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ABSTRACT: Distributed thin films of water and their coexistence with droplets are
investigated using a capillary description based on a thermodynamic fundamental
relation for the film Helmholtz energy, derived from disjoining pressure isotherms and
an accurate equation of state. Gas−film and film−solid interfacial tensions are derived,
and the latter has a dependence on film thickness. The resulting energy functionals
from the capillary description are discretized, and stationary states are identified. The
thermodynamic stability of configurations with thin films in systems that are closed
(canonical ensemble) or connected to a particle reservoir (grand canonical ensemble)
is evaluated by considering the eigenvalues of the corresponding Hessian matrices.
The conventional stability criterion from the literature states that thin flat films are stable when the derivative of the disjoining
pressure with respect to the film thickness is negative. This criterion is found to apply only in open systems. A closer inspection of
the eigenvectors of the negative eigenvalues shows that condensation/evaporation destabilizes the film in an open system. In closed
systems, thin films can be stable even though the disjoining pressure derivative is positive, and their stability is governed by
mechanical instabilities of a similar kind to those responsible for spinodal dewetting in nonvolatile systems. The films are stabilized
when their thickness and disjoining pressure derivative are such that the minimum unstable wavelength is larger than the container
diameter. Droplets in coexistence with thin films are found to be unstable for all considered examples in open systems. In closed
systems, they are found to be stable under certain conditions. The unstable droplets in both open and closed systems are saddle
points in their respective energy landscapes. In the closed system, they represent the activation barrier for the transition between a
stable film and a stable droplet. In the open system, the unstable droplets represent the activation barrier for the transition from a
film into a bulk liquid phase. Thin films are found to be the equilibrium configuration up to a certain value of the total density in a
closed system. Beyond this value, there is a morphological phase transition to stable droplet configurations.

■ INTRODUCTION

In the literature, a distinction is made between thick (β-films)
and thin films (α-films). The thermodynamic properties of thin
films deviate from those of a bulk liquid phase at the same
temperature and chemical potential. This deviation can be
modeled by the disjoining pressure, a concept first introduced by
Derjaguin in the 1930s.1 The disjoining pressure describes the
interaction between two interfaces in close proximity, such as
the top and the bottom of a thin liquid film residing on a solid
substrate.2,3 The formation of films and droplets at solid
interfaces is of importance in many applications. Inside porous
media, thin films provide an important mode for fluid transport4

that is often neglected or under-resolved in flow modeling.5−7

Both droplet formation and films impact the efficiency of water
removal in fuel cells8 and are important for atmospheric water
collection.9 Thin, nanometer-thick films are key components in
paint, coatings, and different lubricants.1 They are also
important in thin-film evaporation10,11 and boiling heat
transfer.12,13

With an emerging interest in micro-14 and nanofluidics,15

condensation on nanostructured surfaces,9,16 and self-organ-
ization and pattern formation,17−19 it becomes increasingly

important to understand how thin films, often in coexistence
with droplets, are influenced by confinement.20 Previous
works21−25 have shown that the stability of heterogeneous
structures is strongly affected by the choice of ensemble. For the
simplest type of films, thick films with a negligible disjoining
pressure, we recently showed that their thermodynamic stability
was profoundly different in a closed system (canonical
ensemble) and an open system (grand canonical ensemble).25

In this work, we will study how thin films and their possible
coexistence with droplets are influenced by confinement.
In the literature, thin films are often proclaimed to be unstable

when dΠ/dh > 0, whereΠ is the disjoining pressure and h is the
film thickness.1,26,27 It has, however, been pointed out that this
criterion is not necessarily valid for confined systems.20,28 In fact,
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this has been exploited in computer simulations to calculate the
disjoining pressure where it has a positive slope in h.29 The aim
of this work is to compare, consistently and on equal terms, the
thermodynamic stability of thin films in combination with
droplets in open and closed systems. To this end, we derive a
thermodynamic fundamental relation for the film phase from the
disjoining pressure combined with an equation of state (EOS)
that represents the bulk-phase properties. Pure water is used as
an example, but the methodology is equally applicable to other
fluids and can straightforwardly be extended to mixtures.
By comparing with previous results from the literature, we will

explain how different assumptions in the modeling of thin films
make them appear as if in an open or a closed
system.3,20,26,27,30−33 For instance, in his study of volatile
films, Sharma34 used kinetic theory to model the gas−liquid
mass transfer rate as a function of the difference between vapor
pressure and coexistence pressure. The coexistence pressure was
modeled by an extended Kelvin equation (including effects of
the disjoining pressure). Subsequently, the mass transfer rate
was incorporated into a partial differential equation for the film
profile to study time evolution and stationary states of films and
droplets on a flat substrate. He found that flat films are unstable
only when dΠ/dh > 0, in agreement with the conventional
stability criterion.
Dörfler et al.,20 on the other hand, used an effective interface

Hamiltonian to describe the mechanical energy of a film. They
showed that the mechanical instabilities are suppressed in
systems that are smaller than the critical wavelength, in
agreement with earlier findings. Although their effective
interface Hamiltonian did not account for particle exchange,
we will show that many of their findings can be recovered by
considering a closed system, since the behavior of the system is
then determined by mechanical instabilities of the film−gas
interface.

■ FUNDAMENTAL THEORY OF THIN FILMS

In the following, we present the fundamental theory that will be
used to describe thin films. Starting with the original definition
of the disjoining pressure by Derjaguin,1 we derive a
thermodynamic fundamental relation for the liquid film phase.
Next, we show that the fundamental relation is consistent with
Derjaguin’s well-known relation for the macroscopic contact
angle.2 Results from the literature on the mechanical stability of
thin films are briefly reviewed, which will be used in the
subsequent stability analysis.
Disjoining Pressure. Since there appear to be somewhat

differing interpretations of the disjoining pressure in the
literature,1,2,35 we start by describing the definition used in
this work. When two interfacial regions are brought in close
proximity to form a thin film, they experience either attractive or
repulsive forces. These forces can be described by the disjoining
pressure Π. They lead to anisotropic stresses in the film,
manifested by a pressure p⊥ normal to the interfaces that differs
from the pressure p∥ parallel to them.
To define the disjoining pressure, we will use the example

illustrated in Figure 1. In the left container, there is a thin liquid
film and a bulk gas phase with pressure pg, while in the right,
there is a bulk liquid phase with pressure pb. The film phase in
the left container is connected to, and in chemical equilibrium
with, the bulk liquid phase in the right through a tube. The
system is also in mechanical force balance, but the pressures pg

and pb are, in general, different.

Inside the region enclosed by dashed lines in Figure 1, the
gas−film interface has negligible curvature. Due to the force
balance, the normal pressure in the film is equal to the gas
pressure

=⊥p pg
(1)

The disjoining pressure is then defined, in accordance with
Churaev et al.1 (p 36), as the difference between the normal
pressure in the film and the pressure in the bulk liquid phase with
which the film is in chemical equilibrium. This may be expressed
as

= + Π⊥p pb
(2)

Fundamental Relation.We will next derive a fundamental
relation for the liquid film phase, i.e., the Helmholtz energy of an
infinitesimally small film section. The fundamental relation may
be divided by the infinitesimal substrate area covered by the film
section to obtain an expression that can be integrated over the
entire substrate to calculate the total Helmholtz energy of a
distributed film with varying thicknesses.
Consider a section of the film covering a small area Afs of a flat

solid surface, as illustrated by the dotted white lines in Figure 2.

Since the section is small, any variation in the film thickness
across it may be considered small with respect to (w.r.t.) the
thickness h in the middle and can be approximated as linear. The
Helmholtz energy differential for the film section may then be
expressed as

μ γ γ= − + − + +⊥F S T N p V A Ad d d d d df f f f f gf gf fs fs

(3)

Figure 1. Two connected containers, where the left contains a thin
liquid film (blue) and a bulk gas phase (white) with pressure pg and the
right contains a bulk liquid phase with pressure pb. As indicated by the
curved liquid menisci along the walls of the left container, pg ≠ pb in
general. The disjoining pressure is Π = pg − pb. The region enclosed by
dashed lines is drawn in Figure 2. Any effects of gravity have been
neglected.

Figure 2. Enclosed by dotted white lines is the part of a film covering a
small area Afs of a flat solid surface. The gas−film interfacial area is Agf.
Since the section is small, any variations in the film thickness across it
may be considered small and linear. The symbol h refers to the
thickness in the middle of the film section. A somewhat exaggerated
slope in the gas−film interface is used to illustrate that, in general, Agf≠
Afs.
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where Sf is the entropy, T is the temperature, μf is the chemical
potential, Nf is the number of particles, Vf is the volume of the
film, and Agf is the gas−film interfacial area. The interfacial
tensions of the gas−film and film−solid interfaces are γgf and γfs,
respectively. The reason for the appearance of p⊥ in eq 3 is that
the only way to change Vf at constant Agf and Afs is to change the
film thickness h. The work required to change h must be
performed against the normal pressure in the film.
The Helmholtz energy can be expressed as a function of T, Vf,

Agf, Afs, and Nf by integrating from a thick film of volume V∞
f ,

which has the desired areas Agf and Afs and is unaffected by the
disjoining pressure, to a thin film with volume Vf

∫
γ γ= + +

+ ∂
∂

∞ ∞ ∞

∞

i
k
jjjjj

y
{
zzzzz

F T V A A N

F T V N A A

F
V

V

( , , , , )

( , , )

d
V

V

T N A A

f f gf fs f

b f f gl gf ls fs

f

f
, , ,

f
f

f gf fs (4)

Herein, γ∞
gl and γ∞

ls are the standard macroscopic gas−liquid and
liquid−solid interfacial tensions, respectively, and Fb is a bulk-
phase description of the fluid Helmholtz energy as given, e.g., by
an EOS. Since the integration is performed with constant areas
Agf and Afs, we may replace dVf with Afs dh. Replacing the
integrand in eq 4 by p⊥ = pb + Π from eq 2 and absorbing the
resulting integral over pb into Fb, we obtain

∫γ γ= + + − Π∞ ∞
∞

F T V A A N

F T V N A A A h

( , , , , )

( , , ) d
h

h

f f gf fs f

b f f gl gf ls fs fs

(5)

where, implicitly, h = Vf/Afs. For convenience, we introduce the
shorthand notation

∫= Π
∞

w h h( ) d
h

h

(6)

that will be used in further derivations.
Equation 5 is a fundamental relation for the film section, and

many other thermodynamic quantities may be derived from it by
differentiation.36 In particular, the chemical potential is

μ μ= ∂
∂

=
i
k
jjjjj

y
{
zzzzz

F
N

T V A A

f
f

f
, , ,

b

f gf fs (7)

meaning that the chemical potential of the film is the same as in a
bulk liquid at the same temperature and density. This is a
consequence of the disjoining pressure being a function of the
film thickness only. Hence, μf is a function of T, Vf, and Nf.
Furthermore, the gas−film interfacial tension is the same as the
macroscopic gas−liquid interfacial tension

γ γ= ∂
∂

= ∞

i
k
jjjjj

y
{
zzzzz

F
A

T V A N

gf
f

gf
, , ,

gl

f fs f (8)

The film−solid interfacial tension, on the other hand, becomes a
function of the film thickness through the action of the
disjoining pressure

γ

γ

= ∂
∂

= + Π −∞

i
k
jjjjj

y
{
zzzzz

F
A

h w

T V A N

fs
f

fs
, , ,

ls

f gf f

(9)

From eq 5, we observe that the Helmholtz energy is first-order
Euler homogeneous in Vf, Agf, Afs, and Nf

β β β β β=F T V A A N F T V A A N( , , , , ) ( , , , , )f f gf fs f f f gf fs f

(10)

where β is a variable that describes a scaling of the system size.
Differentiating w.r.t. β and setting β = 1 yields the Euler relation

μ γ γ= − + +⊥F N p V A Af f f f gf gf fs fs
(11)

Choosing instead β = 1/Afs yields the Helmholtz energy per area
of solid substrate

α Γ =

=

f T h F T V A A A N A

F T V A A N A

( , , , ) ( , / , / , 1, / )

( , , , , )/

f f f fs gf fs f fs

f f gf fs f fs
(12)

where h = Vf/Afs, Γ = Nf/Afs, and α = Agf/Afs. From the Euler
relation (eq 11), we get

μ γ α γ= Γ − + +⊥f p hf f gf fs
(13)

Macroscopic Wetting Properties. We previously showed
that the film−solid interfacial tension is a function of the film
thickness; see eq 9. This has implications for the wetting
properties of a macroscopic liquid droplet on a solid surface
covered by a thin film.
The spreading coefficient associated with the spreading of a

thick liquid layer, whose surface tensions are unaffected by the
disjoining pressure, onto a solid surface covered by a thin film is

ψ γ γ γ γ

γ γ

= { + } − { + }

= −

∞ ∞

∞

gf fs gl ls

fs ls
(14)

since γ γ= ∞
gf gl according to eq 8. For a given disjoining pressure

isotherm, ψ is a function of h only. Young’s equation for the
contact angle θ results from a balance of interfacial forces. In
terms of the spreading coefficient, it can be expressed as

θ ψ γ= + ∞hcos( ) 1 ( )/ gl
(15)

Replacing γfs using eqs 9 and eq 3 in the equations above gives

∫γ θ γ= + Π − Π∞ ∞
∞

h hcos( ) d
h

h
gl gl

(16)

This result is identical to Derjaguin’s equation for the
macroscopic contact angle.1−3

Since the droplet is macroscopic, and thus largely unaffected
by the disjoining pressure and the Young−Laplace pressure
difference, it is reasonable to approximate the film thickness by
h0, which is such that Π(h0) = 0. This simplifies eq 16 to

∫γ θ γ≈ − Π∞ ∞
∞

hcos( ) d
h

h
gl

0
gl 0

(17)

as discussed in detail in the insightful review by Boinovich and
Emelyanenko.2 An alternative derivation of eq 16 based on a
simplified droplet model similar to that of Dörfler et al.20 is
provided in Appendix A.
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Linear Stability Analysis. The mechanical stability of thin
films, not taking into account condensation and evaporation, has
been studied extensively in the literature.18,20,30−33,37 One
approach has been to use the film profile equation, see, e.g., refs
18 and 31, to perform a linear stability analysis and determine
the growth rate of mechanical disturbances of a thin flat film with
different wavelengths λ. To represent an unstable disturbance, λ
must satisfy the well-known criterion

λ λ π
γ

> =
Π

∞

h
2

d /d0

gl

(18)

A discussion and derivation of this equation can be found in ref
18.
The criterion (eq 18) cannot be satisfied for any wavelength

when dΠ/dh < 0, and films corresponding to a negative slope in
the disjoining pressure isotherm are therefore mechanically
stable. When dΠ/dh > 0, on the other hand, the interfacial
tension acts to suppress disturbances with short wavelengths,
while disturbances with wavelengths longer than λ0 can grow.
Films forming droplets by succumbing to such instabilities are
said to undergo spinodal dewetting.20 Locally stable films
forming stable, energetically favorable droplets by overcoming
some energy barrier do so through nucleation. If the substrate
size is smaller than the shortest unstable wavelength, flat films
may be stable even though dΠ/dh > 0.20,28

■ MODELS
We will next develop models for the two composite systems
illustrated in Figure 3: a distributed flat film and a droplet
system. Details will be provided for the representation of the
disjoining pressure and the equation of state. Water at 293.15 K
will be used as the example fluid, for which γ∞

gl = 0.073 N m−1.
Since γ∞

ls only adds a constant to the Helmholtz energy that has
no qualitative effect on the results, we have set γ∞

ls = 0. In the
section Fundamental Relation, Vf, Agf, Afs, and Nf refer to the
volume, interfacial areas, and particle number of a small section
of a film. From this point on, these symbols will refer to the
entire distributed film.
Disjoining Pressure Model. There are many different

models for the disjoining pressure isotherms, depending on the
nature of the interface interactions. These vary from the classical
van der Waals curves where Π ∝ 1/h3 (ref 1, p 99) to more
complex curves38 that exhibit one or more local extrema; see,
e.g., Figure 3 in ref 27. Disjoining pressure isotherms are usually
modeled by adding terms that account for different types of
forces acting between two interfaces,39 resulting in a plethora of

possibilities for combinations of terms. We will restrict the
attention to a type of model that has been used to describe water
films on a solid graphite surface.27,40 This model has two terms

Π = Π + Πh h h( ) ( ) ( )VdW sr (19)

accounting for van der Waals forces and short-ranged forces,
respectively. Any effects of substrate size on the disjoining
pressure are neglected.28,41 Other surfaces and fluids are likely to
require different terms and parameter values.
The van der Waals term is proportional to 1/h3

π
Π = −h

A
h

( )
6VdW 3 (20)

where A is the effective Hamaker constant. This is modeled by
applying a mixing rule to the liquid and solid Hamaker constants

= −A A A All ll ss (21)

Here, we will use All = 4.4 × 10−20 J and Ass = 4.7 × 10−19 J.27,40

The short-ranged contribution is, in line with previous
works,27,40 modeled by an exponential

Π = −h K h L( ) exp( / )sr sr sr (22)

where Ksr and Lsr are the strength and correlation length of the
interactions, respectively. We will use Lsr = 0.6 nm27,40 and
consider Ksr = 0 and three different negative values of Ksr. The
four resulting disjoining pressure curves are illustrated in Figure
4. The effect of the negative Ksr values is to create a minimum in

Figure 3. Illustration of the two types of fluid configurations studied in this work. (a) Flat film of uniform thickness with a gas phase above it. (b)
Droplet in force balance and chemical equilibrium with a film, with a gas phase above them. All of the configurations exist in a cylindrical container of
radius R and height H, which can be open or closed. The axes of symmetry are indicated by dashed lines.

Figure 4. Disjoining pressure isotherms calculated using eq 19 for
different values of the parameter Ksr. Contact angles θ0 are calculated
using eq 17. The dots indicate where on the isotherms Π = 0 and
represent the thickness of the film a macroscopic droplet would be in
force balance with.
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the disjoining pressure curve that makes the liquid partially
wetting and allows the existence of droplets in equilibrium with
thin films. For each isotherm in the figure, the legends state the
contact angle θ0 predicted by eq 17 for a macroscopic droplet in
mechanical force balance with a thin film.
Equation of State for Bulk-Phase Properties. A

necessary component of the models developed here is a
thermodynamic description of the bulk phases. For this purpose,
any EOS capable of predicting Helmholtz energies of both gas
and liquid phases is applicable. We will use the cubic-plus-
association modification of the Soave−Redlich−Kwong EOS.42
This EOS is implemented in our in-house thermodynamics
library.43

Distributed Film in a Cylindrical Container.We consider
a cylindrical container with radius R, height H, and volume V =
πR2H. Furthermore, we assume for simplicity that the film
thickness h is a cylindrically symmetric function of the radial
coordinate r. The film−solid interfacial area is then a constant

∫π π= =A r r R2 d
R

fs

0

2
(23)

The film volume may be obtained by integrating h over the area
Afs

∫π=V hr r2 d
R

f

0 (24)

and, similarly

∫π= ΓN r r2 d
R

f

0 (25)

A homogeneous bulk gas phase fills the container volume that is
not occupied by the film.
The container has a fixed volume V, and we will only consider

the case when it is connected to a thermal reservoir with
constant temperature T. If the container is closed, i.e., it is in the
canonical ensemble and contains a fixed number of particles N,
equilibrium is defined by the state that maximizes the total
entropy of the system in the container and the reservoir subject
to these constraints on T, V, and N. This is equivalently
described as a minimum in the Helmholtz energy for the
system.36 Equilibrium in an open container, which also has a
fixed volume V and temperature T, but where the gas phase can
exchange particles with an external particle reservoir at constant
chemical potential, corresponds to a minimum in the grand
canonical energy Ω.
The total Helmholtz energy for the combined film-and-gas

system is

= +F F Ff g (26)

The Helmholtz energy of the gas is

μ
μ μ

= −
= − − +

F N p V

N N p V p V

(27)

(28)

g g g g g

g g f g g f

sinceNg =N−Nf and Vg = V− Vf. The Helmholtz energy of the
film is obtained by integrating f f over Afs

∫π=F f r r2 d
R

f

0

f
(29)

Inserting for f f using eq 13, and subsequently combining with
eqs 8, eq 4, and eq 2, we get

∫γ π μ γ α= + { Γ + − − }∞ ∞F A w p h r r2 d
R

f ls fs

0

f gl b

(30)

whereα = + ̇h1 2
with ḣ = dh/dr. We restrict our attention to

cases where there is chemical equilibrium within the film phase,
i.e., μf is uniform, and thus

∫μ γ π γ α= + + { − − }∞ ∞F N A w p h r r2 d
R

f f f ls fs

0

gl b

(31)

Adding together eqs 28 and 5, we obtain the total Helmholtz
energy

∫
μ μ μ γ

π γ α

= { − } + − +

+ { − − { − } }
∞

∞

F N N p V A

w p p h r r2 d
R

f g f g g ls fs

0

gl b g

(32)

This expression is a functional of h and a function of Nf.
Assuming chemical equilibrium, i.e., μg = μf, at a given value of

Δp = pg − pb, mechanical equilibrium is defined by a minimum
of the functional

∫π= ° + ̇
μ μF F L r h h r2 ( , , ) d

R

0 (33)

where Fμ° is a constant and the integrand is

γ α̇ = { − − { − } }∞L r h h w p p h r( , , ) gl b g
(34)

We observe that Fμ closely resembles an effective interface
Hamiltonian as presented, e.g., by MacDowell28 and Dörfler et
al.20

A film profile at mechanical equilibriummust have a vanishing
first variation of Fμ and satisfy the Euler−Lagrange equation44

{ }∂
∂

− ∂
∂ ̇ =L

h r
L
h

d
d

0
(35)

We differentiate L and insert into the Euler−Lagrange equation
to get

γ κ κ− = Π + { + }∞p pg b gl
1 2 (36)

where

κ =
̇

+ ̇
h

r h1
1 2

(37)

κ =
̈

{ + }̇
h

h12 3/2 (38)

are the curvatures of the film−gas interface.
Equation 36 is the augmented Young−Laplace equation for

the film. It is a second-order ordinary differential equation that
may be solved to yield a film profile that satisfies the mechanical
force balance. Solving eq 36 requires two boundary conditions.
The first is a homogeneous Neumann boundary condition at r =
0

̇ ==h 0r 0 (39)

which follows from the cylindrical symmetry of the problem.
The second is a Dirichlet condition at r = R

==h hr R R (40)

where hR is some specified constant value.

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c00960
Langmuir 2020, 36, 7879−7893

7883

pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c00960?ref=pdf


For a given value of hR, the Euler−Lagrange equation may
have several solutions. We will consider two qualitatively
different types of solutions. The first type is the trivial solution
where h is a constant. This corresponds to a flat film (Figure 3a).
In this case, the curvature terms in eq 36 are zero andΔp = pg −
pb is equal to Π, which is constant along the film profile. The
other type of solution is a droplet and a film, as illustrated in
Figure 3b. In this case, the disjoining pressure and curvature
terms vary along the film profile, but their sum remains constant.
Crucially, as the gas−liquid interface of the droplet approaches
the solid surface, the disjoining pressure term balances the
curvature terms in such a way that the gas−liquid interface
flattens into a flat film.
The grand canonical energy can be calculated from the

Helmholtz energy by

μΩ = −F Ng (41)

The criteria for a stationary state in Ω are the same as for F.
However, the stability of these stationary points, i.e., whether
they are minima, maxima, or saddle points, is likely to differ.

■ NUMERICAL METHODS
In this section, we will describe the numerical methods used to solve the
models presented. This amounts to identifying stationary states of the
two energy functionals, F and Ω, and determining their stability by
characterizing them as maxima, minima, or saddle points.
To identify stationary states, we adopt the same strategy as described

in ref 25. We first find states that are in mechanical force balance by
solving eq 36, the Euler−Lagrange equation. The solution specifies the
geometry of the film configuration, i.e., the thickness h as a function or r,
and corresponds to a specific value of Δp = pg − pb, the difference
between the gas phase pressure and the pressure of the hypothetical
bulk liquid phase with which the film would be in chemical equilibrium.
A phase equilibrium calculation is performed next, where equality of the
chemical potentials is used to determine the number of particles in the
film and gas phases.
The next step after determining a stationary state is to evaluate its

stability. To this end, we discretize the Helmholtz and grand canonical
energy functionals and examine the eigenvalues of their Hessian
matrices.
Phase Equilibrium Calculations. Any film profile in mechanical

force balance satisfies eq 36 for a specific value ofΔp = pg− pb. Through
eq 24, the film profile also specifies the volumes Vf and Vg. Phase
equilibrium for a particular film profile can therefore be determined by
finding the particle numbers Nf and Ng that give the necessary pressure
difference and equality of the film and gas chemical potentials. This is
accomplished by solving the nonlinear system of equations

° ° =N N N NF ( / , / ) 0f g (42)

where

μ μ
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=

−

− − Δ
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( , , ) ( , , )

( , , ) ( , , )

f g

g g g b f f

g g g b f f

(43)

and μb = μf according to eq 7. The pressures, chemical potentials, and
the derivatives required to compute F and its Jacobian are provided by
the EOS. The scaling quantities are

° =p 10 Pa5 (44)

° =
°

N
p V
RT (45)

where R is the universal gas constant.

The nonlinear system defined by eq 42 was solved using Newton’s
method. Initial guess values for Nf and Ng were obtained by a standard
phase equilibrium calculation45,46 at the specified temperature and
saturation pressure.

Solving the Euler−Lagrange Equation. The Euler−Lagrange
equation for the film eq 36 was solved to obtain film profiles in
mechanical force balance. This equation is a second-order ordinary
differential equation that has two boundary conditions, one at r = 0 and
the other at r = R. Together, these boundary conditions and eq 36
constitute a two-point boundary value problem, which was solved using
solve_bvp from Scipy’s integrate module.47

Discrete Description of the Distributed Film. Following the
procedures described above results in stationary states of the Helmholtz
and grand canonical energy functionals. These are states that have a
vanishing first variation for any perturbation of the film profile.
However, these procedures do not give any information about whether
or not the stationary states are stable. This information is contained in
the second variation or higher-order variations if the second variation is
zero. A stationary state is a minimum if the second variation is positive
for any perturbation of the film profile. To evaluate this numerically, we
use a discrete approach similar to Gjennestad and Wilhelmsen.25 The
idea is to represent the continuous function h(r) by its values at discrete
points and then use a quadrature rule to approximate the functional
integrals. Stability of the stationary states can then be determined by
considering the eigenvalues of a Hessian matrix, as will be described in
the section Stability Analysis.

An equivalent way of expressing the Helmholtz energy of the
distributed film model (eq 32) is

μ μ μ γ γ= { − } + − + + −

− { − }
∞ ∞F N N p V A A W

p p V

f g f g g ls fs gl gf

b g f (46)

where Agf, W, and Vf are functionals of h. Specifically

∫
∫

π

π

= + ̇

=

A r h r

W rw r

2 1 d (47)

2 d (48)

R

R

gf

0

2

0

and Vf is given by eq 24.
Let now the function h be approximated by the vector

= [ ]h h hh , , ..., M1 2
T (49)

which gives its values at M discrete points along the r-axis

= [ ]r r rr , , ..., M1 2
T (50)

The functional Agf may then be approximated by the sum

∑π= ̅ + ̅̇ Δ
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i

M

i i i
gf

0

2

(51)

where
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1

The boundary conditions dictate that h0 = h1 and hM+1 = hM. Analogous
definitions apply for W(h) and Vf(h).

The Helmholtz energy functional may now be approximated by

μ μ μ

γ γ

= { − } + −

= + − − { − }∞ ∞

F N N p V

A A W p p V

x

h h h

( )

( ) ( ) ( )

f g f g g

ls fs gl gf b g f
(56)

where the vector of unknowns x includes Nf in addition to h
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= [ ]

= [ ]

+x x x x

N h h h

x , , , ...,

, , , ...,

M
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1 2 3 1
T

f
1 2

T
(57)

The Jacobian vector of the discretized Helmholtz energy can be shown
to be

μ μ∂
∂

= −F
x1

f g

(58)

and

γ∂
∂

= ∂
∂

− ∂
∂

− { − } ∂
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F
x

A
x

W
x

p p
V
xi i i i

gl
gf

b g
f

(59)

for i ∈ {2, M + 1}. The Hessian matrix may be found by further
differentiation. Details of the procedure for calculating the derivatives of
Agf, W, and Vf w.r.t. xi and a validation of the discretization procedure
are given in ref 25 and its accompanying Supporting Information. An
analogous procedure is applied to obtain a discrete approximation of
the grand canonical energy and its derivatives.
Stability Analysis. Stationary states x* obtained with the above

procedures will have Jacobian vectors equal to zero for both F and Ω.
The change in, e.g., F due to a small perturbation dx of the stationary
state x* is thus determined by the Hessian matrix of F

=
*

F
F

x
x

xd d
d
d

d
x

T
2

2
(60)

The Hessian matrix is symmetric and can therefore be decomposed as

Λ=
*

F
x

Q Q
d
d

x

2

2
T

(61)

where the matrixΛ is a diagonal matrix of eigenvalues andQ is a matrix
whose column i is the eigenvector q(i) corresponding to the eigenvalue
Λ(i). We will use the convention that all eigenvectors q(i) have length 1
in the L2-norm. Since the Hessian is symmetric, the eigenvectors are
orthogonal.25

The stationary state x* is locally stable in a closed container and
represents a local minimum in F if all of the eigenvalues of the Hessian
matrix Λ(i) are positive. On the other hand, if one or more eigenvalues
are negative, it is possible to choose the perturbation dx along one of the
associated eigenvectors q−

(i). The subscripted minus sign indicates the
negative eigenvalue. In this case, we choose dx = dx− ∝ q−

(i) and this will
give a negative dF. The stationary state x* is then not a local minimum
and is considered locally unstable. Stability in open containers is
evaluated in a similar manner. Unstable states with both positive and
negative eigenvalues are called saddle points, while only negative
eigenvalues characterize a maximum.

The eigenvectors associated with negative eigenvalues give
information about the direction in configuration space that the system
can go to reduce its energy and hence what causes an instability to the
stationary state.

Before the calculation of eigenvalues and eigenvectors, it was ensured
that the discrete Jacobian vectors of the stationary states obtained by
the methods in sections Solving the Euler−Lagrange Equation and
Phase Equilibrium Calculations were indeed zero. This was
accomplished through a small number of iterations with Newton’s
method using the Jacobian vectors and Hessian matrices defined by the
discrete approach.

Figure 5. Stability of flat films of different thicknesses with each of the four disjoining pressure curves from Figure 4, in (a) a closed and (b) an open
container. Locally stable films are indicated by green dots and unstable films by red dots.

Figure 6. Flat film instability modes dh− for the θ0 = 60° disjoining pressure isotherm in the open container. In (a) the film thickness is h = 1.06 nm and
in (b) it is h = 2.68 nm. Instabilities have zero (black), one (blue), three (magenta), or four (cyan) internal extrema. The plotted vectors dh− have been
normalized so that their length is 1 in the L2-norm. Instabilities in the closed system are similar, except that the zero-extrema mode (black) is absent.
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Eigenvalues and eigenvectors were calculated with eigh from the
linalg module in Numpy.48 This function again uses the *syevd
routines from LAPACK.49

■ RESULTS

We first discuss the thermodynamic stability of flat films and
droplet configurations. Next, we compare the energies of the two
types of configuration and study the morphological phase
transition between them.
Except where explicitly stated otherwise, we consider a

container with R = 20 nm and H = 10 nm. The number of grid
points used in the discrete approximation is M = 400.
Flat Films. Figure 5 compares the local stability of flat films as

a function of film thickness for four different disjoining pressure
isotherms. Stability in a closed container is illustrated in Figure
5a, while Figure 5b displays stability in an open container. In the
open container, films are stable when dΠ/dh < 0. This is in
agreement with the conventional stability condition presented in
the literature; see, e.g., the review paper by Boinovich and
Emelyanenko2 (or ref 1, p 56). A similar result was also obtained
through dynamic considerations by Sharma,34 assuming a
constant gas pressure and a model for the evaporation rate. In
the closed container, on the other hand, some films are found to
be stable even if dΠ/dh > 0.
Eigenvectors q−

(i) of Hessian matrices that are associated with
negative eigenvalues correspond to perturbations dx− ∝ q−

(i) that
the film is unstable against. An unstable stationary state may
have one or more such negative eigenvalues. The vectors dx− are

composed of two parts: dN−
f , the component describing the

perturbation of the number of particles in the film; and dh−, a
vector representing the perturbation of the film profile. The
vectors dh− are here referred to as instability modes.
Figure 6 compares the instability modes for the θ0 = 60°

isotherm and two different film thicknesses in an open container.
Specifically, Figure 6 displays the instability modes obtained
when h = 1.06 nm. This film thickness is well into the unstable
region of the disjoining pressure isotherm with dΠ/dh > 0. Each
mode has resemblance to a sinusoidal function with some
wavelength and corresponds to a specific number of internal
extrema, indicated by their color (black, 0; blue, 1; yellow, 2;
etc.). Instabilities in the closed system are similar, except that the
zero-extrema mode (black) is absent. By moving along this
mode, the open system can reduce its energy by condensing or
evaporating the film while the film retains its flat profile. We call
this mode a condensation−evaporation instability and find that
it is present in the open system whenever the derivative of the
disjoining pressure curve is positive. This type of mode thus
causes the open system to be unstable whenever dΠ/dh > 0. The
other instability modes involve some degree of rearrangement of
the film profile, and we therefore call these mechanical instability
modes. The stability of the closed system is determined by this
kind of instability. We emphasize that the mechanical
instabilities also involve some exchange of particles. The
distinction between condensation/evaporation and mechanical
instabilities is based on whether or not the alteration of the gas−
film interface shape occurs. We further observe that the

Figure 7.Wavelengths λ of mechanical instability modes (dots) for different film thicknesses h, disjoining pressure isotherms, and container radii R.
Themodes have one (blue), two (yellow), three (magenta), or four (cyan) internal maxima. In (a) and (b), the container radius isR = 20 nm and in (c)
it is R = 30 nm. In (a) and (c) θ0 = 40° and in (b) θ0 = 60°. Also plotted are the container diameters 2R (solid lines) and a linear approximation,
computed from eq 18, of the minimum wavelength λ0 of film profile perturbations that have a positive growth rate (dashed lines). The dotted vertical
linesmark the asymptotes where λ0→∞. The shaded gray regions indicate the intervals of film thicknesses where the films were found to be unstable in
the closed system.
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exchange of particles is larger in the open system than in the
closed system, which is due to the constrained total number of
particles in the closed system.
As the film thickness is increased, the number of unstable

mechanical modes is gradually reduced. They disappear in order
of decreasing number of internal maxima (i.e., cyan first, then
magenta, etc.) until there is only one left. As the film thickness is
increased further and approaches the end of the unstable interval
for the closed container (Figure 5a), the maximum of the mode
with a single internal extremum moves toward the center of the
container. Figure 6 shows the instability modes for a film of
thickness h = 2.68 nm in an open container. This thickness
corresponds to the rightmost red dot on the θ0 = 60° isotherm of
the closed container displayed in Figure 5a. The mechanical
instability mode resembles in this case a sinusoidal function with
a wavelength close to the diameter of the container. For thicker
films, there are no unstable modes in the closed system and it is
stable. In the open system however, the condensation/
evaporation instability persists until the disjoining pressure
derivative again becomes negative. The existence of condensa-
tion/evaporation inabilities in open systems and their absence in
closed systems have recently been reported also for thick films in
pores.25

The mechanical instabilities seen here are of a similar kind as
those that cause spinodal dewetting. As shown, e.g., by Dörfler et
al.,20 the mechanical instabilities must have wavelengths λ that
are smaller than the diameter of the container. The finite extent
of the container makes instabilities with longer wavelengths
impossible. Furthermore, the wavelengths of unstable perturba-
tions must be bounded from below by the surface tension.
Perturbations with very short wavelengths will require the
creation of a large amount of surface area, relative to the amount
of energy than can be gained from the disjoining pressure by
shifting the liquid around. In a translationally invariant system of
infinite extent, this lower bound is given by eq 18. A
consequence of eq 18 is that dΠ/dh > 0 is a necessary condition
for mechanical instabilities. This results in specific intervals of
film thicknesses where mechanical instabilities may occur.
To show that these two effects indeed constrain the

mechanical instabilities observed here, we estimate for each
unstable state the wavelengths of the mechanical instability
modes. For the modes with many extrema, the horizontal crest-
to-trough distance changes slightly along the r-axis.We therefore
estimate the wavelength as the distance from the container
sidewall to the nearest internal extremum, multiplied by a factor
2. Figure 7 displays the resulting wavelengths as functions of film
thickness. Results are presented for disjoining pressure
isotherms with θ0 = 40° (Figure 7a) and θ0 = 60° (Figure 7b).
Figure 7c displays results for the 40° isotherm and a wider
container. The figures also show the container diameter 2R
(solid horizontal line) and the shortest unstable wavelength λ0 as
predicted by eq 18 (dashed line). The dotted vertical lines
indicate where dΠ/dh = 0 and λ0 →∞. The disjoining pressure
derivative is positive between them and, according to the linear
stability analysis, mechanical instabilities should thus occur only
for film thicknesses in between these lines.
All measured wavelengths correspond to film thicknesses

between the dotted lines, i.e., where dΠ/dh > 0. We observe no
mechanical instabilities with wavelengths longer than 2R. As a
concrete illustration, compare Figure 7a where R = 20 nm with
Figure 7c where the container size is increased to R = 30 nm. In
the latter case, the increased container size gives room for
instabilities with longer wavelengths. This results in an increased

interval of film thicknesses where films are mechanically
unstable. The larger container also gives room for a larger
number of extrema in instabilities with a given wavelength. For
instance, the shortest-wavelength instabilities in Figure 7a have
two internal extrema, whereas instabilities with approximately
the same wavelength in Figure 7c have four. For both container
sizes, it is clear that the mechanical instabilities with the longest
wavelength disappear when they reach the 2R-bound.
In addition to being smaller than 2R, the measured unstable

wavelengths are longer than λ0. Although derived with an
assumption of translational invariance that does not apply in the
present example, eq 18 appears to provide an accurate estimate
for the lower bound for the unstable wavelengths.
From the form of eq 18, we may expect that instabilities of

shorter wavelengths are possible when the disjoining pressure
derivatives are larger. This is indeed what we observe, e.g., when
comparing results from the θ0 = 40° isotherm (Figure 7a) to
results from the θ0 = 60° isotherm (Figure 7b). The latter
disjoining pressure curve extends to larger negative values for the
disjoining pressure. This results in unstable modes with shorter
wavelengths and a larger number of internal extrema.
In large closed containers, more mechanical instability modes

will be present as the upper bound of 2R increases. The films will
then become mechanically unstable for a larger part of the
interval where dΠ/dh > 0. However, the dotted lines in Figure 7
display the film thicknesses for which the estimated lower bound
for unstable wavelengths λ0 diverges. The divergence of λ0
means that there may be an interval on the h-axis where a finite
container is not large enough to support sufficiently long
wavelengths for the film to be unstable no matter how large the
container is. However, this region quickly becomes narrow as
the container diameter is increased. As an example, consider the
θ0 = 40° isotherm and a container with 2R = 1 μm. The lower
bound, λ0, is larger than 1 μm only for film thicknesses between
5.41 nm and the thickness for which λ0 diverges, 5.56 nm. The
effect of mechanical stabilization due to finite container size is
therefore expected to be small for large containers.
In summary, we find that the criterion for thermodynamic

stability of films provided in the literature, dΠ/dh < 0, applies
only to open systems due to a condensation/evaporation
instability that is present whenever this criterion is not satisfied.
The stability of films in closed systems is governed by
mechanical instabilities of a similar kind as those responsible
for spinodal dewetting in nonvolatile systems. Similar to
nonvolatile films,20 we find that films in small closed containers
may be stable even though dΠ/dh > 0 due to the finite size of the
container.

Droplets and Films. We shall next compare the
thermodynamic stability of a thin film in coexistence with a
droplet in an open and a closed system. The stability of different
droplet configurations in a closed container is shown in Figure 8
for the θ0 = 60° isotherm. Here, the configurations with the
largest droplets are stable. As the droplet size is reduced, the
contact angle decreases and the film thickness increases. Thus,
the droplet configurations gradually converge to a flat film as the
film thickness approaches the minimum on the disjoining
pressure curve where dΠ/dh|h=hR = 0. At some point before the
disjoining pressure in the thin-film part of the configurations
reaches this minimum, however, the droplets become unstable.
As we shall see in the next section, this point is associated with a
minimum in the total density in the container. A similar behavior
was obtained also for the θ0 = 40° isotherm.

Langmuir pubs.acs.org/Langmuir Article

https://dx.doi.org/10.1021/acs.langmuir.0c00960
Langmuir 2020, 36, 7879−7893

7887

pubs.acs.org/Langmuir?ref=pdf
https://dx.doi.org/10.1021/acs.langmuir.0c00960?ref=pdf


Dörfler et al.20 found that stable nonvolatile droplets
eventually became unstable if the substrate size was increased
by making the film-covered substrate area larger while keeping
the size of the droplet fixed. We observe the same for the
droplets in a closed system studied here.
If the container is open instead of closed, then all of the

droplet configurations in Figure 8 are unstable.
The unstable droplet states have one negative Hessian

eigenvalue, in both the open and the closed container. The
unstable droplets thus represent saddle points in both free
energy landscapes, and the systems can reduce their energies by
moving along (or against) one particular direction given by the
associated eigenvector. Examples of instability modes dh− are
shown in Figure 9. These modes are similar for the open and

closed systems. However, as discussed for the flat film, the
unstable perturbations dx− ∝ q−

(i) for the open system involve a
larger degree of particle exchange with the gas phase.
By initially perturbing the unstable droplets in the open

system along the unstable eigenvector dx−∝ q−
(i), we were able to

form a path in the configuration space, with monotonically
decreasing grand canonical energy, to a homogeneous liquid
phase filling the entire container. By perturbing the system in the
opposite direction, a path to a stable flat film was obtained.

Sharma34 observed a similar behavior by use of dynamic
considerations. He assumed a constant gas pressure and a model
for the evaporation rate. Time-stationary droplet solutions were
then unstable, and droplets slightly smaller than the time-
stationary state evaporated, shrunk, and eventually became a flat
film, while slightly bigger droplets condensed further and grew in
size. The unstable droplets in the open system thus represent
activation barriers in the energy landscape, which correspond to
stationary states with gas pressures above the saturation
pressure.
By perturbing the unstable droplets in the closed system, we

were able to form paths with monotonically decreasing
Helmholtz energy to either a larger stable droplet or a stable
flat film. The unstable droplets in the closed system therefore
represent the activation barrier for wetting/dewetting of the
solid surface.
A notable difference between the paths in the open and closed

systems was that in the closed system, the number of particles in
the film phaseNf changed very little. As an example, the decay of
the unstable droplet in Figure 9 to a flat film resulted in a 5.5%
reduction in Nf in the open system and only a 0.074% reduction
in the closed system. A consequence of this is that the
assumption of a nonvolatile film phase in the effective interface
Hamiltonian approach used, e.g., by Dörfler et al.20 appears
reasonable for water in a closed system at the current
temperature. However, this might not be the case for fluids
closer to their critical temperature.

Film−Droplet Transition. By comparing the Helmholtz
energy of different locally stable flat film and droplet
configurations with the same total density ρ = N/V, we
determine the equilibrium configuration in a closed system. This
comparison is shown in Figure 10 for the θ0 = 60° isotherm. The

film thickness hR at the container sidewall is plotted as a function
of the total density for both types of configurations. Unstable
configurations are indicated by red markers, locally stable
configurations are indicated in green, and stable configurations
that represent the lowest Helmholtz energy for a particular value
of ρ are shown in blue. The gas spinodal density at the
considered temperature is 0.35 mol L−1, and the liquid spinodal

Figure 8.Thermodynamic stability of droplets in coexistence with films
of different thicknesses for the disjoining pressure curve with θ0 = 60°.
The film thickness marked on the disjoining pressure isotherm is hR, i.e.,
the thickness measured at the container wall where r = R. Stable
configurations are shown in solid green and unstable configurations in
dashed red.

Figure 9. Droplet instability modes dh− for the θ0 = 60° disjoining
isotherm and hR = 0.50 nm, in the closed (blue) and the open
(magenta) container. For reference, the film thickness h is also shown
(dashed red line). The plotted vectors dh− have been normalized so
that their length is 1 in the L2-norm.

Figure 10. Film thicknesses hR (at the container sidewall) plotted
against the total density ρ in a closed container for the disjoining
pressure isotherm with θ0 = 60°. Flat film configurations are shown as
circles on a dashed line, while droplet configurations are shown as
squares on a dotted line. Unstable states are shown in red and locally
stable in green. Equilibrium states, which are locally stable and have the
lowest Helmholtz energy of the stable configurations at that density, are
shown in blue. The solid vertical line indicates the film−droplet
transition density.
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density is 43 mol L−1. Since the total densities of the
configurations lie between the gas and liquid spinodals, a
homogeneous fluid phase can be ruled out as a possible
alternative equilibrium state since it is thermodynamically
unstable.46

Figure 10 shows that the point on the dotted line where
droplet configurations go from stable to unstable occurs at a
minimum in the total density. Below this minimum, no
stationary droplet states can be found. A similar effect has
been observed for free bubbles and droplets in a closed
system.22,23 The unstable branch of droplet configurations
converges toward the flat film configurations. The two types of
configurations merge at the film thickness corresponding to a
minimum in the disjoining pressure curves.
The flat films are stable at low densities. They are also the

equilibrium configuration up to a certain value of the total
density, indicated by the vertical solid line in Figure 10, where
there is a morphological phase transition and the equilibrium
state becomes a stable droplet configuration. The transition
density is 3.03mol L−1, a value that depends both on the size and
on the shape of the container.
Tracing the blue markers from left to right in Figure 10 shows

that in a closed container at equilibrium, the system will initially
consist of a thin flat film that grows in thickness as the number of
particles is increased. Eventually, a droplet will form when the
transition density is exceeded. The formation of a droplet will
deplete liquid from the thin-film region such that the film
thickness is reduced. This transition, from a stable film state to a
stable droplet state, occurs through dewetting by nucleation.
The nucleation regime corresponds to the interval of densities

in Figure 10 for which there are three possible stationary states:
one stable flat film state and two droplet states. The two droplet
states correspond to a small droplet, which is unstable, and a
larger droplet, which is stable. An example of three such states at
ρ = 3.1 mol L−1 is shown in Figure 11b. A transition from the
stable flat film to the stable droplet state will pass through the
unstable droplet, as it represents a saddle point in the
thermodynamic energy landscape.
In Figure 11a, the Helmholtz energy difference ΔF between

the droplet configurations and the corresponding film
configuration with the same total density is plotted. Like in
Figure 10, the stationary droplet states fork out into a stable and
an unstable branch. The Helmholtz energy of the unstable
branch is always larger than the stable branch. Furthermore, the
Helmholtz energy of the unstable branch approaches that of the
flat film as the total density in increased.
The Helmholtz energy differences ΔF of the three states in

Figure 11b are indicated by markers of corresponding colors in
Figure 11a. It is clear that the large droplet has the lowest
Helmholtz energy and is the equilibrium configuration.
However, a transition from the stable flat configuration, which
passes through the unstable small-droplet configuration, must
overcome an energy barrier through an activated nucleation
process. The probability of the transition to occur increases as
the energy barrier decreases and eventually goes to zero as the
total density is increased. The opposite transition, from a large
droplet to a flat film, may also occur as an activated nucleation
process below the transition density. A similar analysis for the θ0
= 40° isotherm gives qualitatively similar results but a somewhat
higher transition density of 3.88 mol L−1. Since the activation
barriers for the film−droplet transition displayed in Figure 11a
are rather small, we expect for this example that the
morphological change will occur close to the transition density.

■ CONCLUSIONS
The thermodynamic properties of thin films deviate from those
of a bulk liquid phase at the same temperature and chemical
potential. This deviation can be modeled by the disjoining
pressure. Thin films occur in a variety of applications, such as in
flow through porous media, fuel cells, in evaporation as well as in
micro- and nanofluidics.
This work is a study of thin films of spatially varying

thicknesses and their coexistence with droplets, in open systems
and under confinement. Based on Derjaguin’s concept of a
disjoining pressure Π, which is dependent on film thickness h,
and the existing bulk-phase equations of state, we derived a
thermodynamic fundamental relation for a thin liquid film
phase. From this fundamental relation, the film−gas and film−
solid interfacial tensions were obtained, the latter of which was
dependent on the film thickness. We verified that Derjaguin’s
equation for the contact angle of a macroscopic droplet was
reproduced by the fundamental relation, and it was next
employed to derive a capillary model for a distributed film of
varying thicknesses, with a homogeneous gas phase above it.
The model was used to study the thermodynamic stability of

stationary states that represent flat films and droplets of water in
closed systems (canonical ensemble) or connected to a particle
reservoir (grand canonical ensemble). The stationary states
were found by solving the Euler−Lagrange equations derived

Figure 11. In (a), the Helmholtz energies of droplet configurations,
relative to the flat film configuration with the same density, are shown as
squares on a dotted line. As in Figure 10, θ0 = 60° and unstable droplet
states are marked by red squares, locally stable states by green squares,
and stable states that have the lowest Helmholtz energy at the given
density are shown in blue. The flat film configurations are stable for the
entire range of densities plotted. Values of ΔF for the three possible
stationary configurations at ρ = 3.1 mol L−1, one flat film state (yellow
dot) and two droplet states (magenta and cyan squares), are indicated.
The corresponding film profiles are shown in (b).
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from the Helmholtz energy functional (closed system) or the
grand canonical energy functional (open system). By discretiz-
ing the energy functionals, the thermodynamic stability of the
configurations could be inferred from the eigenvalues of the
corresponding Hessian matrices.
In closed systems, the flat films were occasionally stable even

when the conventional stability criterion often presented in the
literature, dΠ/dh < 0, was not satisfied. A closer inspection of the
eigenvectors associated with the negative eigenvalues revealed
that the stability was governed by mechanical instabilities of a
similar kind as those responsible for spinodal dewetting in
nonvolatile systems. In line with earlier works,20,28 the films were
stabilized when their thickness and disjoining pressure
derivatives were such that the minimum unstable wavelength
became larger than the container diameter.
Flat films in open systems, on the other hand, were found to

follow the conventional stability criterion. The reason for this
was the presence of an additional type of instability whenever the
criterion was not satisfied. This type of instability corresponded
to condensation/evaporation of the film while the film profile
remained flat. This instability was not present in the closed
systems.
Droplets in coexistence with thin films were found to be

unstable for all considered examples in open systems. In closed
systems, they were stable under certain conditions. When two
different droplet states were possible at the same density, the
large droplet was stable and the small droplet was unstable.
Smaller and smaller droplets exhibited smaller and smaller
contact angles and eventually converged to flat films.
The unstable droplets in both open and closed systems were

found to be saddle points in their respective energy landscapes.
In the closed system, they represent the activation barrier for the
transition between a stable flat film and a stable droplet. This
activation barrier was quantified by evaluating the Helmholtz
energies of both the stable and unstable stationary states. In the
open system, the unstable droplets represent the activation
barrier for the transition from a flat film to a bulk liquid phase
through condensation.
In a closed system, flat films were found to be the equilibrium

configuration up to a certain value for the total density. Beyond
this value, there was a morphological phase transition to stable
droplet configurations.
The framework presented can readily be extended to study

thin-film configurations in multicomponent systems and in
different geometries such as around fibers and within porous
media.

■ APPENDIX A. MACROSCOPIC DROPLET MODEL
In this section, we derive a simplified model for a macroscopic
droplet configuration. This model serves two purposes. (1)
Analysis of the macroscopic model will provide an alternative
way to derive Derjaguin’s relation for the macroscopic contact
angle (eq 16), using the fundamental relation for the film phase,
that does not presume a balance of interfacial forces. (2) Since
the macroscopic model is consistent with a known result,
Derjaguin’s contact angle relation, it provides an opportunity to
validate the distributed model and the discrete approach used to
solve it. We will show that the two give the same interface
profiles in the large-droplet limit.
We consider a cylindrical container of base radius R, base area

A = πR2, and heightH, giving a total volume V = AH. It contains
a spherical droplet, large enough for the pressure inside it to be
unaffected by the disjoining pressure, covering part of A, while a

thin film covers the rest. A gas phase occupies the remaining
container volume. The gas−liquid interface of the droplet is a
spherical cap, and the droplet volume can be expressed as

π= { + }V a b
b

a b( , )
6

3d 2 2
(A.1)

where a is the base-area radius and b is the height of the spherical
cap. The parameters a and b are related to the radius of curvature
in the droplet, r, and the contact angle θ through

= + { − }r a r b2 2 2 (A.2)

θ = { − }r b rcos( ) / (A.3)

The gas−liquid interfacial area of the droplet is

π= { + }A a b a b( , )gd 2 2 (A.4)

and the solid−liquid interfacial area is

π=A a a( )ds 2 (A.5)

The film area is

= −A a A A a( ) ( )f ds (A.6)

and the film volume is

=V h a hA a( , ) ( )f f (A.7)

where h is the film thickness. The gas volume is

= − −V V V Vg f d (A.8)

In a closed container in contact with a thermal reservoir,
equilibrium is a stationary state of the Helmholtz energy. Using
the capillary model approach, the Helmholtz energy differential
for the system is

μ

μ γ γ

μ γ

= + +
= − − + −

+ + + −

+ +
∞ ∞

F F F F

S T p V N p V

N A A p V

N A

d d d d (A.9)

d d d d

d d d d

d d

(A.10)

g d f

g g g g d d

d d gl gd ls ds f f

f f f f

Herein, γf is the film tension, i.e.,

∫
γ γ γ

γ γ

= +

= + + Π − Π∞ ∞
∞

h h

(A.11)

d (A.12)
h

h

f gf fs

gl ls

Using now that dVg =−dVf− dVd, dNg =−dNf− dNd, and dAf =
− dAds, the differential may be expressed as

μ μ

γ γ γ

μ μ

= − − { − } + { − }

+ + { − } − { − }

+ { − }
∞ ∞

F S T p p V N

A A p p V

N

d d d d

d d d

d

d g d d g d

gl gd ls f ds f g f

f g f (A.13)

The areas and volumes are determined by three free parameters,
e.g., h, a, and b. This enables further manipulation of the
differential to obtain
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In a stationary state, all terms in A.14 must be zero. The first two
terms then give that a stationary state requires chemical
equilibrium

μ μ μ= =d g f (A.15)

Having the last term equal to zero requires

= = + Πp p pg f b
(A.16)

i.e., mechanical equilibrium between the gas and film phases.
The two remaining terms give

γ
− = ∞p p

r
2d g

gl

(A.17)

the Young−Laplace equation for the droplet and

θ
γ γ

γ
=

− ∞

∞

cos( )
f ls

gl
(A.18)

which is Young’s equation for the contact angle of the droplet.
Inserting eq A.12 into eq A.18, we recover Derjaguin’s equation
(eq 16) for the contact angle of a macroscopic droplet.
The procedure above can also be applied in an open

isothermal system. The result is that the criteria for a stationary
state in the grand canonical energyΩ are the same as those for a
stationary state in F.
As a validation of the discrete approach described in the

section Discrete Description of the Distributed Film, we here
confirm that the film profiles obtained with this method
converge to those obtained by the macroscopic model as the
droplet size is increased. To this end, we compute stationary
droplet states with the macroscopic model and a = R/2 for
progressively increasing values of R. For each of these states, we
compute the stationary state that has the same number of
particles using the discrete approach with 600 grid points. We
use the same fluid EOS and interfacial tensions as in the main
paper and use the disjoining pressure isotherm with a
macroscopic contact angle of θ0 = 60°. Two examples are
shown in Figure 12a,b for R = 10 and 640 nm, respectively.
There is a large discrepancy between the film profiles for the
small container. In the large container, the two profiles are
identical within the accuracy of the plots.
As a more formal comparison, we compute the L2-norm of the

relative difference between the film profiles obtained with the
two different models. This is plotted in Figure 13 against the
container radius. This shows that the film profiles obtained with
the discrete method converge to those from the macroscopic
model as the container size is increased.
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Figure 12. Solutions of the macroscopic model (dotted) and the
distributed model (solid) for container sizes (a) R = 10 nm and (b) R =
640 nm.

Figure 13. L2-error between macroscopic and distributed model
solutions vs the container radius.
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