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This work revisits the fundamentals of thermodynamic perturbation theory for fluid

mixtures. The choice of reference and governing assumptions can profoundly influ-

ence the accuracy of the perturbation theory. The SAFT-VR Mie equation of state is

used as a basis to evaluate three choices of hard-sphere reference fluids: single compo-

nent, additive mixture, and non-additive mixture. Binary mixtures of Lennard-Jones

fluids are investigated, where the ratios of σ (the distance where the potential is

zero) and the ratios of ε (the well depth) are varied. By comparing with Monte Carlo

simulations and results from the literature, we gauge the accuracy of the different

theories . A perturbation theory with a single-component reference gives inaccu-

rate predictions when the σ-ratio differs significantly from unity, but is otherwise

applicable. Non-additivity becomes relevant in phase-equilibrium calculations for

fluids with high ε-ratios, or when the mixing rule of σ incorporates non-additivity

through an adjustable parameter. This can be handled in three ways: by using a

non-additive hard-sphere reference, by incorporating an extra term in the additive

hard-sphere reference, or with a single-component reference when the σ-ratio is close

to unity. For σ- and ε-ratios that differ significantly from unity, the perturbation

theories overpredict the phase equilibrium pressures regardless of reference. This is

particularly pronounced in vicinity of the critical region for mixtures with high ε-

ratios. By comparing with Monte Carlo simulations where we compute the terms in

the perturbation theory directly, we find that the shortcomings of the perturbation

theory stem from an inaccurate representation of the second and third-order per-

turbation terms, a2 and a3. As mixtures with molecules that differ significantly in

size and depths of their interaction potentials are often encountered in industrial and

natural applications, further development of the perturbation theory based on these

results is an important future work.

a)Electronic mail: morten.hammer@sintef.no
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I. INTRODUCTION

Statistical Associating Fluid Theory (SAFT) is a popular methodology for predicting

the thermodynamic properties of fluids. Founded in perturbation theory, SAFT type of

equations of state (EoS) have displayed excellent capabilities of predicting accurately the

thermodynamic properties of non-polar fluids,1,2 polar fluids,3 electrolytes,4 liquid crystals,5

heterocyclic compounds6 and many other systems.

A variety of SAFT-type of EoS have been presented over the years. The early versions

of SAFT EoS were based on a reference system of hard-spheres. In more recent variants,

the monomer interactions are modelled by more sophisticated interaction potentials such as

square-well,7,8 Lennard-Jones,9 Yukawa10 and Sutherland potentials.7 For further details, we

refer to Gubbins11,12 for a thorough overview of the history and development of perturbation

theory. Huang and Radosz13 presented an important early application of SAFT for the

square-well potential. Later the Lennard-Jones potential,14,15 variable range potentials7

and group contribution versions of SAFT were developed.16–18 The most frequently used

variants of SAFT at date are PC-SAFT1 and SAFT-VR Mie,2 which use square-well and

Mie-potentials, respectively, to describe the monomer interactions. Although PC-SAFT

gives impressively accurate predictions of thermodynamic properties for single-component

fluids, it is often at the expense of over-predicting the critical temperature and pressure.19,20

The SAFT-VR-Mie EoS appears to have overcome the challenge of reproducing the critical

point of single-component fluids, which is evident by the excellent match between SAFT-

VR Mie and simulation data displayed in Fig. 7 in Ref. 2. However, whether a consistent

representation of the critical point has been achieved remains to be discussed. In particular,

we show in the present work that there are still challenges associated with the representation

of the critical behavior of mixtures. In the perturbation theory by Barker and Henderson,21,22

the reduced, residual Helmholtz energy ares = Ares/NkBT is

ares = aHS + βa1 + β2a2 + β3a3 + ..., (1)

where Ares is the total Helmholtz energy, aHS is the reduced, residual Helmholtz energy of

the hard-sphere system, N is the number of particles, β = 1/kBT , where kB is Boltzmann’s

constant and T is the temperature. The quantities a1, a2 and a3 are the first-, second- and

third-order perturbation terms, respectively. Higher order perturbation terms are usually

omitted.23
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The vast majority of research published on both perturbation theory and SAFT-type of

EoS has focused on single-component fluids, although most fluids of practical relevance are

mixtures. Leonard, Barker and Henderson laid the foundation for the perturbation theory of

mixtures in 1970.24 In a seminal paper, they derived a perturbation theory for mixtures from

three different references, 1) a pure component hard-sphere fluid, 2) an additive hard-sphere

mixture and 3) a non-additive hard-sphere mixture. Later, the Weeks-Chandler-Anderson

perturbation theory25,26 was also extended to mixtures.27

The definition of an additive hard-sphere mixture is that the diameter of the cross inter-

action equals the mean of the pure-fluid diameters, i.e. d12 = (d11 + d22) /2, where subscripts

1 and 2 refer to the two hard-sphere fluids. Although an additive hard-sphere mixture makes

sense from a physical perspective, it is not optimal for the perturbation theory, as it leads to

an extra term in the expression for the Helmholtz energy of the fluid. Leonard et al.24 argued

that the extra-term is small, but did not investigate the influence of this contribution on the

prediction of thermodynamic properties. Leonard and coworkers were unable to evaluate

possible benefits of incorporating a non-additive hard-sphere reference, as no suitable EoS

existed at the time. Since then, excellent EoS for non-additive hard-sphere mixtures have

been developed and presented in the literature.28,29 The extra contribution to the Helmholtz

energy from non-additivity has found little application in EoS development,30,31 and its im-

pact has never before been gauged by use of molecular simulations. In this work, we shall

discuss when non-additivity becomes important, and how it should be handled in the per-

turbation theory. It should be noted that non-additivity and a first order Mayer f -function

perturbation theory for binary mixtures have been explored using molecular simulations.32

Beyond the hard-sphere reference, the perturbation terms that account for attractive

contributions are different for mixtures than in a pure-component system. In particular, the

radial distribution function of a hard-sphere mixture differs from that of the pure fluid.33 In

spite of this, a common approximation is to replace the radial distribution function of the

mixture with that of the pure hard-sphere fluid.2 In the present work, we shall evaluate the

validity of this approximation.

The perturbation terms, a1–a3, can be obtained directly by combining Monte Carlo sim-

ulations in the canonical ensemble with the theory by Zwanzig.34 Van Westen and Gross

recently used this methodology to evaluate perturbation terms up to fourth order for the

Lennard-Jones (LJ) fluid.23 In this work we will, for the first time, use the methodology
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to study the properties of mixtures of LJ-fluids. For certain combinations of force field

parameters, we will demonstrate that state-of-the-art perturbation theory for mixtures fails

to represent higher order perturbation terms (a2 and a3), which leads to phase equilibrium

pressures and compositions that deviate significantly from simulation results. This reveals a

potential for improvement that is of importance in practical examples found in nature and

industry.

Perturbation theory for mixtures will be discussed in detail in Sec. II, where the state-

of-the-art equation of state for Mie-fluids, SAFT-VR Mie will be used as starting point.

The simulation methodologies employed in the work are described in Sec. III. Results are

presented and discussed in Sec. IV with concluding remarks given in Sec. V.
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II. THEORY

The perturbation theory for mixtures will be developed for Mie potentials, where the

interaction potential between particle i and j (subscript) is:

uij(r)/(C(λr,ij, λa,ij)εij) = (σij)λr,ij

rλr,ij
− (σij)λa,ij

rλa,ij
, (2)

where ε is the well-depth, σ is the finite distance at which the inter-particle potential is zero,

λa and λr are the attractive and repulsive exponents and

C(λr, λa) =
(

λr
λr − λa

)(
λr
λa

) λa

λr−λa

. (3)

We have used the same combining rules for λij and σij as commonly used for classical Mie

fluids,2 while we have used the geometrical combining rule for εij:

λk,ij − 3 =
√

(λk,ii − 3)(λk,jj − 3), k = a, r , (4)

σij = (1− lij)
σii + σjj

2 , (5)

εij = (1− kij)
√
εiiεjj , (6)

where kij and lij are adjustable parameters, which we have set to zero unless explicitly

stated. The most accurate representation presently available for such fluids was presented

by Lafitte et al. in 2013,2 the SAFT-VR Mie EoS. This EoS is based on a third-order

Barker–Henderson21,22 perturbation theory. Lafitte and coworkers evaluated their EoS for

single-component fluids, and included the extension to mixtures in an appendix. In this

work, we shall use SAFT-VR Mie as basis and discuss the extension to mixtures in further

detail.

A. The perturbation theory for mixtures and the description of the

hard-sphere reference system

When Leonard et al. extended the perturbation theory by Barker–Henderson to mix-

tures,21,24 they derived the governing theory both by using a single-component system and

mixtures of hard spheres as references. In the following, we shall recap some of their findings,

present the descriptions of the hard-sphere reference systems and discuss the implications

for the extension of SAFT-VR Mie to mixtures.
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The choice of hard-sphere reference systems will give different hard-sphere diameters.

The hard-sphere diameter for the ij-interaction will for the single-component system be

dpure. For a additive mixture system it will be dij, while for the non-additive system it will

be δij. To simplify notation and discussion we also define a model-independent hard-sphere

diameter, dij.

1. The single-component hard-sphere fluid

Leonard et al. showed that when a single-component hard-sphere fluid is used as reference

in the perturbation theory for mixtures,24 the following diameter should be used:

dij = dpure =
∑
i

∑
j

xixjδij, (7)

where subscript pure refers to the single-component reference system, xi is the mole-fraction

of component i and:

δij =
∫ σij

0
[1− exp{−βuij(r)}] dr. (8)

The quantity δij is often referred to as the effective hard-sphere diameter or the Barker–

Henderson diameter. The reduced Helmholtz energy then becomes:

ares =aHSpure+

2πρβ
∑
i

∑
j

xixj

∫ ∞
σij

gpure(r)uij(r)r2dr +O(β2)
(9)

where gpure is the radial distribution function of a single-component hard-sphere fluid of

radius dpure at density ρ. A subtlety in this formulation is that gpure(r) = 0 for r < dpure

such that the effective limit of the integrals in Eq. (9) is max (σij, dpure). This allows the first

order attractive term of the mixture to be formulated as a function of the pure component

contributions:

a1 =
∑
i

∑
j

xixja1,pure,ij, (10)

which is convenient, since the necessary theory to compute

a1,pure,ij = 2πρβ
∫ ∞
σij

gpure(r)uij(r)r2dr (11)

has been provided in earlier works.2 Higher order perturbation terms should also be com-

puted with the single-component hard-sphere fluid as reference, and we shall give further

details on this in Secs. II B 1-II B 3.
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With the single-component hard-sphere fluid as reference, we used the hard-sphere EoS

by Carnahan and Starling35 with the diameter defined by Eq. (7). The reduced residual

Helmholtz energy of the hard-sphere system is then:

aHSpure = 3− 2ηpure
(1− ηpure)2 , (12)

where:

ηpure =
πρd3

pure

6 . (13)

We refer to Ref. 2 for further details.

2. The additive hard-sphere mixture

In the case of a mixture reference of additive hard spheres, we have

dij = dij = 0.5 (δii + δjj) . (14)

Here, Eq. (14) defines the additive hard-sphere mixture. The reduced Helmholtz energy

becomes:

ares =aHSmix + aAd+

2πρβ
∑
i

∑
j

xixj

∫ ∞
σij

gijmix(r)uij(r)r2dr +O(β2),
(15)

where subscript mix refers to the additive hard-sphere mixture. The above equation looks

similar to Eq. (9), but has two subtle differences. The first key difference is that gijmix is

the radial distribution function between component i and j in the mixture, a quantity that

depends not only on composition and density, but also on the temperature, since the relative

ratio of diameters that determines the nature of the hard-sphere mixture, dii/djj depends

on temperature according to Eq. (8). Furthermore, there is an additional term that must

be accounted for:

aAd = −2ρπ
∑
i

∑
j

xixjd
2
ijg

ij
mix,c [dij − δij] (16)

where gmix,c is the radial distribution function at contact (subscript c). This term equals

zero if dij = δij.

With the additive hard-sphere mixture as reference, the EoS by Boublík33 and Mansoori

et al.36 was used. The reduced Helmholtz energy of their EoS is defined as following

aHSmix = 1
ζ0

[
3ζ1ζ2

1− ζ3
+ ζ3

2
ζ3(1− ζ3)2 +

(
ζ3

2
ζ2

3
− ζ0

)
ln(1− ζ3)

]
, (17)
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with ζm calculated according to Eq. (18).

ζm = πρ

6

(∑
i

xid
m
ii

)
, m = 0, 1, 2, 3. (18)

To compute the pair correlation function at contact in estimating the term aAd, we used the

expressions presented by Boublík, which is consistent with our choice of EoS for the additive

hard-sphere fluid mixture33

g0,c(dij) = 1
1− ζ3

+ 3ζ2

(1− ζ3)2µij + 2ζ2
2

(1− ζ3)3µ
2
ij, (19)

where:

µij = diidjj
dii + djj

. (20)

In Sec. IV, we will consider two implementations of the additive hard-sphere mixture

reference:

SAFT-VR Mie: Similar to Ref. 2, we use the reduced Helmholtz energy described by

Eq. 17, but omit the additional term (Eq. 16).

Additive hard-sphere mixture reference: The implementation is as described above,

with the additional term in Eq. 16 accounted for.

3. The non-additive hard-sphere mixture

When a mixture of non-additive hard spheres is used as reference,

dij = δij, (21)

for all the i-j pairs. In general, δij 6= 0.5(δii + δjj) and this is why the mixture is referred to

as non-additive. The reduced Helmholtz energy becomes:

ares =aHSna +

2πρβ
∑
i

∑
j

xixj

∫ ∞
σij

gijna(r)uij(r)r2dr +O(β2),
(22)

where gna is the radial distribution function of the non-additive mixture.

To develop accurate EoS for non-additive hard-sphere mixtures is an active field of re-

search,28 and there are several models available.28,29,37,38 In this work we have chosen the

9
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model by Santos et al.28 The model is designed to give the correct second and third virial

coefficients. The non-additive mixture hard-sphere diameter is given as

dna = 3

√∑
i

xiδ3
ii. (23)

The packing fraction used in the model is defined as

ηna = πρd3
na

6 . (24)

The residual compressibility factor is defined as

Zres
na = ηna

1− ηna
10d3

naB2 − 4B3

6d6
na

+ Zres
pure (ηna)

B3 − d3
naB2

6d6
na

. (25)

Here

B2 = 4
∑
i

∑
j

xixjδ
3
ij, (26)

B3 =
∑
i

∑
j

∑
k

xixjxkB
3
i,j,k. (27)

For Bi,j,k we have

Bi,j,k = 4
3
(
ck;ijδ

3
ij + cj;ikδ

3
ik + ci;jkδ

3
jk

)
, (28)

ck;ij = δ3
k;ij + 3

2
δ2
k;ij

δij
δi;jkδj;ik, (29)

δk;ij = max (δik + δjk − δij, 0) . (30)

Defining the volume independent variables

A1 (T,x) = 10d3
naB2 − 4B3

6d6
na

, (31)

A2 (T,x) = B3 − d3
naB2

6d6
na

, (32)

the residual compressibility becomes

Zres
na = ηna

1− ηna
A1 (T,x) + Zres

pure (ηna)A2 (T,x) . (33)

10
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Here we use the Carnahan–Starling EoS35 to model the residual compressibility factor of

the pure fluid, Zres
pure(η). The residual reduced Helmholtz energy per molecule for the non-

additive mixture model is found by integrating Eq. (33)

aHSna =
∫ ηna

0

Zres
na
ηna

dηna

= − ln (1− ηna)A1 (T,x) + aHSpure (ηna)A2 (T,x) , (34)

where ηna is calculated according to Eq. (24), and aHSpure is given by Eq. (12).

B. The perturbation terms

In the following, the expressions for the perturbation terms will be given, which are very

similar to those used in SAFT-VR Mie.2 While the representation of a1 reproduces results

from Monte Carlo simulations for single-component Mie-fluids, appreciable deviations can

be observed for a2 and a3, as the shown in Figs. 1 and 2 in Ref. 2.

1. The first order perturbation term

The first order perturbation term is calculated by using

a1 =
∑
i

∑
j

xixja1,ij, (35)

where a1,ij is described as

a1,ij = 2πρ
∫ ∞
σij

gHSdij
(r)uij (r) r2dr. (36)

We use an effective packing fraction, which is computed consistently for the three references:

ζx =


ηpure, single-component ref.

ζ3, additive mixture ref.

ηna, non-additive mixture ref.

(37)

The hard-sphere diameter, dij, is defined as,

dij =


dpure, single-component ref.

dij, additive mixture ref.

δij, non-additive mixture ref.

(38)
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For the radial distribution function of the hard sphere reference, gHSdij
, we have assumed that

the functional form can be approximated by that of the pure fluid. This assumption will

be further evaluated in Sec. IV. gHSdij
is then defined from the pure fluid radial distribution

function at the packing fraction given by Eq. (37),

gHSdij
= gpure

(
r

dij
; ζx
)
. (39)

The a1,ij is computed as for pure fluids but with different values of the hard-sphere diameter,

dij, depending on the reference. It was shown in Ref. 39, that each Sutherland potential could

be correlated using the quantities aS1 and B defined in the following. The only difference

from Ref. 39 is in the treatment of aS1 and B, where the integrals are evaluated as both a

function of η and ζx for mixtures. Dividing through with ηij gives functions of ζx only. For

mixtures, ãS1,ij, takes the form,

ãS1,ij =
aS1,ij (ηij, ζx;λij)

ηij

= −12εij
(

1
λij − 3

)
1− ηeff (ζx;λij) /2
(1− ηeff (ζx;λij))3 . (40)

Here, the pair specific effective packing fraction, ηij, is defined as

ηij =
πρd 3

ij

6 . (41)

B̃ij takes the following form:

B̃ij = Bij (ηij, ζx, x0,ij;λij)
ηij

= 12εij
(

1− ζx/2
(1− ζx)3 Iλij

(x0,ij)−
9ζx (1 + ζx)
2 (1− ζx)3 Jλij

(x0,ij)
)
. (42)

The ratio between the pairwise sigma and the hard sphere diameter is defined as the variable,

x0,

x0,ij = σij
dij
. (43)

The overall ij pair contribution to a1 becomes

a1,ij = a1,λa,ij
− a1,λr,ij

(44)

where

a1,λk,ij
=C (λa,ij, λr,ij) ηijx

λk,ij

0,ij ·[
ãS1,ij (ζx;λk,ij) + B̃ij (ζx, x0,ij;λk,ij)

]
. (45)
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2. The second-order perturbation term

The second-order perturbation term has been represented by the same expressions as

SAFT-VR Mie,2 and is calculated from:

a2 =
∑
i

∑
j

xixja2,ij, (46)

where a2,ij is described as

a2,ij = πρKHS (1 + χij)
∫ ∞
σij

gHSdij
(r) (uij (r))2 r2dr. (47)

The integral part is treated in the same manner as a1,ij, where the Sutherland integrals are

described as functions of η, ζx and x0. The same reduced isothermal compressibility of the

hard-sphere EoS, is used for all pair contributions, simply by substituting the pure fluid η

with the mixture packing fraction, ζx,

KHS = (1− ζx)4

1 + 4ζx + 4ζ2
x − 4ζ3

x + ζ4
x

. (48)

For the correction factor, 1 + χij, we introduce an effective packing fraction based on σ,

which is computed consistently for the three references

ζ̄x = πρ

6
∑
i

∑
j

xixjσ
3
ij. (49)

The χij correlation is calculated as

χij = f1 (αij) ζ̄x + f2 (αij)
(
ζ̄x
)5

+ f3 (αij)
(
ζ̄x
)8
. (50)

Finally, we define the dimensionless van der Waals energy of the ij interaction as

αij = − 1
εijσ3

ij

∫ ∞
σij

uij (r) r2 dr . (51)

3. The third-order perturbation term

The third-order perturbation term has been represented by the same expressions as

SAFT-VR Mie,2 and is calculated by using a van der Waals mixing rule

a3 =
∑
i

∑
j

xixja3,ij, (52)
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where the pair contribution is given as

a3,ij = −ε3
ijf4 (αij) ζ̄x exp

(
f5 (αij) ζ̄x + f6 (αij) ζ̄2

x

)
. (53)

Note that for Lennard-Jones fluids, f1 to f6 used in Eq. (50) and Eq. (53) are constant

parameters. a3,ij is therefore a function of εij and ζ̄x, while χij is only a function of ζ̄x.

C. The virial coefficients of mixtures

The virial expansion is defined as:

βP

ρ
= 1 +Bρ+O(ρ2), (54)

where B is the second virial coefficient. For a mixture, the expression for the second virial

coefficient is:40

B =
∑
i

∑
j

xixjBij, (55)

where the pairwise contributions can be obtained from the potential as40

Bpot
ij = −2π

∫ ∞
0

(exp(−βuij(r))− 1) r2dr. (56)

The mixture second virial coefficient can be obtained from an EoS by use of the relation

BEoS = lim
ρ→0

(
∂ares

∂ρ

)
T

. (57)

In Sec. IV, we shall discuss in detail the cross-virial coefficient obtained from the different

hard-sphere references. The contribution to the second virial coefficient from the hard-sphere

reference is especially important as β → 0, i.e. at high temperatures where the dispersion

terms vanish. In the following we derive the expressions for the different virial coefficients.

Integrating Eq. (56) for a hard-sphere fluid of diameter δij, the hard-sphere second virial

coefficient becomes:

BHS,pot
ij =

2πδ3
ij

3 . (58)

Differentiating Eq. (12) with respect to ρ in the limit ρ → 0 (Eq. (57)), we obtain the

mixture virial coefficient for the single-component reference

BHS
mix =2π

3 d3
pure. (59)
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Differentiating Eq. (17) with respect to ρ in the limit ρ → 0, we get the mixture virial

coefficient for the additive mixture reference

BHS
mix =π6

N∑
k=1

xkδ
3
kk + π

2

( N∑
k=1

xkδkk

)( N∑
k=1

xkδ
2
kk

)
. (60)

Differentiating Eq. (34) with respect to ρ in the limit ρ→ 0 gives the mixture virial coefficient

for the non-additive mixture reference

BHS
na =π6B2 = 2π

3
∑
k

∑
l

xkxlδ
3
kl. (61)

The cross virial-coefficients from the different references can be identified as

BHS
ij =



π

3

(
d3
pure − x2

i δ
3
ii − x2

jδ
3
jj

)
xixj

, single-comp. ref.

2π
3

(1
2 (δii + δjj)

)3
, add. mix. ref.

2πδ3
ij

3 , non-add. mix. ref.

(62)

A comparison to Eq. (58) shows that only the non-additive mixture reference gives the

correct cross virial-coefficient. All references give the correct pure fluid virial coefficients.

Using the additive hard-sphere mixture as reference, the extra term, aAd also gives a

contribution to the second virial coefficient

BAd
ij = 2πd2

ij (δij − dij) , (63)

which is the first-order correction to BHS
ij for the additive reference (Eq. (62)) in the quantity

(δij − dij).

III. METHODS

The perturbation theory presented in Sec. II was implemented in the thermodynamic

framework described in Ref. 19, where state-of-the-art phase equilibrium calculations enable

precise and robust mapping of phase envelopes by use of the algorithms discussed in Refs. 41

and 42. We will next describe the simulation methodologies used for a binary system with

Type 1 and 2 molecules. For all simulations, the inter-molecular interactions were truncated

at rc = 4 ·max (σ1, σ2), and standard long-range corrections assuming gijmix = 1 when r > rc

were applied. Long-range corrections for pure fluid simulations are described in the appendix

of Ref. 39, and have been extended and applied to binary mixtures.
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A. Monte Carlo simulations of perturbation terms

The perturbation terms of a binary system can be computed directly by canonical Monte

Carlo (MC) simulations of a soft-sphere (SS) reference fluid, defined by the positive part

of the potential: uSS
ij (r) = max(uij(r), 0). By fixing the number of molecules (N = N1 +

N2), temperature and volume, the soft-sphere mixture can be studied using canonical MC

simulations, and the negative energy of the Lennard-Jones fluids can be sampled using

the soft sphere system configuration to obtain the perturbation terms of the mixture, in

accordance with the theory by Zwanzig.34

The overall attractive configurational energy of the system, W , is found by summing all

the ij-pair interaction energies for particles separated by at least σij. The first order (mean

attractive energy), second order (energy fluctuations) and third-order perturbation terms

are calculated from the formulas given by Zwanzig:34

a1 = β

N
〈W 〉0, (64)

a2 = − β2

2!N

〈
(W − 〈W 〉0)2

〉
0
, (65)

a3 = β3

3!N

〈
(W − 〈W 〉0)3

〉
0
. (66)

Here, 〈·〉0 denotes the statistical average in the canonical ensemble of a fluid characterized

by the soft-sphere reference. The system energy can further be split into contributions from

the 11, 22 and 12 interactions

〈W 〉0 = 〈W11〉0 + 〈W12〉0 + 〈W22〉0. (67)

This enables an assessment of how the different pair interaction potentials contribute to the

total energy.

Following van Westen and Gross,23 who simulated perturbation terms up to fourth order

for a pure Lennard-Jones fluid, a cubic box with periodic boundary conditions and N = 500

was used for all simulations. To span the compositional space, simulations were run using

N2 ∈ {150, 250, 350}, corresponding to mole fractions of Type 2 molecules of 30, 50, 70 %.

Due to the potentially large difference in the diameters of the molecules of Type 1 and

2, the maximum displacements of the two particle types were tuned independently for each

species to yield an acceptance ratio in the interval 30 % to 50 %.
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One MC cycle consists of one trial move per particle. To equilibrate the system, 2.0 ·

106 MC cycles were run. The production phase consisted of 25 blocks each containing

300 · 103 MC cycles. Sampling of the configurational attractive energy was performed every

250 MC move, as a computationally efficient way of improving the accuracy compared

to conventionally sampling only when concluding a MC cycle. The mean values and the

standard deviations of the sample means were calculated from the production blocks.

B. Gibbs Ensemble Monte Carlo simulations

We performed Gibbs Ensemble Monte Carlo (GEMC) simulations43–45 of binary mixtures

of Lennard-Jones fluids to determine two-phase coexistence densities and compositions. A

total of Ntot particles, in the range 2000–10000, were distributed across two simulation

boxes, and subjected to in-box displacement moves and box-swap moves. The pressure was

maintained by adjusting each box volume independently.43 The maximum volume step size,

and the maximum displacement step size for each species and each box were tuned to yield

an acceptance ratio between 30% and 50%.

An MC cycle was defined as Ntot attempted displacement moves, 2 attempted single-

box volume moves, and Nswap attempted swap moves. The number Nswap was initialized to

Ntot, and potentially increased so that at least 0.1% of the Ntot particles were on average

exchanged in a cycle. Following 3× 104 equilibration cycles, sampling was performed after

each 100th MC move during 3× 105 production cycles.

C. NPT Monte Carlo simulations

The NPT simulations were run with a total of 1000 particles. A cycle was defined as

1000 displacement moves and one volume move, where the maximum step sizes were tuned

during equilibration to yield acceptance ratios between 30% and 50%. Following 5 × 104

equilibration cycles, we performed sampling after each 100th MC move during a production

run of 5× 105 cycles.

17

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
42

77
1

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. 
This article appeared in Journal of Chemical Physics, vol 152, issue 13 and may be found at 

 http://dx.doi.org/10.1063/1.5142771 



IV. RESULTS AND DISCUSSION

We consider mixtures of two components interacting via LJ-potentials, referred to as

molecules of Type 1 and 2. The i-j interactions are represented by different well-depths,

εij, and positions where the potentials are zero, σij. The LJ-potential was chosen because it

is among the most frequently used examples in the literature.2,21 Moreover, accurate repre-

sentation of the single-component LJ-fluid has been heavily weighted in the development of

state-of-the-art perturbation theories due to the abundance of simulation data.2 The findings

of the present work are also relevant for other interaction potentials, such as Mie potentials,2

or quantum fluids described by Feynman–Hibbs-corrected Mie-potentials.39,46

We shall discuss three choices of reference: 1) Single-component, 2) additive mixture and

3) non-additive mixtures of hard-spheres. We shall consider two variants of the additive

mixture implementation, one where Eq. 16 has been included, and another where Eq. 16

has been omitted, referred to as SAFT-VR Mie. Special attention will be given to the

influence of the choice of hard-sphere reference on the second virial coefficient (Sec. IVA),

handling of non-additivity in the mixture interaction potential (Sec. IVB) and challenges in

the representation of mixtures with ε-ratios (Sec. IVC) and σ-ratios (Sec. IVD) that differ

significantly from unity.

If nothing else is stated, we have used the following definitions for the reduced variables:

T ∗ = kBT

ε11
, (68)

P ∗ = Pσ3
11

ε11
, (69)

ρ∗ = N2
1σ

3
11 + 2N1N2σ

3
12 +N2

2σ
3
22

NV
, (70)

where N1 and N2 are the number of particles of species 1 and 2, respectively, N = N1 +N2,

and V is the volume of the simulation box.

A. The hard-sphere contribution to the second virial coefficient

Equation (56) shows the connection between the second virial coefficient and the un-

derlying interaction potential. Hence, a comparison of the perturbation theory to Eq. (56)

gauges how well the underlying potential is represented. The hard-sphere contribution to
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the cross-virial coefficient can be computed exactly, and is given by Eq. (58). The contri-

bution to the second virial coefficient from the hard-sphere reference is especially important

at high temperatures where the dispersion terms vanish.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
22/ 11

0.6

0.4

0.2

0.0

0.2
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0.8

1.0

B
HS 12

/B
HS

,p
ot

12

Non-Additive
Additive
Single comp. x1 = 0.25
Single comp. x1 = 0.75

(a) ε22/ε11 = 1.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
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B
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/B
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22/ 11 = 0.50
22/ 11 = 1.00
22/ 11 = 2.00
22/ 11 = 4.00

(b) Additive mixture reference

FIG. 1. The hard-sphere contribution to the cross second virial coefficient of the mixture from

different hard-sphere reference systems, BHS
12 , relative to the exact value, BHS,pot

12 . The plots are

made at T ∗ = TkB/ε12 = 1.0 for different LJ-fluids. Fig. 1a displays all of the hard-sphere reference

models. The single-component reference is plotted at two different mole fractions, i.e. x1 = 0.25

and x1 = 0.75, to illustrate the compositional dependence. Fig. 1b shows only the additive mixture

reference, plotted for different ε22/ε11 ratios.

In Sec. II C, we showed that the hard-sphere cross-virial coefficients from the different

references were given by the analytical expressions in Eq. (62). While the non-additive

reference reproduces the exact result given by Eq. (58), the other references give different

expressions. Fig. 1 compares the hard-sphere contribution to the cross second virial coef-

ficient from different references for different LJ fluids at T ∗ = 1. Fig. 1a shows that the

deviation between the single-component reference and the exact result becomes larger with

increasing difference in size between the particles of the fluids, i.e. an increasing σ22/σ11 ra-

tio. Already at σ22/σ11 = 1.5, the error in the representation of the hard-sphere contribution

to the cross virial coefficient exceeds 10%. Fig. 1a shows that the choice of reference places

a constraint on how accurately thermodynamic properties can be represented by the pertur-

bation theory. The single-component reference should clearly be avoided when describing

mixtures with molecules that differ much in size.

A zoom-in on the results from the additive hard-sphere reference displayed in Fig. 1b,
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FIG. 2. The combined hard-sphere, BHS
12 , and extra term, BAd

12 , contribution to the cross second

virial coefficient plotted for the additive hard-sphere reference systems. B12 = BHS
12 +BAd

12 is plotted

relative to the exact value, BHS,pot
12 . The plot is made at T ∗ = TkB/ε12 = 1.0 for three different

LJ-fluids at different ε22/ε11 ratios.

shows that the deviations are typically below 3% for a range of different combinations of

ε22/ε11 and σ22/σ11 ratios.
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FIG. 3. The relative difference between the additive hard-sphere diameter, dij , and the Barker-

Henderson hard-sphere diameter, δij , plotted for different ε22/ε11-ratio. The plot is made using

T ∗ = TkB/ε12 for four different LJ-fluids at different σ22/σ11 ratios.

B. A discussion of non-additivity

It is relevant to use a non-additive hard-sphere system as reference when the Barker–

Henderson diameter of the cross interaction, δij (Eq. (8)) is not additive, i.e. δij 6=

(δii + δjj) /2. In the additive reference, this can be partly compensated for by including an
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FIG. 4. VLE of an LJ-mixture with σ22/σ11 = 1, ε22/ε11 = 8, and kij = −0.1. Two temperatures

are shown: T ∗ = 7 (a) and T ∗ = 8 (b).

extra term in the perturbation theory (Eq. (16)). Leonard and co-workers argued that the

extra term is usually small.24 As a consequence, the term has been omitted from pertur-

bation theories thus far.2 To our knowledge, we present the first quantitative discussion of

when the term becomes relevant.

A comparison of Fig. 1b (no extra term) with Fig. 2 (extra term included) shows that

by including the extra term in the additive hard-sphere reference, the error in the cross

virial coefficient of the hard-sphere mixture is reduced from 2% to below 0.02%. At most

conditions however, we find that the extra term in the additive hard-sphere reference can

safely be neglected because it is small, in accordance with the recommendations by Leonard

et al.24 A 2% error in the hard-sphere contribution to the cross second virial coefficient

is arguably acceptable. Predictions from the perturbation theories with additive and non-

additive references give mostly similar results. However, there are a few notable exceptions.

We find that accounting for non-additivity becomes important in systems where the

ε22/ε11-ratio deviates significantly from unity, i.e. for mixtures where the well-depth of one

fluid is much smaller than the other. This can be explained by Fig. 3, which shows that the

relative difference between the additive hard-sphere diameter, dij, and the Barker-Henderson

hard-sphere diameter, δij, increases with higher ε22/ε11-ratios.

Figure 4 displays the VLE of a mixture of two LJ-fluids where σ22/σ11 = 1, ε22/ε11 = 8,

and kij = −0.1. These ratios are relevant for the description of the helium–neon mixture
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FIG. 5. The effect of deviations from the arithmetic combining rule for the σ parameter. For the

mixtures in Figs. 4a–4d, σ11 = σ22, σ12 = (1− lij)σ11, and the composition is x = 0.5. The NPT

simulation uncertainties are smaller than the symbol size.

with Feynman–Hibbs-corrected Mie potentials (see Ref. 46 for details). Fig. 4 displays

visible deviations between GEMC simulation results and the predictions from the SAFT-

VR Mie EoS (red dashed lines), in particular for the densest phase (to the left). This can

be alleviated by 1) using a non-additive hard-sphere reference (full line), or by 2) including

the extra term in Eq. (16) in the additive reference (dotted line). Fig. 4 also indicates that,

for any choice of reference fluid, the agreement with simulations deteriorate as the critical

pressure is approached at a fixed temperature, or the critical temperature is approached at

a fixed pressure. This will be discussed further in Sec. IVC.

A second example where non-additivity becomes relevant is when lij 6= 0 in Eq. (5),

i.e. when non-additivity is directly incorporated into the combining rule for σij. A fitting
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coefficient, lij 6= 0 is required in the modelling of the hydrogen–helium and the deuterium–

helium mixtures with Feynman–Hibbs-corrected Mie potentials in order to reproduce the

behavior of the cross second virial coefficient.46 For real mixtures, deviations from additivity

are expected to be small. Similar to the helium-hydrogen mixture discussed in Ref. 46, we

shall consider |lij| < 0.05.

Fig. 5 shows the effect of the lij parameter on the pressure–density isotherms by using

various reference systems. Since σ11/σ22 = 1 for all of the examples shown in the figure,

the single-component hard-sphere reference is expected to be reliable, at least based on

the discussion in Sec. IVA. In fact, the single-component reference gives the most accurate

representation of the pressure in all of the examples in Fig. 5. Nearly the same accuracy

is obtained by using a non-additive hard-sphere reference. The red-dashed lines show that

there are significant deviations between the NPT Monte Carlo simulations (the symbols)

and SAFT-VR Mie, where non-additivity is not accounted for. Including the extra term as

in the non-additive reference (solid-line) shifts the predictions in the right direction, albeit

too much in some cases (see Figs. 5b and 5d). The overshoot from the additive hard-sphere

reference is probably due to the representation of the radial distribution function at contact

for the additive hard-sphere mixture (Eq. (19)), which is expected to deviate from simulation

results.

For all of the cases displayed in Fig. 5, we observe that the agreement between the EoS

predictions and the simulation results remains to a large extent unchanged if a2 and a3 are

omitted from the computations. Hence, the plots in Fig. 5 primarily test the consistency

and accuracy of aHS and a1, as well as the ability of the perturbation theory to approximate

the actual Helmholtz energy of the reference fluid.

C. Poor representation of the critical region with increasing well-depth ratio

Fig. 6 compares the predictions from perturbation theories with different choices of ref-

erence with the simulation data from Vrabec et al.47 and Potoff et al.48 Here, σ22/σ11 = 1,

but different ε22/ε11 ratios have been considered. The figure displays no difference between

the references, and all of them are in reasonable agreement with the simulation results.

Tab. III in Ref. 2 lists parameters of Mie-potentials that enable representation of real

fluids. The table shows that fluids modelled by Mie fluids can have ε22/ε11-ratios that differ

23

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
42

77
1

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. 
This article appeared in Journal of Chemical Physics, vol 152, issue 13 and may be found at 

 http://dx.doi.org/10.1063/1.5142771 



0.0 0.2 0.4 0.6 0.8 1.0
x/y

0.02

0.04

0.06

0.08

0.10

P
∗

Non-additive Ref.

Vrabec sim.

Single-comp. Ref.

SAFT-VR Mie

Additive Ref.

(a) ε22/ε11 = 0.75

0.0 0.2 0.4 0.6 0.8 1.0
x/y

0.00

0.05

0.10

0.15

P
∗

Vrabec sim.

Potoff sim.

Single-comp. Ref.

SAFT-VR Mie

Additive Ref.

Non-additive Ref.

(b) ε22/ε11 = 0.5

FIG. 6. A comparison of the predictions from the EoS with the data by Vrabec et al.47 and Potoff

et al.48 For both cases, σ11 = σ22 = 1 and T ∗ = 1. Two ε-rations are plotted, ε22/ε11 = 0.75 (a),

and ε22/ε11 = 0.5 (b).
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FIG. 7. An LJ-mixture with σ22/σ11 = 1, ε22/ε11 = 8, and kij = −0.1 at T ∗ = 9.695 with a

non-additive reference and with varying order of perturbation terms included in the perturbation

theory. P ∗xy (a) and P ∗ρ∗ (b) phase envelopes are plotted.

much more from unity than those showcased in Fig. 6. For instance, the toluene–fluorine

mixture has a ratio exceeding four. Hence, it is relevant to have a perturbation theory that

is able to represent mixtures with ε22/ε11-ratios deviating significantly from unity. All of the

models seem to overpredict the pressures in vicinity of the critical point in Fig. 6b, where

the ε22/ε11-ratio is only 0.5. This trend becomes more pronounced as the ε22/ε11-ratio differs

even more from unity.
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FIG. 8. Comparison of the perturbation theory with additive reference (lines) with canonical MC

simulations for the reduced perturbation terms. An LJ mixture with σ22 = σ11, ε22 = 8ε11, and

kij = −0.1 is simulated at T ∗ = 9.695. N2 ∈ {150, 250, 350}, corresponding to mole fractions of

Type 2 molecules of 30, 50, 70 %. One standard deviation of the sample mean is used for the error

bars of the MC results of a3 (c). The error bars are not included for a1 (a) and a2 (b) as the

magnitude of the error is smaller than the symbol size.

Fig. 7 shows the phase envelopes of the same LJ-mixture as shown in Fig. 4, now at the

higher temperature T ∗ = 9.695. In line with the trend established in Fig. 4, the deviations

increase as the temperature is raised further toward the Type 2 molecule pure fluid critical

temperature (T ∗critical = 10.6). In particular, the third order perturbation theory (solid line)

overpredicts the critical pressure by nearly 100%. Gradually increasing the complexity of

the perturbation theory by systematically incorporating higher order perturbation terms
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reveals that when a2 is included, the critical pressure shifts by a large amount away from

the estimated critical pressure from GEMC simulations. This indicates that a2 is poorly

represented by the perturbation theory presented in Sec. II.

Further insight can be gained by investigating the perturbation terms, a1–a3 by use of

NV T Monte Carlo simulations combined with the theory by Zwanzig34 (See Sec. II A for

details). To our knowledge, this is the first time this methodology has been used for mixtures,

albeit results have been discussed for single-component fluids.2,23 In the following, we shall

examine the perturbation terms of the mixture displayed in Fig. 7 in further detail. Figure 8a

shows that the first order perturbation term, a1 is represented to a high accuracy. This

indicates that the radial distribution function of the different components in the mixture

resembles that in a pure fluid, which is expected as the particles of Type 1 and 2 are of

equal size. Figs. 8b and 8c reveal large deviations between a2 and a3 from the perturbation

theory and from Monte Carlo simulations. For example, the current correlation for a3 always

yields negative values, whereas the simulations show that it can be positive at high densities

(Fig. 8c). We find that these deviations are present for all choices of reference, which all give

similar overpredictions of the critical pressure in Figs. 6b and 7a (not shown). To further

develop the representation of a2 and a3 for mixtures falls beyond the scope of this work, but

is an important challenge for the future.
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FIG. 9. Comparison of the different models with the experimental data by Vrabec et al.47 For

both fluids, ε11 = ε22 = ε12 = 1, the σ11/σ22 ratios are 0.5 (a) and 1.5 (b), and the temperature is

T ∗ = 1. The single-component reference did not predict two phases in both cases.
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FIG. 10. Pressure–density isotherms for an additive mixture with σ22/σ11 = 0.5 and ε11 = ε22 = ε12

at T ? = 1. For this mixture, SAFT-VR Mie, the additive reference, and the non-additive reference

are equivalent. Two different molar fractions are plotted, x1 = 0.30 (a), and x1 = 0.70 (b).

D. Inaccurate representation of mixtures with different particle sizes

For mixtures where σ22/σ11 = 1, the single-component hard-sphere reference has given

similar results for the phase envelopes as the other references. Fig. 9 displays phase envelopes

of mixtures with size-asymmetric molecules. Only results with the additive and non-additive

hard-sphere references are shown, since the single-component reference failed to predict

two phases. Fig. 10 shows that the pressure-density isotherms from the single-component

reference deviate by a large amount from the results from the NPT Monte Carlo simulations,

while the simulations display agreement with the other two references (solid lines). This

explains why the single-component reference does not give two phases.

The failure of the single-component reference for high σ22/σ11-ratios was already seen

for the cross-virial coefficient discussed in Sec. IVA. However, arguably the most important

cause of its mispredictions can be attributed to the representation of a1. The variable x0 is

defined for the different references in Eq. (43). For a single-component LJ fluid, the typical

interval of x0 is 1.02 < x0 < 1.11, where the highest ratio is encountered at T ∗ = 10. The

same interval is encountered when evaluating x0,ij in additive and non-additive hard-sphere

mixtures. For the single-component hard-sphere reference, on the other hand, x0,ij can be

both above and below 1. For the mixture displayed in Fig. 9b, we find that 0.7<x0,ij<1.55 for

the single-component reference. In principle, a1,ij as defined by the integral in Eq. (36) can be
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FIG. 11. Comparison of perturbation theory with an additive reference (lines) with canonical MC

simulations for the reduced perturbation terms. An LJ mixture with σ22/σ11 = 1.5, ε11 = ε22 is

simulated at T ∗ = 1. N2 ∈ {150, 250, 350}, corresponding to mole fractions of Type 2 molecules of

30, 50, 70 %. In a) the configurational energy contribution from the 11, 22 and 12 pair interactions

are plotted for a composition of x1 = 0.5. b)-d) Mixture perturbation terms. One standard

deviation of the sample mean is used for the error bars of the canonical MC results of a3 (d). The

error bars are not included for a1 (b) and a2 (c) as the magnitude of the error is smaller than the

symbol size.

evaluated by numerical integration. This is usually not done in practical implementations of

perturbation theories, as it gives unfeasible computational times. Instead, the correlations

presented in Sec. II B 1 are used. By comparing to a numerical integration of Eq. (36)

(not shown), we find that these correlations are grossly inaccurate in the interval where
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the single-component reference operates in mixtures where σ22/σ11 deviate from one. To

use the single-component reference for such mixtures, these correlations must be improved.

However, as the inherent accuracy of this reference is limited, as discussed in Sec. II B 1,

there are few arguments to proceed along this route.

Fig. 9 shows that the predictions from the perturbation theories with the additive and

non-additive references lie above the simulations results by Vrabec et al.47 To verify whether

these simulations were accurate, we performed independent GEMC simulations that were

found to be in excellent agreement with previous simulation results (not shown).

For particles with σ22/σ11-ratios that differ from one, the radial distribution function

of the mixture can differ significantly from that of the pure fluid, in particular at high

densities. It is then questionable whether using the pure component radial distribution

function in the expression for a1 (Eq. (36)) is a good assumption. We tested this assumption

by obtaining the independent terms from the different interactions, a1,ij, by use of MC

simulations (see Sec. IIIA) and used this to compute a1 of the mixture numerically with

Eq. (36). The resulting values for a1,ij (symbols) differ from the approximation facilitated

by Eq. (39), which gives only one solid-line for all of the i − j pairs, as shown in Fig. 11a.

However, when weighted with the mole-fractions, Fig. 11b demonstrates that the a1-value

from the perturbation theory (lines) is in excellent agreement with the a1 obtained with

MC simulations (symbols, See Sec. IIIA for details). This suggests that replacing the pair

correlation function of the mixture with that of the pure component at the same effective

hard-sphere diameter gives a reasonable representation of a1, even though the a1,ij-values

differ. However, we cannot rule out the possibility that small deviations in a1 are responsible

for some of the deviations in Fig. 9.

Figs. 11c and 11d reveal large deviations between a2 and a3 from the perturbation theory,

and the corresponding values from the MC simulations, in particular at high densities. At

T ∗ = 1 and for a fixed density, both a2 and a3 are uniquely defined in the perturbation

theory described in Sec. II, since the α-value of the mixture is fixed. This explains why

the solid lines for all the compositions overlap in Figs. 11c and 11d. The simulation results

however, do not reproduce this behavior, and there is a clear distinction between a2 and

a3 values obtained at different compositions. This shows that the expressions for a2 and

a3 fail to reproduce the qualitative behavior of the perturbation terms, even for moderate

differences in the particles sizes. The overprediction of the phase equilibrium pressures in
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Fig. 9 is largely due to the mispredictions of a2 at higher densities (cf. Fig. 11c): we tested

that setting a3 to zero in the perturbation theories did not alter the phase envelopes, whereas

also setting a2 to zero changed it significantly (green curve in Fig. 9).

V. CONCLUSION

This work addresses the fundamentals of perturbation theory for mixtures. The starting

point was the SAFT-VR Mie equation of state, which is a perturbation theory for Mie

fluids that uses a third-order Barker–Henderson expansion of the Helmholtz energy. Three

different hard-sphere reference systems were compared: 1) single-component, 2) additive

mixture and 3) non-additive mixture. Binary mixtures of Lennard-Jones (LJ) fluids were

investigated to evaluate the accuracy of the different formulations, where the ratios of the

well-depths (ε) and position where the interaction potential equals zero (σ) were varied.

Only the non-additive hard-sphere reference reproduced the exact result for the hard-

sphere contribution to the cross-virial coefficient. The additive hard-sphere reference devi-

ated less than 3% from the exact results. The situation could be improved by incorporating

an extra term in the perturbation theory that is usually neglected, which reduced the er-

ror to 0.02%. The pure-component reference gave poor predictions when the σ-ratio of the

binary mixture deviated from unity.

Accounting for non-additivity was found to be important to accurately predict the sol-

ubility of mixtures with high ε-ratios and when non-additivity was explicitly incorporated

into the mixing rule for σ. In these cases, the non-additive hard-sphere reference is preferred,

but the single-component reference was most accurate when the σ-ratio was one.

For all cases investigated except for the single-component reference, comparison to Monte

Carlo simulations in the canonical ensemble showed that the first order perturbation term,

a1, was represented to a high accuracy. To approximate the radial distribution function of

the mixture by that of the pure-component fluid at the corresponding hard-sphere diameter

was found to be a good assumption for a1. We found significant deviations between theory

and simulations for the second and third order perturbation terms, a2 and a3, for mixtures

with ε- and σ-ratios that deviated from unity. In these mixtures, the perturbation theory

failed to predict the phase equilibrium envelopes regardless of reference, in particular close

to critical states.
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Further development of the perturbation theory for such mixtures is an important task

for the future, as mixtures described by Mie-fluids with ε- and σ-ratios similar to those

addressed in the present work are important in many natural and industrial applications.
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