Computers and Geotechnics 125 (2020) 103660

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research Paper

Novel Bayesian framework for calibration of spatially distributed physical- @ M)
based landslide prediction models. oneictor

updates

Ivan Depina®”*, Emir Ahmet Oguz®, Vikas Thakur®

@ SINTEF, Department of Rock and Geotechnical Engineering, Trondheim, Norway
Y University of Split, Faculty of Civil Engineering, Architecture and Geodesy, Split, Croatia
¢ Norwegian University of Science and Technology, Department of Civil and Environmental Engineering, Trondheim, Norway

ARTICLE INFO ABSTRACT

Keywords: This study presents a novel Bayesian framework for statistical calibration of spatially distributed physical-based
Landslide landslide prediction models. The calibration process is formulated in a statistical setting with the model para-
Rainfall meters simulated as spatially variable with random fields and the model calibration defined within the Bayesian
Phlyilcal‘-based framework. The implementation of such calibration process is challenging due to large numbers of calibration
Ca ibration parameters and high-dimensional likelihood functions, which are central in establishing a relation between
Statistics . . - :

Bayes observations and the corresponding model predictions. The former challenge was resolved by reformulating the
Hazard Bayesian updating problem as an equivalent reliability problem and solving it with efficient reliability methods.

The latter challenge was resolved by developing novel lower-dimensional approximate likelihood formulations,
suitable for the interpretation of landslide initiation zones, based on the Approximate Bayesian Computation
method. The novelties of the proposed approach stem from describing landslide model parameters as spatially
variable, development of a statistical framework to calibrate landslide prediction models, and introduction of

approximate likelihood formulations.

1. Introduction

Landslides are a major threat to the global population, resulting in
substantial annual losses of life and damage to property throughout the
world (e.g., Petley, 2012). They are commonly characterized by the
movement of a mass composed of soil, rock, debris, and artificial fills
down a slope, under the influence of gravity (e.g., Varnes, 1958).
Landslides are triggered by different phenomena including precipita-
tion, snowmelt, rapid temperature changes, earthquakes, and human
activities. Recent climate trends indicate an increase in temperature
and precipitation in some areas of the world, which may increase the
frequency of landslide triggering events such as extreme rainfall,
snowmelt and temperature changes (e.g., Gariano and Guzzetti, 2016).
Combined with growing population and expanding land usage, societal
risk associated with rainfall-induced landslides are likely to increase
over time.

Increasing rainfall-induced landslide risks necessitate the develop-
ment and implementation of efficient landslide risk management stra-
tegies (e.g., Dai et al., 2002). Among the various strategies, Monitoring
and Early Warning (MEW) systems are often deployed as a cost-efficient
landslide risk management strategy (e.g., Pecoraro et al., 2018). One of
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the central elements of an MEW-based strategy is the capacity to sup-
port risk reduction with improved rainfall-induced landslide hazard
assessment and reductions of consequences. Such capacity is enabled by
an efficient integration of various data sources (e.g., monitoring data,
landslide inventories) into rainfall-induced landslide prediction models.
Rainfall-induced landslide prediction models can be classified with re-
spect to the underlying formulation into statistical- and physical-based
models.

The focus of this study is on the calibration of physical-based
models, which rely on the solutions of coupled hydro-mechanical dif-
ferential equations to capture the effects of rainfall infiltration and
groundwater flow on slope stability in unsaturated soils. Several phy-
sical-based models have been successfully applied to rainfall-induced
landslide assessment including Transient Rainfall Infiltration and Grid-
Based Regional Slope-Stability (TRIGRS) (Baum et al., 2002), Shallow
Landslides Instability Prediction (SLIP) (Montrasio and Valentino,
2008), GEOtop-FS (Simoni et al., 2008), Stability Index Mapping
(SINMAP) (Pack et al., 1998), r.rotstab (Mergili et al., 2014), and
Shallow Slope Stability models (SHALSTAB) (Montgomery and
Dietrich, 1994). Comparison of some of these models in Zizioli et al.
(2013) and Schiliro et al. (2016) reveals that the models often achieve
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similar levels of accuracy in predicting shallow landslides. This study
will examine the performance of the TRIGRS model to simulate the
timing and spatial distribution of shallow, rainfall-induced landslides
(Baum et al., 2002). More detailed examination of the TRIGRS features
is presented in the following sections.

One of the central elements in the implementation of TRIGRS and
other physical-based model is model calibration due to paucity of input
data on time-varying rainfall, topographic, soil thickness, initial water
table depth, material strength, and hydraulic properties (Salciarini
et al., 2006). Several additional studies demonstrated the importance of
calibration with the use of probabilistic approaches (e.g., Canli et al.,
2018; Melchiorre and Frattini, 2012; Khalaj et al., 2020; Zhang et al.,
2009; Zhang et al., 2010) to account for the effects of parameter un-
certainty in model calibration, sensitivity analysis and landslide pre-
dictions. Although the effects of parameter variability were taken into
account in earlier studies, modeling spatial variability of input para-
meters within a single geological formation is an existing challenge
(Zieher et al., 2017). This study aims to investigate the effects of spatial
variability on calibration and predictions of physical-based prediction
models (i.e., TRIGRS). Spatial variability of model parameters will be
explicitly modeled by random fields, being variable in the horizontal
directions and constant in the vertical direction. Explicit modeling of
spatial variability is considered advantageous as it enables advanced
calibration and fine-tuning of the model to account for the inherent
spatial variability in soil properties and local variations in physical,
geological and hydrological conditions.

Explicit modeling of spatial variability has been mainly reserved for
single-slope models (e.g., Cai et al., 2017; Santoso et al., 2011; Fenton
and Griffiths, 2008; Liu et al., 2018) with some studies on spatially-
distributed landslide models (e.g., Wang et al., 2019; Chen and Zhang,
2014). For example, the effects of spatial variability in soil cohesion,
friction angle and hydraulic conductivity along the vertical direction on
the stability of a single slope were examined in Cai et al. (2017). Kriging
model was implemented in Chen and Zhang (2014) to interpolate
spatially varying rainfall distribution and provide inputs to predict re-
gional rainfall-induced slope failures in layered soils. Simulations of
spatially variable soil strength parameters in the vertical and the along-
slope direction were conducted in Fenton and Griffiths (2008) to ex-
amine its effects on the propagation of slope failure and slope relia-
bility. Additionally, Bayesian networks were used in Wang et al. (2019)
to update landslide susceptibility and distributions of spatially variable
properties based on monitoring data.

Given the importance of model calibration to the implementation of
physical-based landslide prediction models, it is necessary to develop
efficient strategies for integration of information from various data
sources into the spatially variable models of uncertain model para-
meters. Building on the statistical framework of spatially variable
properties, the model calibration will be defined in the setting of
Bayesian updating. Bayesian updating is selected as it provides an ex-
plicit and consistent approach to calibrate the distribution of spatially
variable parameters with information from various data sources (e.g.,
Straub, 2011; Straub and Papaioannou, 2014; Khalaj et al., 2020;
Papaioannou and Straub, 2012; Yang et al., 2018). However, im-
plementation of spatial variability introduces several challenges in the
calibration process of a physical-based landslide model including high-
dimensional parameters spaces and high-dimensional likelihood func-
tions. The former challenge is resolved by adopting the Bayesian up-
dating with Structural reliability methods (BUS) (Straub and
Papaioannou, 2014), which is well suited for solving high-dimensional
Bayesian updating problems. Resolving the latter challenge is of high
importance as the likelihood function is central in the implementation
of the Bayesian updating because it relates the observations (e.g.,
measurements, slope failure) to model predictions thus enabling up-
dating of model parameters. This challenge arises in updating problems
with relatively large number of observations, resulting in high-dimen-
sional likelihood functions. Evaluating such likelihood functions is
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challenging because their values can become very low and computa-
tionally intractable. This challenge is resolved by developing approx-
imate likelihood formulations. The developments are based on the
Approximate Bayesian Computation (ABC) method (e.g., Sisson et al.,
2018), where a lower-dimensional likelihood function is formulated
based on certain summary statistics to avoid computational difficulties
of the higher-dimensional full likelihoods. Different types of approx-
imate likelihood formulations specific for physical-based landslide
prediction models are proposed and discussed to evaluate their effects
on the updating process. The novelties of this study stem from de-
scribing landslide model parameters as spatially variable, development
of a statistical framework to calibrate landslide prediction models, and
introduction of approximate likelihood formulations.

2. A short description of the TRIGRS model

TRIGRS supports rainfall infiltration models that simulate the de-
velopment of groundwater pressures for tension-saturated and un-
saturated initial conditions (Baum et al., 2002). The rainfall infiltration
model for tension-saturated initial conditions is based on the linearized
solution of the Richards equation (Iverson, 2000) and its extensions
(Baum et al., 2002). The solution consists of a steady, ¥,(z), and a
transient, ¥, (z, t), groundwater pressure head components:

P, 1) = @) + Pz, 1) (@)

where z is the depth from the ground surface in the vertical direction,
and t is time. The steady-state component depends on the initial posi-
tion of the depth of the water table from the ground surface, d, steady
surface flux, I, slope angle, §, and the saturated conductivity in the
vertical direction, ks, (e.g., Baum et al., 2002; Iverson, 2000):

Y, (2) = (2 — d)[cos?§ — Ipo/ks] (2)

The prediction of i,(z, t) for tension saturated initial conditions
assumes a one-dimensional, vertical downward flow with a time-
varying flux at the ground surface and a zero flux at an impermeable
basal boundary at a finite depth (Baum et al., 2002), with the for-
mulation provided in Appendix A due to a lengthy expression. Runoff
routing algorithm is implemented in TRIGRS to route the surface runoff
from areas with excess surface water to adjacent downslope areas that
can absorb it or route it further down (Baum et al., 2002). The estimate
of the transient groundwater pressure head, 1 (z, t), is then provided to
the slope stability model. The stability of a slope is evaluated based on
the factor of safety, Fs, as a ratio of resisting friction forces over driving
gravitational forces:

- , 1)y, t
Byfx.z ] = 02, 2P Onang
tand ¥,zsindcosd @

where x = [¢, ¢, 6, G, e, ¥, ks, Do, 6, 6,17 is a vector of model para-
meters, c is the effective stress cohesion, ¢ is the effective stress soil
friction angle, y, is the water unit weight, y, = (G; + e)y,/(1 + e) is the
average soil unit weight along depth with G; being the specific gravity
of the soil and e is the void ratio, 6 and 6, are, respectively, the satu-
rated and residual volumetric water contents. In the unsaturated soil
zone, the matric suction (g, t)y, is multiplied with the Bishop’s ef-
fective stress parameter y = (6 — 6,)/(6; — 6,) as an approximation of
the suction-stress characteristic curve (Baum et al., 2002). Slope sta-
bility assessment will be conducted by evaluating the minimum factor
of safety along depth as follows:

Fs|x,t|= min Fg|x,z,t

z€[0,H] (@)
where H is the depth to bedrock. A slope is considered as stable at time ¢
if Fs(x, t) > 1 and unstable otherwise.

The implemented rainfall infiltration, runoff routing and slope sta-
bility models are associated with several assumptions and
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simplifications that introduce limitations to the applicability of the
TRIGRS model. Some of these include (Baum et al., 2002) the as-
sumption of a homogeneous, isotropic soil within a single cell, one-
dimensional vertical infiltration that may not be the dominant flow
process during longer storms and between storms, high sensitivity to
the initial groundwater conditions, simple runoff routing algorithm not
accounting for evapotranspiration and stream flow, simple infinite
slope stability model, and inability to account for the post failure
conditions (e.g., Calvello et al., 2017).

3. Statistical framework
3.1. Spatially variable soil properties

Soils are heterogeneous materials formed by diverse geological
processes including changes in stresses, pore fluids, physical and che-
mical properties. Therefore, it is common to observe variations of
physical properties of soils across different locations within a single
deposit. Spatial variability of soil properties is often modeled with a
continuous random field model. Random field is a statistical model that
takes into account the point variability and the spatial dependence of
soil properties. The point variability characterizes the uncertainties in
soil properties at a location within the deposit with a probability den-
sity function (pdf). Spatial dependence is a property of natural soil
deposits, where the similarity or dependence between soil properties at
two locations in a deposit decays as the separation distance between the
locations increases.

Spatial variability of soil properties is modeled in this study by
adopting the Gaussian and lognormal random field models. Two-di-
mensional Gaussian and lognormal random field models are im-
plemented to model the spatial variability of soil properties in the
horizontal directions. Spatial variability in the vertical direction is not
modeled due to lack of capacity in TRIGRS to integrate such effects in
the implemented formulations.

Only the Gaussian random field model will be presented here be-
cause a lognormal random field can be easily transformed to a Gaussian
random field. Consider a set of spatial instances, 4, ...,l,,, representing
locations in a two-dimensional domain. A Gaussian random field of a
soil property, K (I), defines the joint pdf of K (1), ..,K(l,,) as a multi-
variate normal pdf:

=Yl = e — et -
Je () (2n)"/2|C|1/ZeXp[ 2(K W (k u]] -

where the mean vector is specified by the mean values of the random
field, u = [u(h), ....u(1,,)]*, while the elements of the covariance matrix,
C, are defined as follows:

C. = Cl, lj) =a2(ly) ifi=j
Y Cly ) =c)ol@pels ) ifi #j 6)
where p(l;, )i, j = 1, ...,n, is the correlation coefficient defined by an

autocorrelation function. The elliptical autocorrelation function is
adopted:

[ 2 2
p|l, j| = expy—2 J‘(ILX) + (liy)
WAk Y )

where 7, = |x; — xjland 7, = [y, — y;| are distances between I; and [;, and
I, and I, are correlation lengths along the x and y directions, respec-
tively.

3.2. Bayesian updating

The availability of additional sources of information (e.g., mon-
itoring, landslide inventories, remote sensing) supports a learning
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process in which uncertainties in spatially variable soil properties can
be reduced. Reducing uncertainties enables advanced calibration and
fine-tuning of the model to local variations in geotechnical and hy-
drological parameters for more reliable and consistent landslide pre-
dictions. One of the approaches for integrating information with ex-
isting models is Bayesian updating. In Bayesian updating, a prior
probabilistic landslide prediction model is updated with additional in-
formation to obtain a posterior probabilistic model. The Bayesian fra-
mework allows for integration of uncertain and incomplete information
and quantification of accuracy in the posterior model (e.g., Straub and
Papaioannou, 2014). The implementation of Bayesian updating in this
study is based on the Bayesian updating with structural reliability
methods (BUS) algorithm (Straub and Papaioannou, 2014).

To further investigate the Bayesian framework, consider a landslide
prediction model with a vector of uncertain model parameters,
X = [X,...X,]"(e.g., geotechnical and hydrological parameters). The
joint distribution of these parameters is denoted as f’(x). With the
provision of additional information on the model parameters (e.g., field
investigations) or the model performance (e.g., deformation measure-
ments, slope failure), the prior joint pdf, f'(x), can be updated to a
posterior joint pdf, f”(x) through the Bayesian framework as follows:

Lx)f’ (x) )
T Lo Ga =LY ® ®
e
where x is a realization of the uncertain model parameters, L(x) is the
likelihood function. Evaluation of the denominator or the normalizing
constant is usually omitted from implementations of Bayesian updating.
L(x) is central in the implementation of the Bayesian framework as it
relates observations to the values of the uncertain parameters:

f'x) =

L(x) « Pr(Observation|X = x) (©)]

One of the approaches for specifying L(x) is to relate the observa-
tions to the uncertain parameters by considering them as model out-
comes (e.g., Straub and Papaioannou, 2014). Let us consider an ob-
servation, y(e.g., pore pressure measurement, failed slope) and the
corresponding model prediction, h; (x). h; (x) is associated with a model
prediction error ¢;, distributed according to the pdf f:

=hx+¢ (10)

L(x) can be specified to account for equality and inequality types of
information (e.g., Straub, 2011; Straub and Papaioannou, 2014). An
example of equality types of information might be pore pressure or
deformation measurements in a slope, while inequality information
might include the observation of a stable slope or bearing capacity of a
geotechnical system exceeding working loads. In the case of an equality
information, L(x) is calculated as follows:

Lix) = £, Iy, = )]

Assuming a normal model error, &~N (4, o), L(x) can be defined
as follows:

Lix)=Pr(y; — hi(x) = | X =x)

i~ hi(%) — pg; € —He;
:Pr(y (x)ul: MlX:x)
Oc: Oe;
U‘X:x)

sz)
11)

where U~N (0, 1) is a standard normal random variable with the
probability and the cumulative density functions denoted, respectively,
as ¢ and .

L(x) for the inequality type of information can be expressed as an
observation event Z;:

_ Pr(yi —hi(x) - pg; _

Og;

_ ¢(yi—h,-<x)—;zei

J¢;

Zi={x eR™y — h(x) < &} (12)
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where R" is n-dimensional real space. Assuming a normal model error,
&~N (i, 0¢), L(x) can be defined as follows:

Lix)=Pr(Z;| X =x) = Pr(yy — hi(x) < |X =x)

=1- %M X = x)
13)

O¢;
In the case of m statistically independent observations, the com-
bined likelihood of all of the observations is defined as:

L(x) = Li(x
€3 H @) s
Conversely, for dependent observations the likelihood function is
specified as a joint pdf of all € (Straub and Papaioannou, 2014). The
implementation of Bayesian updating in this study is based on Bayesian
Updating with Structural Reliability Methods (BUS) algorithm, where
the updating problem is expressed as a reliability problem with more
details provided in Straub and Papaioannou (2014).

4. Bayesian updating of a physical-based landslide prediction
model

The application of Bayesian updating to a physical-based landslide
prediction model with spatially variable properties can be challenging
due to high-dimensionality of the updating problem and difficulties
with evaluating the likelihood function. Strategies for addressing these
challenges will be discussed in the following sections.

4.1. Dimensionality of the updating problem

Challenges with high-dimensional updating problems are likely to
occur in situations when the landslide prediction model parameters are
considered as spatially variable. Explicit modeling of spatially variable
model parameters with random fields can be done by adapting the
random field discretization to the grid of a physical-based landslide
prediction model. The grid of landslide prediction models often con-
tains hundreds or thousands of cells as the applications of physical-
based landslide prediction models commonly involve large areas. A
random field with the discretization adapted to the discretization of the
landslide prediction model would therefore likely result with a large set
of random variables. A large set of random variables can lead to po-
tential difficulties in the implementation of the BUS method, as the
Bayesian updating problem is reformulated as a reliability problem. A
reliability problem is defined as solution to a multidimensional integral,
with the dimensionality of the integral in the BUS method being n + 1,
where n is the number of random variables and the additional random
variable is the standard uniform variable augmenting the set of random
variables in the BUS method. The challenge of solving a high-dimen-
sional reliability integral can be mitigated by implementing a reliability
method that is not affected by the dimensionality of the problem (e.g.,
Au and Beck, 2001; Schuéller et al., 2004). Therefore, the Subset Si-
mulation (SUS) method (Au and Beck, 2001) has been implemented in
this study due to its efficiency and stable performance in high-dimen-
sional reliability problems (Schuéller et al., 2004).

4.2. Likelihood formulations

The application of Bayesian updating to physical-based landslide
prediction models can be also challenging due to difficulties with for-
mulating and evaluating the likelihood function. Several formulations
of the likelihood function specific to updating parameters of a physical-
based landslide prediction model on historical landslide events will be
discussed in the following section. Historical landslide events often
include limited information on the triggering conditions of a landslide
such as categorical data on slope failing or being intact (i.e., slope
survival) after a given rainfall event with the corresponding locations of
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slope failures. Such information present indirect observations of the
model parameters because the stability of a slope depends on intricate
interactions between the various topographical, geotechnical, hydro-
logical and meteorological landslide triggering parameters. One of the
approaches for establishing a relationship between the indirect ob-
servations and the landslide triggering parameters is to implement a
statistical or a physical-based landslide prediction model that can si-
mulate slope response for varying combinations of the triggering
parameters. This study focuses on physical-based models, which are
often implemented as a black-box forward model, taking triggering
parameters as input and simulating output in terms of a measure of
slope stability (e.g., factor of safety).

The formulation of the likelihood function can significantly depend
on the interpretation of the relation between the observation and the
model predictions. It is important to note that the information on slope
failure or survival is relevant only for the elements of the landsliding
process that are captured by the physical-based model. In the case of
TRIGRS, only information on the initiation zone of a landslide can be
related to the model predictions, while the run-out zone and post-
failure behavior are not simulated by the model. Furthermore, the in-
terpretation of the information on the initiation of landslides can lead to
several formulations of the likelihood function.

4.2.1. Marginal likelihood formulation

One of the approaches for formulating the likelihood function is to
specify the likelihood function independently for each of the grid cells
of the physical-based model. An illustration of the landslide initiation
zone and the corresponding discretization onto the grid cells of the
landslide prediction model is presented in Fig. 1.

For the cells where landslide initiation has been observed, this ob-
servation event can be expressed with the factor of safety greater than
one at the start of the rainfall event, Fs(x, t = 0) > 1, and the factor of
safety equal to or lower than one after the rainfall event,
Fs(x,t = T) <1, where T is the duration of the rainfall event. The
corresponding observation event is defined as follows:

Zr = {x € R™ max|[1 — Fs(x, t = 0), min Fs(x, t) — 1] < €}
te(0,T] (15)

Note that the observation is satisfied with negative values of the
function specifying the observation event. Assuming the same normal
model error for all the cells in the model, e~N (., o.), the likelihood
function can be specified as shown in Eq. (13):

Lp(x) =1 — ®({max[1 — Fs(x, t = 0), min Fy(x, t) — 1] — u }/o.|X
te(0,T]

=x) (16)

If the time of the landslide initiation, t’, is known, the observation
event can be expressed with the factor of safety being equal to one at
time ¢’ with the following relation:

1=Fx,t=t)+¢

Discretized landslide
initiation zone

Landslide initiation
zone

|

Fig. 1. Discretized landslide initiation zone.
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Given that Fs(x, t = 0) > Fs(x, t € (0, T]), this expression also sa-
tisfies the requirement that the slope is stable at the start of the rainfall
event. For the same normal model error, the likelihood function can be
specified as shown in Eq. (11):

1-Fx t=t)—u

Oc

€

Lp(x) = ¢(

x= x)
a7

For the cells that survived the rainfall event, this observation would
correspond to the factor of safety being larger then one before and after
the rainfall event.

Zs={x € R™ 1 — min Fs(x, t) < €}
te[0,T]

For the same normal model error, the likelihood function can be
specified as shown in Eq. (13):

1 — min Fs(x, t) — M.
te[0,T]

Lix)=1-®@ X=x

Oc
(18)

In this formulation, independence is assumed between the response
of the soil and slope stability in the neighboring cells. This assumption
is not necessarily realistic because of interactions that occur between
the soil volumes in the neighboring cells at the cell interfaces. In terms
of a hydro-mechanical soil response, these interactions involve transfer
of normal and shear stresses, groundwater flow, and redistribution of
surface water runoff. Except for the redistribution of the surface water
runoff, these types of interactions are not integrated in majority of
commonly used physical-based landslide prediction models. In addition
to omitting potential interactions between the cells of the landslide
models, this likelihood formulation does not take into account the ef-
fects of spatial dependency of model parameters, because the landslide
model parameters are updated independently for each of the cells.

4.2.2. Full likelihood formulation

Accounting for the effects of spatial dependence in landslide model
parameters would require the formulation of the joint likelihood
function and modeling the triggering parameters as spatially dependent
with a random field model. The joint likelihood formulation is obtained
by combining all of the marginal cell-based likelihood functions in a
single likelihood function. The joint likelihood function is obtained here
by assuming independence between the observations of slope stability
at each of the cells (i.e., slope failure or survival). Given that most of the
landslide prediction models feature very weak or no interactions (e.g.,
redistribution of surface water runoff) between the neighboring cells,
the assumption of independence between the cell-based likelihood
function can be considered as reasonable when updating parameters of
such models. However, it is important to note that the assumption of no
interactions between the neighboring cells is not necessarily realistic.

Assuming that there are in total n. cells in the landslide prediction
model and that failure has been observed in ny of the cells due to a
rainfall event, while the remaining, n. — np cells were stable after the
rainfall event. The joint likelihood function is formulated as follows:

L) =[] La J] Ly@®
i=1 j=1 19)

where Lrp(x) are the cell-based likelihood functions specifying the
failure observations, as defined in Egs. (16) and (17), and Lg(x) are the
cell-based likelihood functions specifying the survival observations, as
defined in Eq. (18). Although formulating the joint likelihood function
is relatively straightforward, evaluating it can be challenging due to the
high dimensionality of the joint likelihood function. In the case of large
numbers of cells-based observations, the value of the likelihood
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function can become very low and sometimes below the precision of the
floating-point number format on computers. For example, the smallest
positive usable number in the Python programming language module
Numpy is around 2.23-1073% (The SciPy community, 2019), which
would be exceeded in a situation with the likelihood of 1100 cell-based
observations being 0.5. These considerations indicate that the joint cell-
based likelihood function can be computationally intractable on pro-
blems with large observation sets.

4.2.3. Approximate likelihood formulation

One of the approaches to avoiding the computational difficulties
with evaluating the full likelihood is the implementation of an ap-
proximate likelihood function. The development of an approximate
likelihood function is based on the Approximate Bayesian Computation
(ABC) method (e.g., Sisson et al., 2018). In the ABC method, a lower-
dimensional likelihood function is formulated based on summary sta-
tistics to avoid computational difficulties of the higher-dimensional full
likelihood. The approximate likelihood function is formulated by
measuring the discrepancy between a chosen set of statistics of the
model output and the corresponding estimates from the observations.
The summary statistics is often represented by the mean and standard
deviation, such that the updating process aims to minimize the dis-
crepancy between the summary statistics calculated from the model
output and the observations.

The formulation of the approximate likelihood function and the
selection of the summary statistics will be adapted to the problem of
updating parameters of a physical-based landslide prediction model.
The development of the approximate likelihood formulation will be
examined with respect to the landslide initialization process, as illu-
strated in Fig. 1. In the case of the marginal and the joint likelihood
function, the observation of landslide initiation within a single initia-
tion zone is interpreted as a value of the factor of safety being equal or
lower than one for all of the cells within the initiation zone.

However, the landslide initiation process is often more complex and
involves the development of an initial weak soil zone and its propagation
prior to landsliding. This process is commonly referred to as the shear
band propagation mechanism, where the shear band is a thin zone of
intense shearing. The formation of the initial weak zone can occur as a
combinations of various factors including, among others, additional
loading, loss of suction due to the wetting process, added weight from the
increased soil saturation, groundwater flow, surface erosion and de-
position, internal erosion and piping, and artesian pressure from the rock
base. Following the formation of the initial weak zone, the propagation
of the shear band occurs as the soil in the initially zone is not capable of
withstanding the loads acting on it. The excess loads are then distributed
to the neighboring, initially stable, soil zones. If the excess loads surpass
the capacity of the neighboring soil zones to sustain the additional loads,
the redistribution of loads leads to the propagation of the shear band
along the slope. Consequently, this leads to the initiation of a landslide
with the detachment of soil from the slope. Additional challenges occur
in strain-softening materials, where the soil shear strength decreases to a
residual value from the peak after the shear strains reach certain critical
value. Shear band propagation starts in an initially weak zone of the
slope as the shear strength reduces due to the softening behavior of the
material in the band. The shear band continues to propagate further from
the initial zone due to the redistribution of excess loads. Finally, the
propagation of the shear band causes landsliding with the detachment of
the unstable soil from the slope.

Not accounting for the redistribution of loads and the propagation
of the shear band can lead to a significant underestimation of the
landslide volume (e.g., Kim et al., 2018). This observation becomes
important in relating the observation of a landslide initiation zone to
the corresponding prediction with a physical-based landslide prediction
model. Commonly employed landslide prediction models evaluate the
stability of a slope on a cell basis, such that the stability of each of the
cell is evaluated independently without a mechanism to propagate the
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shear band. The interpretation of an observation of a landslide initia-
tion zone as a model prediction with a factor of safety lower or equal to
one in each of the cells of the discretized initiation zone is not the
necessary requirement due to the effect of shear band propagation.
Conversely, landslide initiation in the observed zone can also occur
through shear band propagation that starts from a weak zone formed in
a sub-area of the zone. This observation can be interpreted as a re-
quirement that a subset of the cells in the discretized landslide initiation
area needs to have a factor of safety lower or equal to one.

The development of an approximate approach is considered here
due the absence on an explicit approach for the shear band propagation
in the commonly used landslide prediction models. Approximate ex-
pressions can be obtained by relating the global factor of safety over the
initiation zone, F¥, to the factors of safety of cells within the initiation
zone, {Fy;, i = 1,...,n;}. In general, F¥ is defined as a ratio of the global
resisting forces, Ry, and the driving forces, Sg, along the critical failure
plane within the landslide initiation zone. An approximate formulation
can be derived by expressing R, as the sum of the resisting forces,
{Ri, i = 1,..,n;} of the grid cells in the initiation zone, while S; is ex-
pressed as the sum of the corresponding driving forces, {S;, i = 1,...,n;}.
If the sums of the resistance and the driving forces across the cells are
expressed with the respective arithmetic mean values, R and S, F§ can
be related to the arithmetic average of the factors of safety of cells
within the initiation zone, Fs, as shown in Eq. (20). It is important to
note that the expression in Eq. (20) represents a very simple approx-
imation of F¥ as the load and resistance forces are vector values, while
the approximation is based on the arithmetic sum of forces instead of
the vector sum. Additionally, the formulation does not account for the
complexities of the landslide propagation process (e.g., redistribution of
forces and landslide propagation).

nj
R 2R
F8(x, t) = =2 ~ =L == =
S (x, 1) S

nj n
g i

2 S

i=1

= A[FSi (x, t): i

Fg;(x, 1)

(20)
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=
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The presence of heterogeneity in the triggering parameters of
landslides introduces additional challenges in understanding and ap-
proximating the landslide propagation process. The effects of hetero-
geneity in soil properties on the stability of slopes have been examined
in numerous studies (e.g., Fenton and Griffiths, 2008; Depina and
Wolebo, 2017). Some of the most important observations in those
studies relate to effects of heterogeneity on the propagation of the
failure surface and the importance of low values of the soil strength on
the estimated factor of safety. Heterogeneity affects the development of
the failure surface, such that the failure surface develops and propa-
gates along the weakest path with low shear strength values (Fenton
and Griffiths, 2008). Based on those findings, it was demonstrated
empirically in Fenton and Griffiths (2008) that the harmonic average is
best suited to characterize the effects of the heterogeneous shear
strength values on the stability of a slope. This is explained by the
harmonic average being dominated by the low values, which is similar
to the development of the failure surface in slopes following the path of
low-strength areas. This finding is applied here by considering ap-
proximation of F§ with a harmonic average of the factors of safety of
cells within the initiation zone, as specified in Eq. (21). Unlike the
expression in Eq. (20), the authors were not able to provide a more
direct relation between F§, with the expression being based only on the
empirical observations.

nj —1
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Some of the limitations in the derivation of the approximate F§ in
Egs. (20) and (21) can be alleviated by implementing more advanced
landslide prediction models (e.g., finite element or finite difference
coupled hydro-mechanical models). Implementation of models that are
able to explicitly satisfy the force equilibrium and simulate the land-
slide propagation process would provide a more consistent evaluation
of F§. However, more advanced models are not commonly im-
plemented on scales larger than a single slope due to, among others,
large computational demands, high sensitivity to changes in model
parameters, and issues with numerical stability. Additional assumption
includes vertically discontinuous failure surface across the initiation
zones, which is a consequence of the grid cell discretization of the
implemented landslide prediction model and varying depths to bedrock
across cells. Motivated by these challenges, the implemented approx-
imations of F¢ in Egs. (20) and (21) are developed based on modeling
features incorporated in the state-of-the-art physical-based landslide
prediction models with their inherent limitations as stated earlier.

The approximations of F§ in Egs. (20) and (21) are used as summary
statistics to develop approximate likelihood formulations. Let us consider
a landslide initiation zone in a subset of grid cells in the landslide model
discretization, C; C C, where C is the set of n¢ cells indexed from 1 to nc.

For a landslide initiation zone, C;, this observation event can be ex-
pressed with the arithmetic or harmonic mean of the factors of safety within
the zone as greater than one at the start of the rainfall event, and equal to or
lower than one after the rainfall event. The corresponding observation event
and the likelihood function for the arithmetic mean are defined as follows:

Zf={x € R™ g, (x) = max[1 — A(F(x, t = 0)
jeCy, in A(Fgi(x,t):j€C)—1] <
J )é%,r%] (Fi (x, 0): ] ) —1] < € 22)

gA(x)—/«le

Li(x) = 1—@( .

X= x]
(23)

For a landslide initiation zone where the time of initiation, t’, is
known, the observation event can be expressed with the arithmetic or
harmonic means of the factors of safety within the zone being equal to
one at time t'. The formulation for the observation event specified by
the arithmetic mean follows:

1= A(st(x, t= tl):j e€C)+e
The likelihood function is formulated as:

1-AF(x, t=1t):j€C)—p,

e

L?i(x)=¢(

X= x)
(24)

The spatial correlation is incorporated in the likelihood formula-
tions by considering the model parameters as correlated through the
random field model. For a subset of cells where no landslide initiation
was observed during the rainfall event, Cs; C C, the approximate like-
lihood function can be derived from an observation event where the
arithmetic or harmonic mean of the factor of safety in those cells is
larger then one before and during the rainfall event. For the case of the
arithmetic mean, the observation event is defined as:

Z4 = {x €R™ 1 — min A(st(x, t):j S Cst) < €}
te[0,T]

The likelihood function can be specified as follows:

1 — min A(st(x, t):j S Csi) — M
tel0,T]

Oc

Lix)=1-2 X=x

(25)

Similarly, the corresponding observation event and the likelihood
functions for the harmonic case in Egs. (23)-(25) would be specified by
replacing A with ©, as defined in Eq. (21).
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In the case of large number of stable cells, spanning large spatial
distances, the approximate likelihood formulation can be refined by
subdividing those cells into a number mutually exhaustive zones,
Cs1 U Cs2 U ...UCgn, = Cs, and specifying an approximate likelihood
function for each of the zones.

The joint approximate likelihood function is formulated by assuming
independence between the observation events in each of the landslide
initiation zones and the zones where no initiation was observed during
the rainfall. This is not a very strong assumption (i.e., close to reality) for
the initiation zones as they are non-overlapping and the interactions
between the different initiation zones are not likely to significantly affect
the stability of those zones. The assumption of independence is stronger
(i.e., less realistic) between the landslide initiation zones and the stable
zones and among the stable zones because strong interactions that affect
the stability of those zones cannot be excluded.

Assuming that the landslide initiation zones are discretized into N;
initiation zones, Cg;, i = 1, ...,N;, with the stable zones discretized into
N; zones, Cy;, i = 1, ...,N;, the approximate likelihood function is spe-
cified as follows:

N Ny
L =[] L [ L&
i=1 j=1 (26)

5. Analytical example
5.1. Problem formulation

A relatively simple and reproducible Bayesian updating problem is im-
plemented to illustrate the performance of the proposed approximate like-
lihood formulations with the BUS algorithm. The problem examines up-
dating of uncertainties associated with a simplified spatially distributed
landslide prediction model. The landslide prediction model is implemented
on a domain of 90 X 90 m. The domain is discretized in a grid of 9 X 9
equally-sized cells indexed {(i, j) € D: i = 0,...,,8, j = 0,...,8}, as shown in
Fig. 2.

The stability of each of the cells is evaluated independently based on
the value of the factor of safety, Fs. The following relation for Fs is
implemented to obtain a relatively simple formulation of the updating
problem:

FE(R) =R 27)

where R is a spatially variable model parameter that accounts for the
effects of uncertainties in landslide model parameters (e.g., slope angle,
depth to bedrock, strength parameters) on the slope stability. Stability
of each of the cells in the model is evaluated based on the value of Fs,
such that a cell (i, j) is stable if F5;; > 1 and unstable if Fy;; < 1.

Based on the problem formulation, a reliability problem can be

04 Stable
Il Initiated

Fig. 2. Discretization of the model domain with the cells corresponding to the
landslide initiation zone highlighted.
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defined to estimate the probability of landslide initiation for each of the
cells. For a cell (i, j), the reliability problem is defined with the fol-
lowing performance function:

8 (R, ey) = Fsij(R) + ey — 1 (28)

where € is the model error. The probability of landslide initiation or
failure probability in a cell (i, j) is defined as:

Prij = P(g,;(R, &) < 0) (29)

5.2. Prior

Uncertainties in the values of R are modeled with a Gaussian
random field to account for the spatial dependence in the parameters
controlling the slope stability. The random field model discretization
follows the one of the domain D, with the mid-point method used to
calculate the elements of the covariance matrix. The prior values of R
are defined with constant mean of u, = 1.3 and standard deviation of
og = 0.2 over the model domain. Spatial dependence is modeled with
the ellipsoidal autocorrelation model with [, = [, = 50 m. Uncertainties
associated with R are considered as reducible in the updating process.
The model error is assumed to be normally distributed, €y ~N (0, oy)
with o, = 0.05, and non-reducible in the updating process.

Given that R and €, are normally distributed, the statistical prop-
erties of g in Eq. (28) can be analytically calculated with g~N (i,, o),

where p, = up — 1 and g, = \/ o + o2, . The prior failure probability,
Py, is equal for all of the cells and can be calculated as follows:

P = P(g < 0) = P(ﬂ < —@) = cp(—@) = @(—1.455)
G G O

= 7.281-1072 (30)

5.3. Likelihood function

The likelihood function will be derived from the approximate like-
lihood formulations in Section 4.2.3 with the time omitted from those
equations as the problem does not feature the time component. The
initiation zone is associated with the subdomain of F C D, and specified
with the following cell indices {(i,j) € F:3<i<5,3<j<5}. The
slope cells that remained stable are associated with the domain S C D,
such that SN F = @ and S U F = D. The effects of different likelihood
formulations on the posterior distributions will be examined by con-
sidering the following cases:

e Casel: Likelihood formulation in Eq. (23) for the initiation zone and
in Eq. (25) for the stable zone with both the arithmetic and har-
monic means for F§. The likelihoods for the arithmetic mean are
specified as follows:

A(Fsj(r): (i, j))€F) - 1

Oerr

L) =1- @(

R = r]
(31)

LA =1 - ¢(1 — A(Fs(r): (i, ]) € 5) ‘ R r]

Oy

(32)

Case 2: Likelihood formulation in Eq. (24) for the initiation zone and
in Eq. (25) for the stable zone with both the arithmetic and har-
monic means for F§. The likelihoods for the arithmetic mean are
specified as follows:

1—-A(F(r):(i,j) € F)

mw:%

R = r]
(33)

Oeyr
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Lir)=1- q:(

Oerr

1 — A(Fs;(r): (i, j) € S) ‘ R = ,]
34

The approximate likelihood function is specified as follows:
Ly(r) = L (N Lg'(r)

Expression for the harmonic mean would be specified by replacing A
with © in Egs. (31)-(34).

5.4. Posterior

Given the prior knowledge and the likelihood functions, the BUS
algorithm was implemented to obtain K = 10° samples from the pos-
terior distribution. Samples from the posterior distributions were also
used to update the reliability estimates and evaluate the effects of the
observations on the slope stability assessment.

5.5. Casel

The results of the updating process for Casel are presented in
Figs. 3-5. Fig. 3(a) and (b) present the posterior mean, up, and standard
deviation, og, respectively, where the arithmetic mean was used for F§.
From Fig. 3(a), it can be observed that the values of /‘1/1’ within cells of the
initiation zone are close to or lower than one, corresponding to the ob-
servation that F§ in the initiation zone is lower or equal to one. The values
of pp in the cells of the stable zone are below the prior mean of u;, = 1.3
and increase from around 1 to 1.25 as the distance from the initiation zone
increases. This is a consequence of the spatial dependence between the
values of R, as specified by the Gaussian random field model.
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Fig. 4. Prior and posterior distributions of R at cell (4, 4) based on the ar-
ithmetic and harmonic mean for F¥.
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Fig. 5. Prior and posterior distributions of R at cell (2, 4) based on the ar-
ithmetic and harmonic mean for F§.

The effects of updating on the values of og can be examined in
Fig. 3(b). The values of og within the cells of the initiation zone are
reduced from the prior value of og = 0.2 to approximately below 0.15.
The values of o increase in the cells of the stable zone from 0.15 to 0.2
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Fig. 3. Casel: (a) Posterior mean of R based on the arithmetic mean for F§, (b) Posterior standard deviation of R based on the arithmetic mean for F¢, (c) Posterior
mean of R based on the harmonic mean for F§, (d) Posterior standard deviation of R based on the harmonic mean for F§, () Posterior failure probability, Py based on
the arithmetic mean for F§, (f) Posterior failure probability, P;: based on the harmonic mean for F§.
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as the distance from the initiation zone increases. The observed varia-
tions in the values of o within the stable zone are due to the effects of
spatial variability in the values of R. Additionally, based on the stronger
reduction of oy in the initiation zone, it can be detected that the ob-
servation of slope instability represents a stronger information than the
observation of a stable zone in this case as it allows for a larger re-
duction of uncertainties. Slightly non-symmetric appearance of the re-
sults in Fig. 3(b) is due to a limited number of samples. Similar ob-
servation can be made for the results of updating process where F§ was
calculated with the harmonic mean that are presented in Fig. 3(c) and
(.

Fig. 3(e) and (f) present the posterior failure probabilities, P in the
cells of the stable zone. The values of for a cell (i, j) are calculated based
on the following expression to account for the model error:

K ”
" 1 1 - F;(r") — pc
Pp;j = 1% 2 ‘P(—M

i=1 Oem

(35)

The cells in the initiation zone are omitted from the analysis as
failure had already occurred in those cells. From Fig. 3(e) and (f) it can
be observed that the observation of an initiation zone resulted in in-
creased posterior failure probabilities, Py within the cells of the stable
zone. The values of Pr range from the prior probability of
Pj. = 7.281-1072 to values greater than 0.35, which represents an in-
crease in failure probability on the magnitude of five times. The in-
crease in the failure probability decays with the distance from the in-
itiation zone, with the highest probabilities observed in cells
neighboring the initiation zone.

Additionally, histograms of the posterior distributions of R at se-
lected cells in the model are presented to investigate potential differ-
ences between the arithmetic and harmonic formulations for F§ on the
updating results. Fig. 4 presents the prior and posterior distributions for
the two F§ formulations at the cell (4, 4) in the initiation zone. Con-
versely, Fig. 5 presents the prior and posterior distributions for the two
F¢ formulations at the cell (2, 4), which is in the stable zone and in close
proximity to the initiation zone.

From Fig. 4 it can be observed the mean values of the two posterior
distributions are below one, corresponding to the observation of an
unstable zone. The comparison of the two posterior distributions re-
veals that the distribution for the arithmetic formulation of F§ is
slightly narrower with a lower mean value than the distribution for the
harmonic formulation of F§. This can be explained by the harmonic
mean being dominated by the lower values. Similar observation can be
made for the posterior distributions for the cell (2, 4) in the stable zone,
with the main difference being that the distributions have mean values
around one or greater. For the remaining cells in the stable zone, similar
observations apply with the mean values increasing as the distance
from the initiation zone increases.

5.6. Case2

The results of the updating process for Case2 are presented in
Figs. 6-8. Similar trends are observed as for Case 1, with the focus of the
presentation in the following paragraphs being on the difference be-
tween Cases 1 and 2. A comparison of the corresponding results from
the analyses in Cases 1 and 2 shows that the reduction of uy values in
the initiation zone for Casel is stronger due to the observation being
understood as F§ < 1 rather than F§ = 1 for Case2. The comparison of
ogr values reveals that the reduction in standard deviations in the in-
itiation zone is stronger for Case2 than for Casel. This is explained by
the information on slope initiation in Case2, defined as F§ = 1, pro-
viding stronger information that leads to a greater reduction in un-
certainties than F§ < 1 in Casel. The comparison of the estimated Py
for the Cases 1 and 2 shows that higher probabilities are obtained for
the Casel. This observation is consistent with the earlier observations
on the differences in the posterior distributions between Cases 1 and 2.
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Higher Py are a consequence of the interpretation of the observation
event in Case 1 leading to lower values of uy with similar values of oy in
the cells of the stable zone.

The properties of the posterior distribution of R are further in-
vestigated with histograms at several cells in the model in Figs. 7 and 8.
The comparison of the posterior distributions in the initiation zone for
the analyses in Cases 1 and 2 shows that the posterior distributions for
Case 2 have a mean closer to one and a lower variability around the
mean than the posterior distributions in Case 1. In the stable zone, si-
milar values of standard deviation are observed with the means being
slightly higher for Case 2 due to higher means in the initiation zone.

In addition to the analytical example, a relatively simple Bayesian
updating problem is implemented in Appendix B on a simplified
TRIGRS model. The reader is advised to examine the Bayesian updating
results in Appendix B for a more straightforward interpretation of the
results of the Kvam case study in Section 6.

6. Kvam case study

The capacity of the methodology in integrating observations into
spatially variable models of uncertain soil parameters will be in-
vestigated on the Kvam case study. Kvam is a town in the central
southern Norway, within the Gudbrandsdalen valley. The
Gudbrandsdalen valley has been carved by glaciers, featuring steep
edges covered with glacial deposits, as shown in Fig. 9. From Fig. 9 it
can be observed that the area under Kvam and the valley base are
characterized by fluvial deposits with pockets of glaciofluvial deposits.
Hill sides rising above the valley base are covered with moraine or
glacial deposits, transitioning from thick to thin moraine cover as the
height increases. Subcropping bedrock with a thin cover of humus or
peat is usually found above the areas covered with thin moraine de-
posits.

The area surrounding Kvam is prone to various types of geohazards
including shallow landslides, debris flow and rock fall. This is witnessed
by the presence of deposits at the base of many slopes and visible
landslide scars, as indicated in Fig. 9. The focus of this study will be on
the landslides following the rainfall events that occurred in 2011 and
2013, presented in Fig. 14. These rainfall events caused flooding of the
town and multiple landslides on the surrounding hills. Among the lo-
cations affected by landslides, the area indicated in Fig. 9 was selected
for a detailed analysis due to relatively high density of landslides during
these events. More detailed information on the conditions prior and
after the landslide events is presented in aerial photos in Figs. 10-12.

Fig. 10 presents an aerial photo of the studied area prior to the
landslide events in 2010. As observed in Fig. 10, the slope areas are
covered with vegetation with some indications of channels along the
slope with relatively denser vegetation. The conditions at the studied
area after the landslide events in 2011 can be interpreted from Fig. 11.
Following the rainfall even between June 9th and 10th of 2011 with the
total rainfall of 61.72 mm/day, several landslides were observed in the
hills near Kvam. A set of landslide scars can be clearly identified from
Fig. 11 due to the missing vegetation and deposited soil masses at the
base of the slope.

Approximately two years after the landslide events of 2011, an in-
tense rainfall caused flooding and initiation of landslides in the areas
surrounding Kvam on May 23rd 2013. An aerial photo of the studied
area after the event on May 23rd 2013 is presented in Fig. 12. A new
landslide scar can be observed in the lower part of Fig. 12 in addition to
the ones from 2011. From the spread of deposits at the base of the slope,
it can be detected that the scars activated in 2011 were relatively in-
active during the 2013 event. This can be further confirmed by com-
paring the distribution of the spread after the events of 2011 and 2013
in Figs. 11 and 12. This is attributed to the relatively low surface cover
on the slope scars from 2011 with higher resistance to landsliding due
to relatively higher effects of cohesion and vegetation on the slope
stability.



L Depina, et al.

1.05

1.00

0.20

Computers and Geotechnics 125 (2020) 103660

(e)
27
1.25 0 0.275
1 0.250
1.20 2 0.225
3
0.200
115 _,
0.175
5
1.10 0.150
6
; 0.125
1.05
s 0.100
0 2 4 6 8
j
(f)
0.20
o 0.275
0.19
1 0.250
0.18
2 0.225
0.17
3
0.200
016 _,
0.175
0.15 5
0.14 6 0.150
0.13 7 0.125
0.12 8 0.100
0 2 4 6 8
i

Fig. 6. Case2: (a) Posterior mean of R based on the arithmetic mean for F§, (b) Posterior standard deviation of R based on the arithmetic mean for F¥, (c) Posterior
mean of R based on the harmonic mean for F§, (d) Posterior standard deviation of R based on the harmonic mean for F§, () Posterior failure probability, Py based on
the arithmetic mean for F§, (f) Posterior failure probability, P; based on the harmonic mean for F§.
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ithmetic and harmonic mean for F§.
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Fig. 8. Prior and posterior distributions of R at cell (2, 4) based on the ar-
ithmetic and harmonic mean for F¥.

6.1. Prior information

Information on the topography of the studied area is based on a 10 x
10 m digital elevation model (DEM), as presented in Fig. 13. The depth
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Fig. 9. Quaternary map of the are surrounding Kvam. Adapted and modified
based on information from NGU (2019).

to bedrock, H, was determined based on field data from Holm (2011)
and Edvardsen (2013), and the comparison of high quality DEM models
before and after the landslides. The following relationship between H
and the tangent of the slope angle, tan(d) is determined empirically
from the collected data:

H= maX{Hmina My + EH} (36)

where Hpi, =04 m is the minimal depth to bedrock,
My = —2.578-tan(d) + 2.612 is the mean defined by a linear trend
function and ey~N (0, o) = N (0, 0.271) is the residual around the
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Fig. 10. Aerial photo of the studied area in Kvam, central Norway, in 2010.
Source: norgeibilder.no.

Fig. 11. Landslide events within the studied area on June 10th 2011. Source:
norgeibilder.no.

Fig. 12. Landslide events within the studied area on May 23rd 2013. Source:
norgeibilder.no.

trend. The minimum value of H;, is imposed as the lowest thickness
value measured in the field to characterize the surficial cover of glacial
environments for the highest slope values. Spatial dependence of H and
H, is not explicitly modeled due to the strong dependence of H to the
local variations of &.

Geotechnical and hydraulic parameters of the TRIGRS model will be
considered as uncertain due to the natural variability characteristic for
these parameters and the lack of field investigations and laboratory
tests that would contribute to reducing the uncertainties. The para-
meters of the distributions describing the uncertainties in the para-
meters are selected from literature sources to be relevant for the con-
sidered soil type, as presented in Table 1. Spatial variability of
geotechnical and hydraulic parameters is modeled with normal and
lognormal random field models. The random field models are dis-
cretized based on the DEM representation of the studied domain. The
spatial dependency of parameters in the lateral directions is specified by
the ellipsoidal autocorrelation function with the correlation lengths in
both horizontal directions of 50.0 m. Horizontal correlation lengths are
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Fig. 13. DEM discretization of the studied domain with the initiation zones for
the landslide events of 2011 and 2013.

selected within the ranges characteristic for several geotechnical
parameters reported in Phoon and Kulhawy (1999).

The remaining geotechnical and hydraulic input parameters to
TRIGRS were modeled as deterministic as they were not significantly
affected during the updating process. The following deterministic va-
lues were adopted for relative dry density, G; = 2.7, void ratio, e = 0.26,
saturated, 6; = 0.4 and residual, 6, = 0.05, volumetric water contents.

Given the problem definition and the specification of model para-
meters, the prior knowledge is defined in terms of the joint distribution
of the uncertain model parameters, X = [c, ¢, H, H,, ks, Dy]7, where X
is the vector of model parameters with c, ¢, H, H,, ks, D, being spa-
tially variable parameters discretized over the study domain. The vector
of model parameters is distributed according to prior joint pdf such that
X~fy (x).

6.2. Likelihood function

The likelihood function will be derived by following the approx-
imate likelihood formulations based on the observations of landslide
initiation zones for a given rainfall. The initiation zones are discretized
with respect to the adopted DEM map, as shown in Fig. 13. In addition
to the zones that remained stable after the rainfall events, the studied
area is classified into zones where slope initiations were observed after
the landslide events of 2011 and 2013, respectively. The classification
of the zones with respect to the time of occurrence is important for a
consistent implementation of the updating process. The runnout zones
were not included in the analyses as the TRIGRS software does not
account for the post-failure behavior of soil masses.

Meteorological observations in this study consists of two rainfall
events on June 10th 2011 and May 23rd 2013, as presented in Fig. 14.
Hourly measurements of rainfall intensities for the two events are
presented side-by-side in Fig. 14 within a period of 24 h. Note that the
horizontal axis represents time since the start of the analyzed 24-h
periods and not the time of the day for the two events. In addition to the
measured values, average rainfall intensities within the studied 24-h
periods for the two events are presented. The average rainfall intensity
for the rainfall event in 2011 is I; 5o;; = 2.572 mm/h = 61.72 mm/
day. The average rainfall rate for the rainfall event in 2013 is slightly
lower and equal to I 5013 = 2.107 mm/h = 50.56 mm/day. To simplify
the implementation of the TRIGRS model, the average rainfall in-
tensities are simulated over the studied 24-h periods in 2011 and 2013
instead of the measured values.

Prediction accuracy of TRIGRS is modeled by the model error, €.
The model error is assumed to follow a normal distribution with zero-
mean and standard deviation of o, =0.05. The standard deviation
value is selected based on the study by Duncan and Wright (1980). o,
relates only to the model error in the slope stability model and it does
not include errors in the infiltration model. The uncertainties in €, are
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Table 1
Distributions of uncertain model parameters.
Parameter Distribution  Distribution parameters Source
H [m] Depth to bedrock Lognormal 1y = —2.578-tan(6) + 2.612 oy = 0.271 -
¢ [kPa] Cohesion Lognormal .= 4.0 CoV,= 0.3 Mean value adapted from Melchiorre and Frattini (2012). Coefficient of
variation based on Lacasse and Nadim (1996).
¢ 1 Friction angle Normal Hg= 32.0 CoVg= 0.2 Mean and coefficient of variation adapted from Melchiorre and Frattini
(2012).
H, [m] Initial water depth Uniform Hyp, min = 0.0 Hymax=H -
ks [m/s] Saturated coefficient of Lognormal Uiy = 1.0-10°6 CoVi; = 1.0 Mean based on the values from Melchiorre and Frattini (2012) and Janbu
permeability et al., 1989.
Do [m?/s]  Diffusivity Lognormal Bpy = 5.0-1076 CoVpy= 1.0 Mean based on the values from Melchiorre and Frattini (2012).
em Slope stability model error Normal Hey =00 2 = 0.05 Standard deviation value from Duncan and Wright (1980).
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Fig. 14. Rainfall events on June 10th 2011 and May 23rd 2013 with average
daily rainfall rates.

considered as irreducible because they are inherent to the model itself,
on which the updating is performed.

Approximate likelihood formulation was implemented to facilitate
Bayesian updating based on the observation of the rainfall event in
2011 and the corresponding initiation zones. Based on the discretized
initiations zones in Fig. 13, eight separate initiation zones were de-
tected, Cg;, i = 1, ...,8. The likelihood function for each of those zones
was derived by interpreting the observation of landslide initiation as
the global factor of safety within the initiation zone greater than one
before the rainfall, F§(x, t = 0) > 1, and equal to one at the end of the
rainfall, F§(x,t= T)=1. Alternative likelihood formulations could
have been considered if additional information on the failure of the
respective initiation zones were available. The value of F§ for each of
the initiation zones is approximated by the harmonic mean of the fac-
tors of safety of cells within the zone. Other potential likelihood for-
mulations (e.g., arithmetic mean) were not analyzed due to consider-
able computational time required to perform the Bayesian updating.
The likelihood function for Cg;, i = 1, ...,8 initiation zones is then de-
fined as follows:

_ x]

where p and q are the cell indexes, © is the harmonic mean, x is a
realization of the vector of random parameters, X, and €y, is the model
error. The observation of a stable initiation zone before the rainfall is
assumed to be automatically satisfied as the value of factor of safety is
non-increasing for the duration of the rainfall event,
Fs(x,t =0) > Fs(x, t > 0).

For a subset of cells where no landslide initiation was observed
during the rainfall event, Cs C C, the approximate likelihood function is
derived by interpreting the observation event as the harmonic mean of
the factor of safety in those cells being larger then one before and
during the rainfall event. The likelihood function can be specified as
follows:

@(FSp,q(x7 t=T): (p7 Q) € Cp) —

Oepr

L?,-(x>=¢(1 For |x

The approximate likelihood function for all of the zones is specified
as follows:

8
L) =Lie) [ [ La®)

i=1

6.3. Results and discussion

Fig. 15(a) and (b) present the posterior mean of Fs(x, t = 0) within
the initiation zones and the stable zone, respectively, before the 2011
rainfall event. From Fig. 15(a) it can be observed that most of the cells
in the initiation zone have Fs(x, t = 0) values greater than one with a
smaller number of cells having values lower than one. These values are
consistent with the interpretation of F§ as a harmonic mean of the
factors of safety in the initiation zones being greater than one before the
rainfall. Similar observations can be detected from Fig. 15(b) in the
stable zone, with most of the cells being stable and a smaller number of
cells having a factor of safety smaller than one.

Fig. 15(c) and (d) present the posterior mean of Fs(x, t = T) within
the initiation zones and the stable zone, respectively. When comparing
Fig. 15(a) and (c), one can observe that a greater number of cells in the
initiation zones has a factor safety close to or lower than one. This
agrees with the observation of F§ within each of the initiation zones
being interpreted as a harmonic mean equal to one after the rainfall
event. The comparison of Fig. 15(b) and (d) shows that the factors of
safety of cells in the stable zone have lower values after the rainfall
event. However, most of the cells are stable thus indicating that F§ in
the stable zone is greater than one.

Fig. 15(e) shows the posterior mean of ¢ in the initiation zones.
From Fig. 15(e) it can be detected that the updating process resulted in
reduced mean values with the posterior values in many of the cells
being lower than the prior mean of 4000 Pa. Such change is consistent
with the observation of landslide initiation in those zones as a decrease
in the value of ¢ contributes to destabilizing the slope. In the stable
zones, the updating process has resulted in increased mean values of ¢
in some of the areas and reduces values in other areas, as shown in
Fig. 15(f). When investigating the results of the updating process and its
effects on the model parameters it is important to note that the pos-
terior values of model parameters at a given cell are not influenced only
by conditions at the cell but also by the conditions at the neighboring
cells (e.g., initiation zones) due to the presence of spatial correlation.
One of the potential reasons for increased mean values of ¢ in some
areas of the stable zone is that an observation of a stable zone was
observed on relatively steep slopes. To ensure stability on such steep
areas, the value c was increased in the updating process to achieve the
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Fig. 15. (a) Posterior mean of Fs(x, ¢t = 0) within the landslide initiation zones, (b) Posterior mean of Fs(x, t = 0) in the stable zone, (c) Posterior mean of Fs(x, t = T)
within the landslide initiation zones, (d) Posterior mean of Fs(x, t = T) in the stable zone, (e) Posterior mean of ¢ [Pa] within the landslide initiation zones, (f)

Posterior mean of ¢ [Pa] in the stable zone.

specified observation. In reality, the stability of those cells could have
been also explained by parameters and conditions not captured by the
model such as the effects of vegetation or slope geometry. The effects of
the updating process on the distribution of F¥ in the largest initiation
zone (i.e., second from below in Fig. 15(a)) is presented in Fig. 16.
Fig. 16 shows prior and posterior distributions of F§ after the rainfall,
t = T. From Fig. 16 it can be observed that the updating process has
significantly reduced variability in the values of F§ to agree with the
interpretation of the landslide initiation zone as the harmonic mean of
the factors of safety of the cells within the initiation zone being equal to
one. These results indicate that the updating process is capable of sig-
nificantly reducing uncertainties in the model parameters with the re-
sulting variability in the posterior distribution of F§ providing a basis
for an improved landslide hazard assessment.

Fig. 17(a) and (b) show the effects of updating on the mean values
of ¢ in the initiation zones and the stable zone. From Fig. 17(a) it can be
detected that the updating process resulted in the reduction of mean
values of ¢ in the initiation zones with the posterior mean being lower
than the prior mean of 32°. Such change is consistent with the ob-
servation of landslide initiation in those zones as a decrease in the value
of ¢ contributes to destabilizing the slope. The posterior means of ¢ in
the stable zone feature both increasing and decreasing values, similar to
the interpretation of posterior values of c. The updating process also
resulted in reduced variability in the model parameters, which indicates
that the updating process provides a basis to improve the knowledge
about uncertain parameters and improve assessment of landslide in-
itiation. Other model parameters are not being presented in detail as no
clear visual patters between the posterior mean and standard deviation,
and the initiation and the stable zones were detected. However, this
does not exclude the possibility that the other model parameters might
be significantly affected by the updating process in different settings.

The effects of the updating process on the estimates of the
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Fig. 16. Prior and posterior distribution of F§ (x, t = T) in the largest landslide
initiation zone (i.e., second from below).

probability of landslide initiation are presented in Fig. 17(c) and (d).
Fig. 17(c) presents the estimates of the probability of landslide initia-
tion based on prior information after the rainfall event of 2011. The
initiation zones were left transparent as the landslide initiation was
realized in the cells of those zones. From Fig. 17(c) it can be observed
that a substantial ratio of cells in the studied domain has relatively high
probabilities of landslide initiation with the highest values above 0.4.

The effects of updating on the estimates of the probability of in-
itiation can be examined in Fig. 17(d). From Fig. 17(d) it can be de-
tected that the updating process resulted in a significant increase of
probabilities of landslide initiation with the highest values being above
0.8. However, in some regions the updating process results in reduced
probabilities of landslide initiation. The largest positive difference be-
tween the posterior and prior values of around 0.8 demonstrates that
the updating process can result in increasing the likelihood of landslide
initiation by reducing uncertainties in the knowledge on spatially
variable model parameters. Increases in the likelihood of landslide in-
itiation are associated with cells that are often in the proximity of the
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Fig. 17. (a) Posterior mean of ¢ [°] within the landslide initiation zones, (b) Posterior mean of ¢ [°] in the stable zone, (c) Prior failure probability after the rainfall
event of 2011, (d) Posterior failure probability after the rainfall event of 2011, (e) Posterior failure probability with the contours of the landslide initiation zone after

the rainfall event of 2013 highlighted.

landslide initiation zones where updating process resulted in reduced
mean values of ¢ and ¢, as observed in Figs. 15(f) and 17(b). Such es-
timates are reasonable as decreasing values of both ¢ and ¢ contribute
to destabilizing the slope and consequently increasing the likelihood of
landslide initiation.

Conversely, reduction of uncertainties in the model parameters
through the implemented updating process can also result in reduced
likelihood of landslide initiation. For some cells within the studied
domain, the reduction was significant with the reduction of 0.4 from
prior to posterior estimates of the probability of landslide initiation.
Such conditions can be found in cells that had relatively high prior
likelihood of landslide initiation, which is likely to be associated with
cells on relatively steep sections of the model domain. Given that such
areas remained stable after the rainfall event of 2011, the updating
process increased the stability of such cells to achieve agreement be-
tween the observation and model predictions. Increased stability of
those cells is consequently achieved through higher posterior means of
stabilizing model parameters such as ¢ and ¢ and reduced variability
around those values when compared to the prior distributions. These
results demonstrate the advantages of the implemented updating pro-
cess to explicitly calibrate spatially variable parameters of landslide
prediction models with observations of landslide initiation zones and
contribute to an improved and more refined landslide hazard assess-
ment.

The performance of the updating process and its capacity for pro-
viding an improved and more refined landslide hazard assessment were
examined by simulating the rainfall event of 2013 in TRIGRS. As dis-
cussed earlier, the rainfall event of 2013 triggered multiple landslides in
the Kvam area with one of the landslide initiation zones being within
the study domain, as shown in Fig. 13. The landslide initiation zones
corresponding to the rainfall event of 2011 remained inactive during
the 2013 rainfall event and their stability was not assessed.

The stability of the cells that remained stable or were within the
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runout zones after the landslide event of 2011 was assessed again by
simulating the rainfall event of 2013. The stability of cells in the runout
zones were evaluated based on their original geometry due to lack of
information on the post-landslide geometry and depths to bedrock. The
stability of the cells was assessed on samples from the posterior dis-
tribution of the model parameters obtained with the updating process
based on the 2011 rainfall event. Estimated probabilities of landslide
initiation for the rainfall event of 2013 are presented in Fig. 17(f). The
contours of the landslide initiation zone following the rainfall event of
2013 is highlighted in red in Fig. 17(f). From the estimated values
within the initiation zone after the 2013 event, one can observe that
there are several zones of high probability of landslide initiation with
the probabilities being greater than 0.8. Instabilities in those zones
could have been the initial unstable zones that triggered the propaga-
tion of the failure zone and resulted in landslide initiation. These results
indicate that the provided estimates of the probabilities of landslide
initiation are consistent with the observed landslide initiation zone
after the 2013 rainfall event. Such estimates can contribute to im-
proving and refining landslide hazards assessments by continuously
integrating new observations and updating the model parameters.
Additionally, there are several addition zones with high probability
of landslide initiation in cells that remained stable after the 2011
rainfall event. As discussed earlier, many of these zones are found in the
proximity of the prior landslide initiation zones and on the runnout
paths of the corresponding zones. Such high estimates of probability are
affected by the conditions at those cells (e.g., relatively steep slope) but
also on the nearby observations of unstable cells, which may contribute
to increasing the likelihood of landslide initiation due to the effects of
spatial correlation of the model parameters. Potential explanations for
the stability of those cells can be multiple including inadequate as-
sumptions or knowledge about the actual conditions (e.g., slope, sur-
face cover, model parameters), geometry changes (e.g., changes slope
profile in the runnout zones) or inadequacy of the landslide prediction
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model to accurately assess the stability of those cells. However, it is
important to note the updating process has reduced the size of the areas
with high probabilities of landslide initiation that remained stable after
the rainfall event, as seen from the comparison of Fig. 17(c) and (d).

7. Overall discussions

The implementation of physical-based models often relies on cali-
bration with observations to improve knowledge on the uncertain
model parameters due to the common lack of data on the model
parameters. The calibration strategy developed in this study builds on
the statistical modeling of spatially variable soil properties by adopting
the Bayesian framework to update the uncertain parameters. The
Bayesian updating framework is versatile and can include various types
of observations with the focus of this study being calibration based on
landslide inventories (e.g., observations of landslide initiation zones).
The developed approach for model calibration introduced several no-
velties to overcome challenges related to large numbers of calibration
parameters and high-dimensional likelihood functions. The former
challenge arises from the explicit modeling of spatially variable model
parameters with random fields. This was resolved by reformulating the
Bayesian updating problem as an equivalent reliability problem with
the BUS approach. The equivalent reliability problem was solved with
the SUS reliability method, which is efficient in problems with large
number of parameters. The latter challenge appears in Bayesian up-
dating problems with relatively large number of cell-based observations
(e.g., cells failing after a rainfall event), resulting in high-dimensional
likelihood functions. Evaluating such likelihood functions is challen-
ging because their values can become very low and computationally
intractable. This challenge was resolved by developing novel approx-
imate likelihood formulations suitable for the interpretation of ob-
servations from landslide inventories. The novel likelihood formula-
tions are based on the ABC method, where a lower-dimensional
likelihood function is formulated based on certain summary statistics to
avoid computational difficulties of the higher-dimensional full like-
lihoods. Different types of approximate likelihood formulations, specific
for physical-based landslide prediction models, were implemented and
their performance was examined on several examples.

The effects of updating within the initiation zone also expand to the
neighboring zones that remained stable after the rainfall event due to the
explicit modeling of spatial dependence of model parameters as modeled
by the autocovariance function of the random field model. The ob-
servation of the landslide initiation zone was associated with lower mean
and reduced standard deviation values of soil strength parameters, such
as cohesion and friction angle. These results are considered as reasonable
as lower values of strength parameters decrease the capacity of a slope to
remain stable, thus satisfying the observation of landslide initiation.
Conversely, higher mean values of diffusivity were associated with the
observation of a landslide initiation zone as higher diffusivity values
contribute to faster rainfall infiltration into the slope and consequently
more rapid destabilization of the slope. These changes are less pro-
nounced as the distance from the initiation zone increases with the mean
values of strength parameters in the stable zones being equal or slightly
higher than the ones assumed before calibration. This agrees with the
effects of increasing strength parameters on stabilizing the slope.

In addition to changes in the mean values, the updating process re-
sulted in the reduction of standard deviations of the uncertain para-
meters. Reducing standard deviation increases knowledge on uncertain
model parameters and enables a more refined assessment of landslide
hazards. The reduction in the standard deviation was strongest in the
initiation zones and in the stable zones in their proximity. This was a
consequence of the landslide initiation zone providing a stronger up-
dating information in the considered example and being more restrictive
on the range of likely parameters values based on the knowledge prior to
updating. Improving knowledge on the uncertain model parameters has
important effects on the landslide hazard assessment. These effects were
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quantified by calculating the probability of landslide initiation in the
zones that remained stable after the rainfall event. The updated knowl-
edge lead to increased probabilities of landslide initiation in the cells in
the proximity of the observed landslide initiation zones. This is due to the
effects of spatial dependence on propagating the reduction in strength
parameters from the landslide initiation zones to the neighboring stable
areas. Conversely, a decrease in the probability of landslide initiation was
observed in some cells that remained stable after the rainfall event. The
decrease in probability of landslide initiation in those areas is explained
by these cells usually being found on steep slopes with higher values of
strength parameters being required to stabilize them. These results in-
dicate that the implemented updating strategy contributes to a more
refined and improved landslide hazard assessment.

In addition to the potential of the developed approach to improve
landslide hazard assessment, it is important to highlight several limitations
of the implemented approach. One of the limitations is that the calibration
is model-based with the formulation of the likelihood functions and the
results of the updating being dependent on the implemented physical-
based model. The approximate likelihood formulations are developed on
approximations of F§ based on the values of factor of safety in the cells of
the initiation zone. Such approach is suited to typical physical-based
landslide prediction models and it does not account for the equilibrium of
forces between the cells and the nonlinear redistribution forces in the
landslide propagation process. These approximations could be avoided by
implementing more advanced models that can account explicitly for the
limitations of these models. Furthermore, the interpretation of the up-
dating results is dependent on the formulations of physical processes in-
cluded in the model and its capacity to realistically simulate the landslide
initiation process. The interpretation of the results should be done within
the context of the implemented model as the updating process will aim to
update the distributions of the model parameters to achieve parity be-
tween the observations and the model predictions. Given that the parity is
based only on the functionality embedded in the implemented landslide
model, it is important to avoid applying a model that does not contain
features observed in reality. The assumption that the implemented model
is capable to realistically simulate the conditions observed in reality to-
gether with its limitations should be thoroughly examined. In case that the
model is considered suitable, the implemented approach quantifies the
effects of model uncertainty with a model error term. However, it is im-
portant to note that the model error applies for the situations when the
model is considered to be able to realistically simulate the observed con-
ditions. In addition to ensuring that the applied model is suitable, the
application of more advanced models that feature, among other, explicit
modeling of the landslide initiation process and post-failure behavior, soil
anisotropy, three-dimensional groundwater flow, and surface flow mod-
eling could contribute to an improved landslide hazard assessment with
the developed framework. Additional limitation is that the implemented
Bayesian framework is computationally intensive with the computational
demands increasing with the size of the domain and required accuracy in
the posterior parameter values. Analyses with larger numbers of cells may
benefit from further improvement in efficiency of Bayesian updating al-
gorithms or require higher computational resources and parallel com-
puting.

8. Conclusions

This study presented a novel framework for Bayesian calibration of
spatially distributed physical-based landslide prediction models. The
study introduced several novelties including modeling of spatially
variable model parameters with random fields and new approximate
likelihood formulations to support efficient calibration of such models
with observations from landslide inventories.

The study demonstrated that the developed approach is capable of
successfully updating the model parameters and overcoming the chal-
lenges of large numbers of parameters and high-dimensional likelihood
functions characteristic for such calibration problems. Enabled by the
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approximate likelihood formulation, an efficient relation between the
observation of a landslide initiation zone and the corresponding model
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Methodology, Resources, Supervision, Validation, Writing - review &
editing.

prediction was established to facilitate updating of model parameters.
The developed Bayesian calibration strategy significantly affected the
distribution of model parameters within the landslide initiation zones.
These results indicate that the implemented strategy contributes to a
more refined and improved landslide hazard assessment.
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Appendix A. Transient pressure head component

The transient component of the groundwater pressure head for tension saturated initial conditions with a time-varying flux at the ground surface
and a zero flux at impermeable basal boundary at a finite depth (Baum et al., 2002) is calculated as follows:
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where H is depth to bedrock, I, is the surface flux for the n time interval, N is the total number of intervals, D, = Dy/cos?§ is the relative saturated
hydraulic diffusivity, Hy(t — t,) is the Heaviside step function, b is the number of the infinite series terms, and ierfc is the complementary error
function.

Appendix B. Bayesian updating of a simple TRIGRS model
B.1. Problem formulation

A relatively simple Bayesian updating problem is implemented to examine updating of uncertainties associated with a simplified spatially distributed
landslide prediction model and the geometry presented in Fig. 2. The stability is evaluated, for each of the cells, with TRIGRS based on the value of Fs as
defined in Eq. (4). The set of uncertain model parameters is defined as X = [H, ¢, ¢, H,, ks, Do]". The TRIGRS model parameters not included in X are
considered as deterministic with the following values adopted for slope angle, § = 25°, specific dry gravity of soil, G; = 2.7, void ratio, e = 0.26, saturated
6; = 0.4 and residual 6, = 0.05 volumetric water contents. The properties of the random model parameters and the model error, €, are specified in Table 1.

Stability of each of the cells in the model is evaluated based on the value of F, such that a cell (i, j) is stable if F5;; > 1 and unstable if Fy; < 1.
Based on the problem formulation, a reliability problem can be defined to estimate the probability of landslide initiation for each of the cells. For a
cell (i, j), the reliability problem is defined with the performance function g J (X, ey, t) = F5;j(X, t) + € — 1. The probability of landslide initiation
in a cell (i, j) after the rainfall event at time ¢t = T is calculated as Py;; = P(g; J X, ey, T) < 0).

B.2. Prior

Details on modeling spatial variability of the random TRIGSR parameters c, ¢, ks, Dy, H, and H,, are provided in Section 6.1. Meteorological
observation are based on the Kvam case study and consists of a rainfall event on June 10th 2011, as presented in Section 6. The average rainfall
intensity for the rainfall event in 2011 is Iy 5o;; = 2.572 [mm/h] = 61.72 [mm/day]. To simplify the implementation of the TRIGRS model in this
example, the average rainfall intensity will be simulated over the studied 24-h period instead of the measured values.
B.3. Likelihood function

The likelihood function is formulated based on an observation of a landslide initiation zone for the given rainfall event, as shown in Fig. 2. The

likelihood function will be derived from the approximate likelihood formulations in Section 4.2.3 with the likelihood formulation based on Eq. (23)
for the initiation zone and the formulation in Eq. (25) for the stable zone with the harmonic means, .
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B.4. Posterior

Given the prior knowledge and the likelihood functions, the BUS algorithm was implemented to obtain K = 10* from the posterior distribution.
Samples from the posterior distributions were also used to update the reliability estimates and evaluate the effects of the observations on the slope
stability assessment. The results of the updating process are presented in Figs. B.18,B.19,B.20. Fig. B.18(a) and (c) present the posterior mean values
of the factor of safety in each of the cells before and after the rainfall event, Fs(x, t = 0) and Fs(x, t = T), respectively. From Fig. B.18(a) it can be
detected that the posterior mean values of Fs(x, t = 0) are larger than one in the entire domain, corresponding to the observation that F§ in the
initiation and the stable zones are greater then one. From Fig. B.18(c) it can be observed that the posterior mean values within the cells of the
initiation zone are close to or lower than one, corresponding to the observation that F§ in the initiation zone is lower or equal to one. The posterior
mean values of Fs(x, t = 0) and Fs(x, t = T) in the cells of the stable zone increase as the distance from the initiation zone increases. This is a
consequence of the spatial dependence in the TRIGRS model parameters, as specified by the random field models. Additionally, from the comparison
of Fig. B.18(a) and (c) it can be seen that the values of factor decrease from Fs(x, t = 0) to Fs(x, t = T) as the rainfall infiltration contributes to
decreasing the slope stability. Due to relatively low number of samples there is lack of symmetry (i.e., vertical and horizontal with respect to the
initiation zone) in the estimated statistics.

Fig. B.18(b) and (d) present the values of posterior standard deviation of Fs(x, t = 0) and Fs(x, ¢t = T), respectively. From Fig. B.18(b) and (d) it
can be detected that the updating process leads to lowered values of standard deviation with the greatest reduction found within the initiation zone.
This can be explained by the observation of landslide initiation providing stronger updating information and being more restrictive to the range of
possible outcomes as specified by the prior knowledge. Within the stable zone, the reduction of standard deviation values is stronger in the proximity
of the initiation zone due to the effects of spatial dependence in the TRIGRS model parameters.

Given that the approximate likelihood function is specified in terms of F¥, the updating process will be examined in terms of the values of F§ to
satisfy the observation of landslide initiation. Fig. B.18(e) and (f) present, respectively, the histograms of the prior and posterior samples of
F§(x, t = 0) and F{(x, t = T) in the initiation zone. Fig. B.18(e) reveals that the updating process significantly reduces variability in the values of
F§(x, t = 0) based on the observation of a stable slope before the rainfall event and landslide initiation after the rainfall event. The capacity of the
implemented framework to satisfy those observations can be evaluated from the posterior histograms. The posterior histogram of F§ (x, t = 0) in Fig.
B.18(e) shows that most of the samples are above one and satisfy the observation of a stable slope before the rainfall event with some realizations
being below one due to the effects of the model error. After the rainfall event, the distribution of F§(x, t = T) shifts to the left, as seen from Fig.
B.18(f), with the majority of samples being lower than one and agreeing with the observation of landslide initiation. However, a significant ratio of
samples is above one due to the effects of the model error on the updating process. The results in Fig. B.18(e) and (f) demonstrate that the results of
the implemented updating process are consistent with the interpretations of the landslide initiation process as F§(x, t = 0) > land F§(x, t = T) < 1,
and corresponding approximate likelihood formulation. These results indicate that the implemented approximate likelihood formulation and the
updating process can support updating process based on observations of landslide initiation zones.

The effects of updating on the distributions of the TRIGRS model parameters can be examined in Figs. B.19 and B.20. The focus will be on ¢, ¢ and
D, as no noticeable effects of the updating process on the distributions of the other parameters could be detected. Fig. B.19(a) and (b) show,
respectively, the posterior mean and standard deviation of ¢ in Pa. From Fig. B.19(a) one can detect that the initiation process is likely to be
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Fig. B.18. (a) Posterior mean of Fs(x, t = 0), (b) Posterior standard deviation of Fs(x, t = 0), (c) Posterior mean of Fs(x, t = T), (d) Posterior standard deviation of
Fs(x, t = T), (e) Prior and posterior distributions of F§ (x, t = 0) in the initiation zone, (f) Prior and posterior distributions of F¢ (x, t = T) in the initiation zone.
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Fig. B.19. (a) Posterior mean of ¢ [Pa], (b) Posterior standard deviation of ¢ [Pa], (c) Posterior mean of ¢ [°], (d) Posterior standard deviation of ¢ [°], () Prior failure
probability, Pr, (f) Posterior failure probability, Pg.

associated with lower values of ¢ when compared to the prior mean of 4000 Pa with the lowest values being around 3500 Pa. This is reasonable as
lower values c decrease the soil strength and the capacity of slopes to remain stable thus contributing to satisfying the observation of landslide
initiation. Within the stable zone, the posterior mean values of ¢ increase with the distance from the initiation zone to the values equal or slightly
higher than the prior mean values. The gradual increase with the distance from the initiation zone is attributed to the spatial dependence of ¢
modeled by the lognormal random field. Higher mean values in some cells can be attributed to the observation of a cell being stable after the rainfall
event being associated to higher soil strength parameters or the effects of the iterative sampling process and the limited number of samples. Fig.
B.19(b) shows the effects of the updating process on the posterior standard deviation of c. In general, the updating process results in reduced values
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of standard deviation from the prior value of 1200 Pa with the greatest decrease being in the initiation zone. This contributes to increasing
knowledge about the uncertain model parameters for a better landslide hazard assessment. However, in some cells of the model increased values of
standard deviation are observed. This likely to be associated with the effects of the iterative sampling process and the limited number of samples.

Fig. B.19(c) and (d) provide an insight in the effects of the updating process on the posterior mean and standard deviation of ¢. Fig. B.19(c)
reveals that the updating process leads to reduced posterior mean values of ¢ when compared to the prior mean of 32°. Largest reduction is observed
within the initiation zone with the mean values increasing with distance from the initiation zone to the values close to the prior ones at the edges of
the model domain. These trends seem reasonable as lower values of soil strength parameters as ¢ reduce the capacity of slopes to remain stable
during a rainfall event thus contributing to satisfying the observation of landslide initiation. The gradual trend of increasing posterior mean values
with the distance from the initiation zone is attributed to the spatial dependence of ¢ modeled by the normal random field. Fig. B.19(d) presents the
posterior values of the standard deviation of ¢. The updating process resulted in decreased values of standard deviation in most of the cells with some
exceptions. These exceptions are likely to be associated with the effects of the iterative sampling process and the limited number of samples. Similar
as for the values of c, the greatest reduction is observed within the cells of the initiation zone. Reducing variability in the model parameters
contributes to increasing knowledge about the uncertain model parameters for a better landslide hazard assessment.

The effects of updating on the estimates of the probability of landslide initiation in the cells of the stable zone are examined in Fig. B.19(e) and
(f). Fig. B.19(e) presents the prior estimates of the probability of landslide initiation after the rainfall event. The probability estimates in Fig. B.19(e)
are based on the prior distributions of model parameters. The initiation zones were left transparent as the landslide initiation was realized in the cells
of those zones. From Fig. B.19(e) it can be observed that the probability of landslide initiation vary in the range between 0.168 and 0.184. The
observed variability is due to relatively small number of samples used to obtain those estimates.

The effects of updating on the estimates of the probability of initiation can be examined in Fig. B.19(f). Fig. B.19(f) presents the posterior
estimates of the probability of landslide initiation after the rainfall event. From Fig. B.19(f) it can be detected that the updating process resulted in a
significant increase of probabilities of landslide initiation with the highest values being above 0.4. The largest increase between the posterior and
prior values is observed in the proximity of the initiation zone and it demonstrates that the updating process can result in increasing the likelihood of
landslide initiation by reducing uncertainties in the knowledge on spatially variable model parameters. Increases in the likelihood of landslide
initiation are associated with cells that are often in the proximity of the landslide initiation zones where updating process resulted in reduced mean
values of ¢ and ¢, as observed in Fig. B.20(b) and (d). Such estimates are reasonable as decreasing values of both c and ¢ contribute to destabilizing
the slope and consequently increasing the likelihood of landslide initiation.

The updating process can be further examined by investigating the prior and posterior distributions of TRIGRS model parameters at selected cells
in the model. Fig. B.20(a) shows histograms of prior and posterior samples of ¢ from a cell in the initiation zone. Similarly, Fig. B.20(b) presents
histograms of prior and posterior samples of ¢ from a cell in the stable zone and on the edge of the initiation zone. From Fig. B.20(a) it can be seen
that the updating produced a distribution with the mean shifted to the left and reduced variance. The shape of the posterior distribution is relatively
similar to the prior lognormal distribution. As discussed earlier, this is consistent with the observation of landslide initiation at this cell. Similar
observations can be made for the histogram in Fig. B.20(b). However, in this case an increase in the mean would be expected due to the cell
remaining stable after the rainfall event. Conversely, a decrease in the mean was observed due to spatial dependence of ¢ as modeled by the
lognormal random field.

Fig. B.20(c) presents histograms of prior and posterior samples of ¢ from a cell in the initiation zone. Similarly, Fig. B.20(d) shows histograms of
prior and posterior samples of ¢ from a cell in the stable zone on the edge of the initiation zone. Fig. B.20(c) demonstrates that the updating produced
a distribution with the mean shifted to the left and reduced variance. These trends are consistent with the observation of landslide initiation at this
cell, as discussed earlier. Similar trends are observed in the posterior histogram in Fig. B.20(d) with the decrease in the mean being less distinct. Fig.
B.20(e) presents the effects of the updating process on the samples of In(Dy) from a cell in the initiation zone. Similarly, Fig. B.20(e) shows
histograms of prior and posterior samples of In(D,) from a cell in the stable zone and on the edge of the initiation zone. Fig. B.20(e) shows that the
updating produced a distribution with the mean shifted to the right. These trends are consistent with the observation of landslide initiation at this
cell as higher diffusivity is associated with faster rainfall infiltration and therefore contributes to a more rapid destabilization of a slope. Similar
trends are detected in the posterior histogram in Fig. B.20(e) with a smaller increase in the mean. This is likely to be attribute to the effects of spatial
dependence of Dy as modeled by the lognormal random field.
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