Impact on Power System Frequency Dynamics from an HVDC Transmission System With Converter Stations Controlled as Virtual Synchronous Machines

Francesco Palombi
Luigi Piegari
Department of Electronics, Information and Bioengineering
Politecnico di Milano
Milano, Italy
luigi.piegari@polimi.it

Salvatore D’Arco
Atsede G. Endegnanew
Jon Are Suul
SINTEF Energy Research,
Trondheim, Norway
Jon.A.Suul@sintef.no

Abstract— This paper evaluates the operation of an HVDC interconnection for providing virtual inertia and the impact on the power system frequency dynamics when one or both the converter terminals are controlled as a virtual synchronous machine (VSM). The analysis aims at assessing the performance of the inertia support from a power system perspective by studying the impact on the frequency nadir and the Rate-of-Change-of-Frequency (RoCoF) of two asynchronous power system equivalents. It is demonstrated how the dc voltage control can be integrated with the VSM-based control when both converter terminals should be controlled to provide inertia support, but it is also found that this may require additional capacitance to ensure sufficient stability margins. Simulations in PowerFactory are presented for a case with two asynchronous power system equivalents connected by an HVDC transmission scheme modelled with parameters based on the planned Nordlink connection between Norway and Germany. The results confirm the beneficial effects of the inertia support on the frequency dynamics and demonstrate how the VSM-based control provides a clear improvement of the frequency nadir compared to traditional power-frequency droop control.

Index Terms—Frequency dynamics, HVDC transmission systems, Virtual Inertia, Virtual Synchronous Machines

I. INTRODUCTION

The introduction of large-scale renewable power generation with power electronic interfaces into the power system is leading to reduced equivalent inertia and rising levels of rate-of-change-of-frequency (RoCoF) in response to disturbances [1], [2]. Such conditions are already challenging the operation of islanded systems with high penetration of wind power generation, as in Ireland and in the UK [3], [4]. However, also larger interconnected power systems like the continental European power system are expected to experience periods with reduced equivalent inertia when the renewable power generation will further increase [5]. In the hydro-dominated Nordic power system, challenges related to low inertia operation will occur during low load and high import from existing and future HVDC interconnections with the neighboring power systems [6]. In such conditions, control of the HVDC converters for providing virtual inertia could be an effective measure for increasing the equivalent inertia and improving the frequency dynamics of the power systems.

Several recent publications have proposed to utilize Voltage Source Converter (VSC) HVDC systems for providing virtual inertia. However, many of the proposed control methods utilize the frequency derivative (i.e. the \(\frac{df}{dt} \) or RoCoF) to calculate the emulated inertial response [7]-[11]. Such control strategies can be easily integrated with conventional VSC control loops but rely on synchronization with a relatively strong grid voltage for the \(\frac{df}{dt} \) estimation. As an alternative approach for providing virtual inertia, Virtual Synchronous Machines (VSMs) with explicit emulation of a synchronous machine (SM) swing equation have been widely studied for various applications [12]-[15]. Such control strategies rely on the power-balance-based synchronization mechanism of their virtual swing equation, and since they operate in a similar way as SMs, they do not depend on a Phase Locked Loop (PLL) for grid synchronization. Thus, the same operational flexibility as for SMs is ensured, including the ability to operate in strong grids, in stand-alone systems with a local load, or in any intermediate conditions. However, most previous publications on VSM-based control for HVDC applications, as for instance [16]-[18], have studied the implementation and control system performance for individual converter terminals without addressing the impact of the inertia support on realistic network models from a power system perspective. Furthermore, except for some examples in [19], [20], the VSM-based provision of virtual inertia at both sides of a

This work was supported by the project “HVDC Inertia Provision” (HVDC Pro), financed by the ENERGIX program of the Research Council of Norway (RCN) with project number 268053/E20 and the industry partners; Statnett, StatOil, RTE and ELIA.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This paper studies the utilization of a VSM-based control scheme with cascaded voltage and current controllers in an HVDC interconnection between two asynchronous power systems. The applied control strategy is implemented for a simulation model in PowerFactory which includes the frequency dynamics of simplified power system equivalents on both sides of the HVDC system. It is first demonstrated how VSM-based control in one of the HVDC terminals can provide inertial response and significantly improve the frequency dynamics of simplified power system equivalents. Then, it is shown how a dc-voltage controller can be integrated in the VSM-based control scheme, in order to operate both HVDC converter terminals as VSMs. However, this requires significantly reduced bandwidth of the dc voltage controller. In the second configuration, both terminals are controlled as VSM for providing virtual inertia, while the other terminal is controlled with a conventional dc-voltage controller. In the first configuration, one terminal is controlled as a VSM for providing virtual inertia, utilizing the internal control loops, while the reactive power controller provides the voltage amplitude reference \(v^\star\). Hence, the VSM inertia emulation and the reactive power controller appear as outer loops providing references for the cascaded voltage and current controllers. A Phase Locked Loop (PLL) it utilized to detect the actual grid frequency, but this frequency is only used for implementing the damping term in the swing equation. Thus, the inner loop controllers do not rely on the PLL as in a conventional VSC control system, but only on the power balance-based synchronization mechanism of the emulated SM swing equation [21].

A block diagram showing the implementation of the VSM swing equation is shown on the right-hand side of Fig. 2. The swing equation used for the implementation is linearized with respect to the speed so that the acceleration of the inertia is determined by the power balance as

\[
s \cdot \omega_{\text{SM}} = \frac{p^v}{T_a} - \frac{p}{T_a} - \frac{P_d}{T_a}
\]

where \(p^v\) is the virtual mechanical input power, \(p\) is the measured electrical power injected into the grid by the VSM, and \(P_d\) is the damping power. The mechanical time constant is defined as \(T_a\), corresponding to \(2H\) in a traditional SM. The per unit mechanical speed \(\omega_{\text{SM}}\) of the virtual inertia is given by the integral of the power balance while the corresponding phase angle \(\theta_{\text{SM}}\) is given by the integral of the speed.

An external frequency droop, equivalent to the steady-state characteristics of the speed governor for a traditional synchronous machine, is included in the power control of the VSM as shown in the lower left side of Fig. 2. This power-frequency droop is characterized by the droop constant \(k_\omega\) acting on the difference between a frequency reference \(\omega_{\text{VSM}}^\star\) and the actual VSM speed \(\omega_{\text{VSM}}\). Thus, the virtual mechanical input power \(p^v\) to the VSM swing equation results from the sum of the external power reference set-point, \(p^v\), and the

![Fig. 1. Overview of the control system for an HVDC converter terminal operated as a Virtual Synchronous Machine](image-url)

point-to-point HVDC transmission system have not been sufficiently assessed.
frequency droop effect Δp_{droop}. By substituting the droop expression into (1), and expanding the damping term as expressed from the grid frequency detected by the PLL, the virtual swing equation is given by:

$$s \cdot \omega_{\text{VSM}} = \frac{p^*}{T_e} - \frac{k_p \left(\omega_{\text{VSM}} - \omega_{\text{PLL}} \right) - k_v \left(\omega_{\text{VSM}} - \omega^* \right)}{T_e} \quad (2)$$

While the instantaneous phase angle θ_{VSM}, utilized in the control system is directly defined in Fig. 2, the phase displacement between the VSM and the equivalent voltage source of a power system model is defined by:

$$s \cdot \Delta \theta_{\text{VSM}} = (\omega_{\text{VSM}} - \omega^*) \ \omega_b \quad (3)$$

where ω_b is the speed of an equivalent generator representing the aggregated inertia of the power system. This phase displacement is needed for synchronous reference frame modelling and small-signal eigenvalue analysis.

B. One HVDC terminal controlled as VSM

As a first case, the inverter terminal is controlled as a VSM while the rectifier terminal is operated with a conventional dc-voltage control strategy with inner loop current controllers as shown in Fig. 3. The d- and q-axis current references are provided by the dc-link voltage control and the ac voltage or reactive power control, respectively. The dc voltage is controlled by a PI controller defined by the proportional and integral gains $k_{p\text{DC}}$ and $k_{i\text{DC}}$ as:

$$I_{\text{v,ref}} = k_{p\text{DC}} + k_{i\text{DC}} \left(v_{\text{dc}} - v_{\text{DC}}^* \right) \quad (4)$$

The current reference from the dc-voltage controller should be limited to avoid over-currents in case of voltage drops, fault conditions or other severe transients. A priority for the direct current has been selected to maintain the dc voltage around the equilibrium point. This also implies that the dc-voltage controller must be protected from windup conditions in case the current reference is saturated [23].

C. Both HVDC terminals controlled as VSM

As described in section II.A, the VSM-based power control with inertia emulation provides the frequency and phase angle references for the inner loop controls, and the reactive power controller provides the reference amplitude of the voltage. Virtual inertia support at both sides of an HVDC interconnection can be obtained by utilizing the same VSM-based control structures for both converter terminals while interfacing a dc-voltage controller with the power balance of the virtual swing equation in one or both the converter stations. In this case, a PI-controller operating on the dc-voltage, as indicated in the upper left part of Fig. 2, is introduced in the converter terminal operating as a rectifier which will be responsible for balancing the dc voltage. The dc-voltage PI controller output $\Delta p_{\text{voltage}}$, will modify the virtual mechanical power input p^* to the swing equation as also indicated in the left of Fig. 2. Thus, the power balance of the VSM inertia with dc-voltage control can be expressed as

$$s \cdot \omega_{\text{VSM}} = \frac{p^*}{T_e} - \frac{k_p \left(\omega_{\text{VSM}} - \omega_{\text{PLL}} \right) - k_v \left(\omega_{\text{VSM}} - \omega^* \right)}{T_e} + \left(k_{p\text{DC}} + \frac{k_{i\text{DC}}}{s} \right) \left(v_{\text{dc}} - v_{\text{DC}}^* \right) \frac{1}{T_e} \quad (5)$$

It should be noted that the frequency droop contribution is not considered and the droop constant k_v from (2) is set to zero for the terminal controlling the dc voltage. The reason is that the dc-voltage PI controller eliminates steady-state errors and will compensate any steady-state contribution from power frequency droop. However, if the integral part of the dc-voltage is disabled to obtain a droop-based control scheme, multiple terminals could contribute to the dc voltage control as well as the ac-side frequency control.

III. SIMULATION STUDY

This section presents numerical simulation results for a point-to-point HVDC connection, to assess the impact of the VSM-based control on the power system frequency dynamics and the power flow of the HVDC system. The dynamic simulations have been performed with the commercial software DlgSILENT Power Factory. Since the simulations are mainly intended to study the inertial dynamics, the switching effects of the VSC are neglected and ideal average models are assumed for representing the converter terminals.

A. Simulated system configuration

The HVDC interconnection of the simulated system is based on the planned Nordlink interconnector, which will connect the Nordic grid to the Continental Europe (UCTE) power system with a 623 km bipolar HVDC link rated at 1500 MVA and \pm525 kV dc [26], [27]. For the simulated case, HVDC converter stations with ratings and parameters corresponding to the Nordlink interconnection are interfaced with two asynchronous areas with a nominal voltage of 285 kV rms (line-to-line) at 50 Hz. These two ac grids are aggregated models composed of a single node with parallel connected synchronous generators and a lumped load, as
shown in Fig. 4. The load is represented by a ZIP-model with 10% constant impedance, 30% constant current load and 60% constant power load. Each area contains 24 parallel synchronous machines rated for 250 MVA at 22 kV (line-to-line rms) leading to a total installed capacity of 6000 MVA. For the simulations in PowerFactory, the generators are represented by a 6th order model with default parameter settings, which are equipped with governors, voltage regulators (AVR) and power system stabilizers (PSS). The inertia time constant \(T_a \) of both areas is assumed to be 10 s and the steady-state droop gain of the generator is 5%.

The two HVDC converters are connected to their associated asynchronous areas through an LCL ac filter. The main parameters of the system configuration and of the VSM-based inertia emulation are reported in Table I. A per unit system based on the rated apparent power of the converter and the peak value of the rated phase voltage is applied for all parameters and simulation results. The parameters of the dq-frame PI current and voltage controllers of the VSMs as well as the conventional control system from Fig. 3 are designed according to the Modulus Optimum (MO) and Symmetrical Optimum (SO) criteria respectively, according to [24],[25] and are not reported in the table for brevity.

The dc cable of the HVDC interconnector has been modelled with a \(\pi \)-model with a single section. As a starting point, the dc bus capacitors of the converter stations were selected to correspond to the equivalent capacitance of a Modular Multilevel Converter (MMC) designed to limit the fundamental frequency sub-module capacitor voltage ripple within 5% [22]. However, for the case of VSM-based control at both sides of the HVDC interconnection, the dc voltage controller must be designed to be slower than the inertial response expected by the converter station at the AC side, to avoid that the two control functions will be conflicting. Furthermore, initial eigenvalue-based analysis of the small-signal dynamics of the case with VSM-based controllers at both sides of the HVDC interconnection, has confirmed how this control configuration will experience stability problems for high values of virtual inertia and/or low values of equivalent dc-side capacitance [28]. In this case, it has been assumed that the VSM inertia constant should be kept at a relatively high value of \(T_e = 20 \) s. Therefore, it becomes necessary to introduce a buffer capacitance or a small auxiliary energy storage to support the simultaneous inertia emulation at both sides of the HVDC interconnection. According to the analysis conducted in [28], a total equivalent dc-side capacitance \(C_{dc} \) with a charging time \(T_C \) in the range of 100 ms will be sufficient for operating the system with reasonable dynamics and stability margins. Thus, the total capacitance \(C_{dc} \) used in the simulations includes the equivalent cable capacitance, the equivalent capacitive energy storage of the converter terminal and any additional buffer capacitance required to reach a \(T_C \) of 100 ms.

For the simulations presented in the following, the system parameters including the equivalent dc-side capacitance are kept the same for all investigated cases. However, the tuning of the dc voltage controller is adapted to the different cases. The PI controller parameters for the dc voltage controller are set to \(k_{dC} = 3 \) pu and \(k_{iC} = 1 \) pu for the configuration with VSM-based control in one HVDC converter terminal while they are given by \(k_{dC} = 2.5 \) pu and \(k_{iC} = 0.67 \) pu for the case where both converter terminals rely on VSM-based control.

B. Time domain simulation results

The system is assumed to initially operate in steady state conditions corresponding to a power production of each area equal to 80% of the total power capacity, with a power factor of 0.9. Moreover, the interconnector operates with 750 MW power transfer (i.e. 0.5 pu) from Area 2 to Area 1. The power system is then perturbed with a step of 0.1 pu increase in the total ZIP-load of Area 1 at 1 s. The results from this simulation are shown in Fig. 5, where the frequency in Area 1 and Area 2 are given in Fig. 5 a) and b), respectively, while the ac-side power flow from the converter stations in Area 1 and Area 2 are given in Fig. 5 c) and d), respectively. Each plot in the figure shows results from 3 cases, i.e. i) a reference case with conventional control systems, utilizing a conventional power control with a frequency droop in Area 1 and a dc-voltage control according to Fig. 3 for the converter in Area 2, ii) VSM-based control for Area 1 and conventional dc voltage control for the converter in Area 2, and iii) VSM-
based control for both converters, but with dc voltage control by the converter in Area 2. Corresponding results for the dc voltages are shown in Fig. 6.

When the load step occurs, the electrical frequency starts decreasing in both Areas, as shown in Fig. 5 a) and b). From the curves it is clear how the virtual inertia of the VSM-controlled converter terminals contributes to a reduction of the RoCoF immediately after the load step. Furthermore, the figures show how the added virtual inertia helps to improve the frequency nadir. For Area 1, it is also clear from Fig. 5 c) how the reduced RoCoF is obtained by a temporary increase of the power injection from the HVDC terminal.

As expected, the power responses and frequency dynamics of Area 1 is the same for the two cases with VSM-based control. However, the transient response in Area 2 differs noticeably between the three cases during the first 5 seconds after the disturbance, as shown in Fig. 5 b) and d). The difference between the two first cases is mainly caused by the impact on the power transfer from the inertia emulation in Area 1, while the differences between case ii) and case iii) are associated with the introduction of the virtual inertia in Area 2 as well as the change in the control of the dc-link voltage. In particular, the increase of power flow into the HVDC terminal of Area 2 in response to the load change in Area 1 is delayed for the case with two VSMs. This implies that more energy is transiently extracted from the dc-system compared to the case with only one VSM-controlled converter station. The corresponding dc voltage transients at both ends of the dc cable are clearly seen in Fig. 6. The increased exploitation of the energy stored in the dc system is delaying the frequency nadir of Area 2 compared to case ii). This is also the reason why additional buffer capacitance was needed to maintain reasonable dynamics and stability margins when operating with a dc-voltage controller cascaded with one of the VSM-based control systems. Still, the results show that with the same system parameters, the RoCoF is slightly reduced and the frequency nadir in Area 2 is slightly improved for the case of two VSMs compared to the configuration with only one VSM, even if the maximum power flow of the HVDC terminal in Area 2 is increased. However, it should be noted that the case with traditional droop control has the best dynamic response with the less severe frequency nadir in Area.

Fig. 5 Transient response of frequency and power flow of converter station for Area 1 and Area 2

Fig. 6 DC voltage transient response

This is the accepted version of an article published in 2019 IEEE Milan PowerTech

http://dx.doi.org/10.1109/PTC.2019.8810855

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
2. This is proved by the fact that the inertia emulation increases the power injection on the Area 1 and consequently perturbs the dc voltage more than the traditional droop control due to the sharing of the inertia between the two systems. Compared to the reference case, the operation with two VSMs causes higher variations in the power flow but only a marginally worse frequency nadir and a slightly more damped frequency oscillation with a longer settling time.

IV. CONCLUSION

The control of HVDC converter stations as Virtual Synchronous Machines (VSMs) can be an effective approach for inertia provision and for mitigating future challenges associated with low physical inertia in the transmission system. In this paper, two alternative controller configurations for an HVDC interconnection have been presented and assessed in comparison to a conventional benchmark case with a frequency droop in the power-controlled converter terminal. In the first configuration, one of the HVDC converter terminals is operated as a VSM to provide virtual inertia to the ac power system while a standard dc voltage control is utilized at the other converter terminal. The second alternative demonstrates how both converter stations can be controlled as VSMs, by integrating the dc-voltage controller with the power reference for the VSM control at one side of the interconnection. Numerical simulation results showed that the two configurations can contribute to the frequency regulation during the transient disturbances by improving the RoCoF and the frequency nadir. However, integrating the features of dc voltage regulation in a VSM-controlled converter station, requires slower controller performance for the dc regulator and possibly increased dc-side capacitive energy storage.

REFERENCES

[27] Nexans, “NordLink HVDC interconnector between Norway and Germany will use Nexans’ subsea power cable”.