the WLC, ideal point methods, the
analytic hierarchy process, and outranking methods by
Malczewski and Rinner [14]. Both Malczewski [12] and
Malczewski and Rinner [14] find the WLC and related proce-
dures to be the most popular combination methods, among the
different combination rules assessed. The weighted linear
combination is found to be relevant and easy to understand
and implement for the problem in this study.

In the WLC technique, the score Si of alternative Li is equal
to the weighted sum of the standardized values of all attributes
multiplied by the product of all constraints,

Si ¼ ∑
m

j¼1
VijW j

 !
∏
K

k¼1
Cik

� �
ð4Þ

where Vij is the standardized value of the attribute j for the
alternative i, Wj is the normalized weight of attribute j, Cik is
the binary value (0 or 1) of the constraint k for the alternative i.
If there are no constraints, or if the value of all the constraints
is 1, the weighted sum of the attributes is not affected as the
product of the constraints becomes 1. Notice that alternative i
is disqualified if at least one constraint is 0.

3.1.5 Selection of Alternatives

The selection of alternatives can be made based on a number
of strategies [14]. In summary, comparison of the alternatives
is made either against an ideal or against each other so that
alternatives with the best score may be selected. In the present
case, as no ideal condition is set, the alternatives are compared
with each other based on their scores. In the end, the alterna-
tives with the highest scores are to be used in the OR step of
the method as potential cluster locations.

3.2 OR Method

To arrive at the best overall alternative(s), we apply an eco-
nomic optimization model where the inputs, outputs, interac-
tions, and cost-benefit of the alternatives proposed by the GIS-
MCDA are accounted for, as shown in Fig. 1.
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3.2.1 Model Overview and Decisions

First, the set of potential cluster locations from the GIS-
MCDA-model are taken into the optimization model, together
with production inputs, outputs, and interactions between
clusters, as well as cost-benefit of the alternatives.

TheMILPmodel incorporates elements of dynamic facility
location problems [48], in combination with a supply-chain
network design problem where investments and availability
and costs of resources and transport costs can influence each
other. It is important to emphasize that the model makes all
these decisions simultaneously, solving the set of equations
aimed at maximizing profit for the entire network.

Some of the decisions made by the model are:

– Which cluster(s) to establish (investment/location), each a
yes/no decision

– What is the mix of facilities within these clusters, each a
yes/no decision

– Where and how many resources to harvest
– The flow and quantities of resources/products from their

place of origin/production to clusters/consumption.

3.2.2 Mathematical Model Description

The description of the mathematical optimization model with
the main equations and assumptions are summarized in this
section. The problem is represented by a graph, a combination
of arcs representing transport links between nodes, with a
minimum transport distance associated with them, and nodes
representing geographical locations generated by GIS-
MCDA. These nodes can have natural resources, industrial
clusters, or consumption centers. An (industrial) cluster is de-
fined as a set of industrial facilities, one per sector, with the
capacity to produce one “main” product and a number of by-
products. Facility inclusion and size within a cluster is defined
by the optimization routine. The model determines each
facility’s size as a decision variable, with all facilities in all
possible clusters having the same maximum limit. For this
case, all nodes can build all types of facilities in any size below
the maximum capacity. A cluster can potentially have one or
all of the sectors represented.

Decisions in the model are taken based on an objective
function Obj that maximizes total benefit (income) Bt minus
total costs Ct over the planning horizon divided in t ∈ T pe-
riods,

Obj ∙ð Þ ¼ ∑
t∈T

Bt−Ctð Þ: ð5Þ

Sales Bt account for all sales of raw products from harvest
nodes and secondary products from cluster nodes. The aggre-
gated costs Ct consist of an expression including:

– Investment cost of each cluster
– Investment cost of each industrial facility in each cluster
– Costs of harvesting resources
– Costs of transporting resources between nodes
– Operational costs for each facility

Below, we summarize some of the main constraints in the
optimization model.

The volume of the raw material p that can be harvested in a
resource node i in period t, hi, p, t, is limited by its estimated
availability, Ri, p, t. Estimated availability is based on annual
volume of production

hi;p;t ≤Ri;p;t: ð6Þ

All harvested resources are transported to a cluster, and all
product volumes going into a cluster, cinj;p;t must be transported

either from other harvesting nodes or other clusters. The vol-
ume of product p, transported between nodes i,j is represented
by xi, j, p, twhich, depending on the nature of the origin node i,
and the product type p, might be 0 in the model (as is the case
for trying to send raw products from a cluster node, or proc-
essed products from a harvest node),

hi;p;t ¼ ∑
j
xi; j;p;t: ð7Þ

cinj;p;t ¼ ∑
i
xi; j;p;t: ð8Þ

Transport links which are patently sub-optimal are re-
moved during data preprocessing. This is especially important
as it reduces the running times and memory usage of the
model; while it might not be crucial in all cases, larger, real-
istic studies likely benefit from reduced computational loads.

Cluster and facility investments can only take place once in
each node. In general, we assume clusters are operational im-
mediately after investment. A cluster must either previously
exist or be established by the model to allow the transport of
materials to/from the associated node, and for allowing facil-
ities inside the cluster. Since by definition, each facility has a
“main” product, its capacity is constrained in relation only to
the main product. By-product production is always in relation
to this capacity. Cost for the establishment of each cluster
includes both an investment cost for the cluster itself (infra-
structure, permits, space) and a cost to establish each of the
potential industrial facilities individually. The operational
costs are tied to the level of production of each facility in a
linear manner. This is a simplification which arises from the
objective of the model which is to define and localize clusters
in a larger area, and not to determine the optimal operations of
said clusters.

Inside the cluster, materials are converted into new prod-
ucts, and products and by-products are exchanged between the
facilities inside the cluster, between clusters, and eventually
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flow out of the cluster for sale. Unused by-products are
allowed. The conversion of products inside an industry facil-
ity, yf, p, q, is modeled using economic I-Omodeling, described
in Section 3.3. The modeling describes how much of each
product q is needed (in total money worth) to produce product
p. One (arguably more desirable) alternative to this would be
to have realistic production functions for each specific facility
for the cluster. While more refined, this is technically demand-
ing for a demonstrative study like the one described here.

Product flows (pin, pout) into and out of a facility f located in
cluster location i can be described as

pouti; f ;q;p;t ¼ Y f ;p;q∙pini; f ;p;t: ð9Þ

Finished products are sent out of the cluster to customers in
the market. Deliveries of products are bound byminimum and
maximum demand per costumer.

The expressions above, together with the parameter values
provided by the other tools, are implemented in FICO-Mosel.1

The solved model provides the values of all decision variables
(locations, facilities, transportation, etc.) and the optimal ob-
jective function result.

3.3 Economic Input-Output Analysis

To provide the conversion rates necessary for our case study,
we have used a Norwegian I-O2 table. The I-O tables are
derived based on the assumption of a fixed product sale struc-
ture, and they show flows from each industry to other indus-
tries and to final users. As described above, this is but one way
to estimate production conversion rates, and a realistic case
study would ideally have access to more precise technical
data.

An I-O table is a macroeconomic model based on a generic
top-down view of the economy. It represents the whole supply
chain at a nation-wide level, along with its sectoral production
and consumption patterns. The sectors related to the
bioeconomy, which are our focus, are identified using the
classifications in Mikkelsen [49], which shows all the
NACE3 codes either belonging to the bioeconomy, or intrin-
sically related to it.

An I-O model records the flows of products and ser-
vices from each industrial sector, i.e., a “producer” to
each of the other sectors, i.e., “consumers”, and records
them in a table or matrix representing the entire econo-
my of a country. Because sectors can be aggregated by

matrix operations, we can easily transform the compre-
hensive I-O table for Norway into one in which the
bioeconomic sectors are aggregated, while the rest is
represented as a single entry. Table 2 shows the
bioeconomic sectors and related A64 level codes, aggre-
gated according to NACE3 codes.

In the general I-O notation, the total (direct and indirect)
requirements needed to produce the output, o, for a given final
demand vector, δ, is described as

o ¼ I−Dð Þ−1δ: ð10Þ
where I is the identity matrix, andD = [dij] describes the prod-
ucts i required by industry j to produce one unit of monetary
output. The mix of inputs includes raw materials, machinery,
energy, goods, and services. Vector o represents the total out-
put in a given sector. This is equal to vector δ, the sum, for
each product, of the volume in which said product is con-
sumed by other industries and by the final demand agents.
The expression (I −D)−1 is commonly known as the Leontief
Inverse matrix. Matrix (I − D) is generally non-singular,
though aggregation can alter this property; the existence of
no inverse and its consequences, however, are our scope of
this work.

Finally, because I-O models represent flows of money,
not volumes, we combined the I-O conversion matrix with
absolute production figures from estimates for each
square. In this way, we defined a conversion rate which
allows us to transform physical and monetary flows. This
consideration is important for example regarding transpor-
tation in the OR model, e.g., values of forest and fishing
products can be the same, but the cost for transporting
their volumes is likely different. The information on bio-
mass production which is combined with I-O monetary
flows can be found in Falk-Andersson et al. [50].

1 Implemented in the FICO Xpress Mosel language and solved by the Xpress-
Optimizer version 31.01.12 (http://www.fico.com).
2 Supply and Use and Input-Output tables, http://www.ssb.no/en/
nasjonalregnskap-og-konjunkturer/tables/supply-and-use-and-input-output,
published 24th of August 2017.
3 NACE is derived from the French Nomenclature statistique des activités
économiques dans la Communauté européenne, and is the statistical classifi-
cation of economic activities in the European Community.

Table 2 Aggregated bioeconomic sectors

Bioeconomic sector A64 code

1. Agriculture R01

2. Forestry R02

3. Marine industries R03

4. Processing of Agriculture and Maritime Resources R10–12

5. Processing of forestry R16–17

6. Other possible processing industries R13–15, R31–32

7. Biotech R20–21

8. Other industry, machines for processing industries R28

9. Energy production and distribution RD

10. Recycling (might be relevant) R37–39

11. Trade R46
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4 Case Study and Results

As our case study area, we have chosen the county of Østfold
in south eastern Norway (Fig. 2). Østfold covers 4182 km2 of
which 64% are forested and 19% are agricultural area. For the
purpose of this study, the area is divided into 67 spatial units
by overlaying 10 × 10 km grid cells [51]. These spatial units
are the alternatives for cluster locations.

While forest biomass is only one example of a resource
important in the bioeconomy, we found that its wide distribu-
tion, policy focus, and range of uses made it interesting for a
first case study, testing the combination of GIS-MCDA and
OR optimization modeling focused on potential location of
bioeconomic industrial clusters.

4.1 GIS-MCDA Steps

For the construction of the GIS-MCDAmodel, explicit spatial
data is required on biomass, infrastructure, and human re-
sources (Table 3). Four groups of criteria are considered:

– Biomass: Supply of forest biomass based on annual po-
tential growth. The spatial distribution and potential
growth rate is obtained from the Norwegian Land
Resource map (AR5). This information is combined with
statistics on estimated annual growth from Statistics
Norway. Total volume in a spatial unit and its neighboring
units are good indicators of the availability of biomass.

– Transport infrastructure: A sizeable cost when utilizing
forest biomass, both regarding accessibility of resources
but also transport of products and by-products between

industry and market. Transport is assessed according to
the proximity to different road types, based on road net-
work data; proximity to harbors and train stations is also
considered, as are potential terminals of transport
exchange.

– Logistics infrastructure: Usage of resources depends on
factors like power, communication, water, and sewer sys-
tems. We used population and size of city zones within
the spatial units as indicators of the logistic infrastructure
in that unit.

– Human resources: The development of bioeconomic
clusters requires knowledge, e.g., academic, industrial,
and R & D, as well as a workforce and physical and
financial markets. We have used available data on aca-
demic and research institutions, and on population, to
generate distance-based access to human resources.

The data that represents the resources in these groups was
collected from different sources (Table 3) and aggregated to
the 10 × 10-km spatial units. The mean distance to the differ-
ent road types, harbors, train stations, and education and
knowledge facilities were all calculated in the same manner.
Each spatial unit was divided into 100 × 100 m sub-units for
the purpose of precision, and minimum Euclidean distances
from the objects to the center of the spatial unit were calculat-
ed for each sub-unit. Then, an average distance was computed
for the original 10 × 10 km spatial unit.

Map layers were assembled in raster format for analysis in
Python 2.7, with NumPy and GDAL packages. Each map
layer represents one attribute (Table 4), while each grid cell
represents a spatial unit (the alternative locations). Attributes
were weighted as described in Table 4. The only model con-
straint was that a grid cell should not contain more than 50%
of environmentally protected areas, resulting in one of the 67
cells being left out of the analysis.

The weights were decided by the authors based on their
expertise. Weights were set for two levels, attributes, and
groups. The attributes in each group were weighted relative
to the other attributes in that group, e.g., importance within
the transport group (Table 4). The groups were weighted
relative to the other groups, e.g., transport against biomass.
To address ambiguity on the importance between the
groups, they were assigned weights within a range,
expanding a base weight between the minimum and the
maximum weights (Table 4). The group weight is then se-
lected randomly within the range in a Monte Carlo ap-
proach to compute the suitability scores. The random selec-
tion of the weight values and the computation of the suit-
ability scores were run 1000 times to simulate weight
values estimated by 1000 individuals. The mean, the stan-
dard deviation, and the coefficients of variation of the suit-
ability scores are subsequently computed for each site.

Fig. 2 Case area is the county of Østfold, with a 10 × 10-km grid
structure delivering 67 alternative locations
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Model specifications used in the analysis are listed in
Table 5. The use of generic specifications are justified as the
goal for the GIS-MCDA analysis was to refine the total num-
ber of alternatives into a smaller list of potential candidates
and since the scale of the analysis is regional, .i.e.,
representing resources on 10 × 10-km spatial units.

The outputs from the analysis were suitability maps with
scores on relative importance for each cell, for each combina-
tion of main group weightings. A single suitability map was
processed based on the mean value of these maps (Fig. 3a).
Additionally, the coefficient of variation of the estimated suit-
ability scores is presented in Fig. 3b as a measure of the un-
certainty of the estimation of the mean. Candidate alternatives
for the OR model were selected from that suitability map
based on a natural break in the scores allowing seven candi-
dates (ca. 10%) to be subjected to further analyses using opti-
mization. Figure 4 displays the main group contributions to
the score of these seven alternatives.

4.2 Optimization

The OR model received the proposed locations from the GIS-
MCDA, and ran the MILP optimization routine on them. The
model also had access to resource availability data, which
defined how much each harvesting node might produce.
Alongside the proposed locations and geographical harvesting
data, data on distances between the 67 spatial units was fac-
tored in. These distances were computed as the shortest path
along existing road network. Distance thus refers to the
transporting of materials between the cluster-, harvest-, and
consumption-nodes in the cheapest way. The paths, and the
associated costs per resource type, were calculated a priori and
used as input. Transport costs, like production costs, are esti-
mated following a simplistic approach using a constant frac-
tion of the distance as transport costs.

Note that the case presented considers only one period of
operations. Themodel, as formulated above, allows for further

Table 4 Fifteen criteria, represented as map layers of attributes, belonging to four groups. Both attributes and groups are weighted

Group weight range Group Attribute weight Attribute

90–110 Biomass (availability) 100 Forest annual biomass production

75 Forest biomass of the immediate neighboring locations (3 × 3 without center cell)

50–70 Transport (accessibility) 70 Mean distance to major highway (European road)

80 Mean distance to major highway (national road)

100 Mean distance to minor highway (county road)

80 Mean distance to street (municipality road)

60 Mean distance to forest road

45 Mean distance to private road

50 Mean distance to train station

45 Mean distance to harbor

40–60 Logistics (usability) 100 Mean distance to population centers

60 Population

50 Population of the immediate neighboring locations (3 × 3 without center cell)

30–50 Human resources (usability) 100 Mean distance to education facilities and knowledge-intensive business services

75 Population

Table 3 Data, sources, and processing per 10 × 10-km spatial unit

Resource Data (source) Type Processing

Forest biomass Land Resource map AR5 (NIBIO) Polygon Size within unit and size within 3 × 3 neighborhood
(without center cell)

Road network ELVEG (Norwegian Mapping Authority) Line Mean distance to different road types

Train stations N50 (Norwegian Mapping Authority) Point Mean distance

Harbor locations Compiled by authors from public records Point Mean distance

City zones City zones (Statistics Norway) Polygon Mean distance

Population Population 1 × 1 km grid (Statistics Norway) Regular grid Sum within unit and sum within 3 × 3 neighborhood
(without center cell)

Human knowledge Compiled by authors based on location of education
facilities and knowledge-intensive business services

Point Mean distance
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periods where values change over time (e.g., increased pro-
duction to satisfy increasing demand over time), which may
be relevant in other cases.

Cluster establishment and composition are the main strate-
gic decisions. Harvesting, transport, and production are the
three main operational decisions provided by the model.

Demand of end-products can be modeled in different ways,
which likely affects the results. To illustrate this, we present two
different ways of considering demand. In instance one, local
demand is not explicitly specified: products produced in the
cluster are assumed sold, location and size of demand obviated.
In instance two, demand nodes are specified in several loca-
tions, with demand volumes proportional to the population of

each node. As with the conversion rates, here, we make use of
the data in the I-O tables to calculate localized demand for the
lack of better sources. In both instances, demand must be met,
and it is the only way the system may obtain revenues.

Table 6 summarizes the results of these two instances. For
each node selected for the establishment of a new cluster, we list
the facilities built there. For the sake of brevity, we omit

Fig. 3 aMean of scores ranked from 1 to 67 (i.e., number of alternatives)
from running the model 1000 times. Each time the scores were computed
based on weights that were randomly chosen within the specified interval
for each criteria group. The attribute weights were kept constant. The

seven candidate alternatives for OR are marked with black borders
(alternatives 23, 24, 47, 48, 52, 53, and 54 from Fig. 2). b Coefficient
of variation (CV) for each square

Fig. 4 The seven selected suitability alternatives, ordered from high to
lower scores (from grid cell 24 to 52), with percentage contribution to
score from criteria groups

Table 5 GIS-MCDA method specifications used for the case study

Step Specification

Data integration Raster, 10 × 10-km spatial resolution

Spatial reference system WGS 84/UTM zone 33 N

Value scaling (standardization) Linear value function, 0–100

Criterion weighting Rating, 0–100, two levels

Normalization of weights 0–1, total sum 1

Combination rule Weighted linear combination (WLC)

Score (final rank) 0–100
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quantitative data on capacity, resource production, or transport.
We can see that location 24 is arguably a strong candidate for
clusters, regardless of how demand is modeled. And we also see
that all selected candidates are mainly clustered around two
zones—around locations 23 and 24 and locations 47, 48, 52,
and 53. There is a good mix of different types of facilities rep-
resented. We also see that agriculture and marine industries may
be part of a cluster based on forestry. Figure 5 shows the flow of
forest resources into the selected cluster nodes for instance 2.

The cluster locations selected by the OR model in both
instances include two clusters which have a relatively large
share of human resources and infrastructure, and one or two
clusters with a high share of biomass resources. In most cases,
the selected location with a high share of biomass also in-
cludes the industry sector “Processing of forestry” (industry
sector/A64 code R16–17), which is a sector that requires rel-
atively much forest biomass, compared with for instance
“Processing of Agriculture and Maritime Resources”, or
“Biotech.”

5 Discussion

GIS-MCDA and OR represent two different methodologies
with different strengths and weaknesses. In the study

described here, we have combined the two and applied it to
a case study. The combination of these two methods has a
variety of benefits. One very important advantage of starting
the analysis with a GIS-MCDA is the ability of this method-
ology to compile a wide range of data of different formats and
domains. As long as the data has a geographical component,
this can be used as a “common denominator” in their analysis.
In our case, the ability of GIS to handle locational and prox-
imity analysis of different kinds of resources adds an impor-
tant aspect to MCDA and OR modeling. In GIS-MCDA, we
can include large spatial datasets and process them according
to defined criteria, prior to running the OR model. This way
we already start to rank the alternatives based on their suitabil-
ity, reducing the computation challenge for the OR model.
The OR model on the other hand makes complete cost-
benefit analysis, which GIS-MCDA lacks, taking into account
pre-defined criteria for harvesting of resources, e.g., keep an-
nual harvesting below annual production. Therefore, this com-
bination of methods enables us to analyze suitability, profit-
ability, and sustainability of a spatial unit for a bioeconomic
cluster in an integrated process. Given the outlined grand chal-
lenges [52] and the transition to a bioeconomy [53], we be-
lieve that the focus on the spatiality of renewable biological
resources, their use, and transportation is likely to become
even more important in the future.

In combining the two methods, it is important to keep in
mind that there is no universally set boundary between the
candidates selected by the GIS-MCDA. Thus, which can-
didate to include or not to include in the OR step can be
considered subjective. In the case presented here, we se-
lected the candidates based on natural breaks in the average
score values. However, one might consider using con-
straints such as the amount of biological resources acces-
sible to the spatial unit. Further, it may also be that the
candidate selected by GIS-MCDA result in no feasible so-
lution for OR model. This could be assessed through
broadening the input from the GIS-MCDA to the OR mod-
el for comparison. However, we consider encountering
such a problem unlikely, as GIS-MCDA itself already has
incorporated multiple criteria in the candidate selection in
an objective approach.

We have made many simplifications to this case study,
which merit consideration as they affect the quality of the
results. Still, as the methodology is designed to be flexible,
we consider our approach relevant to a wide range of applica-
tions. For example, the number of resources used, size of
geographic region, types of industry, and products can easily
be extended. While this case focused on development of new
clusters, the methodology can also be used to evaluate poten-
tial localization problems where existing infrastructure is in
place. Further, it is also possible to apply the method to ana-
lyze industries and clusters different from the bioeconomic
industries.

Table 6 Results for the run of two instances for the OR model using
GIS-MCDA input

Instance 1 Instance 2

Node Biosector Node Biosector

24 3. Marine Ind.
6. Process. Other
11. Trade

23 1. Agriculture
3. Marine Ind.
4. Process. AM
5. Process. F
6. Process. Other
7. Biotech
8. Other Industry
9. Energy Sector

48 3. Marine Ind.
4. Process. AM
5. Process. F
7. Biotech
8. Other Industry
9. Energy Sector
10. Recycling
11. Trade

24 1. Agriculture
6. Process. Other
9. Energy Sector
10. Recycling
11. Trade

52 1. Agriculture 3. Marine Ind.
4. Process. AM
6. Process. Other
8. Other Industry
9. Energy Sector
10. Recycling
11. Trade

47 1. Agriculture
3. Marine Ind.
4. Process. AM
5. Process. F
7. Biotech

53 1. Agriculture 3. Marine Ind.
4. Process. AM
6. Process. Other
7. Biotech
8. Other Industry
10. Trade

8. Other Industry
10. Recycling
11. Trade
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The uncertainty in aggregating spatial data from different
sources is an unavoidable problem in the present case, as
national data are not available at the same scale for all the
different variables. The combination of data from different
sources with different scales contributes to the uncertainty of
the result as the scale differences contribute to operational
error and propagates into the results. It is well known in GIS
that objects might have different properties and forms at dif-
ferent scales. This concept is widely acknowledged in GIS and
referred to as The Modifiable Areal Unit Problem (MAUP)
[54]. For example, if the origin of the 10 × 10-km grid had
been moved, the results of aggregating the data would be
different. However, working on a study area of a larger extent,
e.g., Norway, the trends between different regions of the study
area would probably still show similar patterns.

Regarding the MCDA, it is important to note that the
weights chosen are only used to exemplify the method, and

in a realistic application, more expert input would be used.
Nevertheless, the methodology used here is clearly explained
and can be used as a starting point when no expert input is
available. Developing methods for finding appropriate
weights to use depending on the case to be analyzed is there-
fore encouraged in future studies.

For the OR model to produce realistic results, it is neces-
sary to have good input on costs along the value chain, like
more detailed transportation costs. Further, note that the mar-
ket in the test case was simply modeled based on the popula-
tion around the cluster; ideally, this should be improved with
real demand functions. Additionally, while we have omitted
international sales in this model, this would indeed be inter-
esting to look at for industries with high international trade
interests, such as biotechnology.

We have used the Norwegian I-O table to provide conver-
sion rates in our facilities, but further studies should substitute

Fig. 5 Flow of forest biomass to
selected cluster selections for
instance 2
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this I-O method to obtain conversion matrices with other ap-
proaches, like recruiting production experts for each of the
facilities in question and model realistic production functions.
This would greatly improve the quality of the results, but it is
beyond the scope of this work.

The GIS-MCDA managed to differentiate between the al-
ternatives and suggest candidates for the optimization models.
The OR model then provided the best alternative cluster loca-
tions and configurations to consider in a decision-making pro-
cess. We consider this highly useful and see a range of poten-
tial uses for this type of analyses. One such example is sce-
nario analyses, where different input parameters can be varied
to assess the effects of differing situations, such as testing the
effect of reducing fossil-based transport as much as possible
on the choices made by the model.

Our results demonstrate that the integration of different
methods can indeed lead to an objective assessment of optimal
cluster location. The test was simplified through our choice of
focusing on only one resource and only one Norwegian coun-
ty. An obvious next step would be to test the framework on a
more realistic case, one that is larger with respect to size of the
region, number of resource types, and number of NACE in-
dustrial categories involved.

A pending challenge is to integrate not just existing indus-
tries and products, but also obtain good predictions on which
new industries will develop and what new products existing
industries will provide in the future. This could also be com-
bined with the inclusion of risk/uncertainty measures in the
model framework. How exactly to model this or similar is-
sues, while crucial for a complete analysis, seems difficult
without the aid of experts on innovation and industrial pro-
cesses, however.

In our case study, we have three types of boundaries: nat-
ural breaks, national/political breaks, and continuous bound-
ary. We believe it is only on the continuous boundary we have
potential edge effects [55]. As this represents a small propor-
tion of our case study boundary and our next aim is to work on
the entire country, for this methodological explorations, we
decided to not focus on this aspect.

There are clearly several other factors that influence the de-
velopment of bioeconomic clusters and that are not accounted
for in the models, such as local involvement and participation,
organizational challenges, biotechnological innovations (new
uses and products), willingness to invest, property structure
(possibly land use conflicts), legal rights, policy and incentives,
capital and funding, and existing industry. All of these are areas
of opportunity/improvement for future works.

6 Conclusions

When the aim is to select optimal locations and design of
bioeconomic industrial clusters, we conclude that a

combination of GIS, MCDA, and OR methods provide a
promising approach. This conclusion is based on our demon-
stration of how location does matter, as resource availability,
accessibility, and usability vary across space.

In our opinion, the spatial components of the transition to a
sustainable bioeconomy should receive more attention. This
requires in particular that transport needs from resource loca-
tion to industry and resource flows within clusters must be
focused on. In any decision regarding the use of bioeconomy
resources, economic benefits are a key aspect. Our multidis-
ciplinary approach combining these methods guarantees the
consideration of both spatial and economic aspects.

We present a first test of how these different methodologies
could be combined. The framework and method can easily be
adapted to larger regions and types of products and contexts
other than bioeconomic ones.

The collection and presentation of resource inventories in
maps together with identified optimal sites can effectively
communicate the geographical context. This can contribute
to better, knowledge-based decision-making and information
exchange between industry and government. Efficiency of
resource usage, economic benefits, and environmental im-
pacts need to be emphasized for a successful transition to a
sustainable bioeconomy.

In the future, we foresee that analyses widening the biolog-
ical resources included will be important. Also, extending the
analysis in terms of sustainability, e.g., through the use of
scenarios and environmentally extended input-output analy-
sis, is a relevant and interesting possible next step.
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