

FME HighEFF

Centre for an Energy Efficient and Competitive Industry for the Future

Deliverable D4.2_2017.01 Status on surplus heat database

Delivery date: 2017-12-21

Organisation name of lead beneficiary for this deliverable:

SINTEF Energy Research

HighEFF- Centre for an Energy Efficient and Competitive Industry for the Future is one of Norway's Centre for Environment-friendly Energy Research (FME). Project co-funded by the Research Council of Norway and Industry partners. Host institution is SINTEF Energi AS. Dissemination Level					
PU	Public	X			
RE	Restricted to a group specified by the consortium				

Deliverable number:	D4.2_2017.01
ISBN number:	
Deliverable title:	Status on surplus heat database
Work package:	WP4.2 Surplus heat recovery
Deliverable type:	Memo
Lead participant:	SINTEF Energy Research

Quality Assurance, status of deliverable						
Action	Performed by	Date				
Verified (WP leader)	Trond Andresen	2017-12-21				
Reviewed (RA leader)	Aud Wærnes	2017-12-21				
Approved (dependent on nature of deliverable) ^{*)}	Aud Wærnes	2017-12-21				

*) The quality assurance and approval of HighEFF deliverables and publications have to follow the established procedure. The procedure can be found in the HighEFF eRoom in the folder "Administrative > Procedures".

Authors							
Author(s) Name	Organisation	E-mail address					
Vidar Skjervold	SINTEF Energy Research	VidarTorarin.Skjervold@sintef.no					

Abstract

This memo gives an update on the status of the surplus heat database developed in WP4.2. The work is progressing well. However, a lot of work remains before it is finished. By the spring of 2018, the goal is to finish the database for the metals and materials sector. By the end of 2018 we aim at extending the database to either the food and chemicals or oil and gas sector.

Table of Contents

1	Intro	duction	4
	1.1	"Workflow"	6
2	Statu	us on data acquisition	6
3	Conc	clusion	9
Re	eference	25	9

1 Introduction

The industrial partners in HighEFF represent 41 % of the total energy consumption in Norway, as shown in Figure 1. Metal production and refined petroleum, chemical and pharmaceutical products are the main contributors. One of HighEFF's goals is a 20% to 30% reduction in energy consumption in the industry. In order to reach this goal, improvements in several areas are required. For example, a larger extent of capture, conversion and utilization of industrial surplus heat will be crucial.

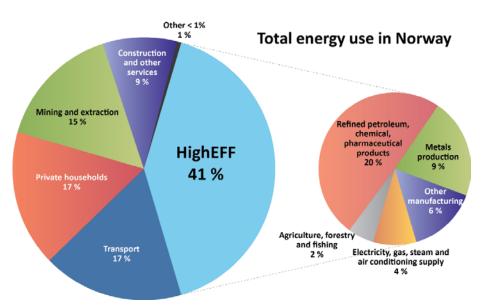


Figure 1: Energy consumption in HighEFF industrial partners related to the total energy use in Norway.

One of the aims of WP 4.2 in HighEFF is to create a database of significant surplus heat sources in the partner industries. This is a quite ambitious activity that most likely will take time to complete. The aim is to assemble a database of the thermodynamic potential remaining in exhaust, waste streams, and by-products, organized by industry sector, partner/plant, and sub-process/process stage. In addition to the direct use of a surplus heat characterization, this data can be used to identify processes and sub-processes with high impact on energy performance, as well as exergy losses between core process and waste streams. A screenshot of the database is shown in Figure 2.

This database can serve many purposes in HighEFF, across many research areas and WP's. Examples are design of heat recovery technologies, feasibility studies in energy exchange and heat-to-power conversion, *process improvements*, and *future processes*.

3 4 P	lant	Process stage	Input/output	Process flow	Туре	Material	Process flow temperature – annual average	Minimum allo v able	Temperature location specification	Core process temperature	Annual production/consu		Annual hours of operation	Energ	y per year
5		_					(C)	['C]		['C]	[tons/year] [N	lm ³ /h]	[h/year]	[MWh/year]	[MJ/year]
6 Al 7 Al 9 10 11	lcoa Mosjøen	Anode bakeing	Input Input Input Output Output	Natural gas Coke Pitch Exhaust Anodes	Gas	Methane "Air equivalent"	190	90	Facility exterior wall	1250 1250 1250 1250 1250 1250	13500 2644 43174 299735	185000	8760 8760	186300 24589 479231	670626 88514 1725095
12	04 pots	Electrolysis	Input Input Output Output Output Output	Electric energy Carbon Primary Aluminium Pot gas Sidewall Other surface heat loss	- Gas Surface Surface	- Coke Al "Air equivalent" Steel Steel	- 130 300 250	80	Cell outlet Cell exterior Cell exterior	960 960 960	80485 196786	1600000	8760 8760 8760 8760 8760 8760	2996717 748510	10787318 2694422
18 19 20 21 22 23 24 25 26 27 28 29		Casting furnace	·	Natural gas Primary Al Other Al Aluminium alloy Exhaust Other heat loss Aluminium alloy Cooling water	Surface Liquid	Methane Al Al Si Al "Air equivalent" Steel Water	1000 200 25		Gas outlet, 6 furnaces Furnace exterior To sea	720 720 720 720 720 720 720 720 720	6000 196786 36161 232947 232947	0 - 100000 350	8760	82800	298056
30 31 32 33	lant	Process stage	Input/output	Process flo v	Туре	Material	Process flow temperature – annual average [°C]	Minimum allov able [°C]	Temperature location specification	Core process temperature ['C]	Annual production/consu [tons /year] [N		Annual hours of operation [hlyear]	Energ [Mwh/year]	y per year [MJ/year]
36	lcoa Lista øderberg	Electrolysis	Input Input Input	Electric energy Carbon Pitch	-	- Coke	-				34008 12577		8760 8760	1725236 316274 139604	6210352 1138496 502536
38 39 40 41 42 43	-	Casting furnace	Output Output Output Output Input	Primary Aluminium Pot gas Sidewall Other surface heat loss Natural gas	Gas Surface Surface	Al "Airequivalent" Steel Steel Methane	300 300 250	80	Cell outlet Cell exterior Cell exterior	960 960 960 720	33294	150000	8760 8760 8760 8760	43097	155138
44 45 46 47 48 49 50		Castingbed	Input Input Output Output Output Input	Primary Al Other Al Other materials Aluminium alloy Exhaust Other heat loss Aluminium alloy	Surface	Al Al Si Al "Airequivalent" Steel	900 200		Furnace outlet Furnace exterior	720 720 720 720 720 720 720 720	93294 34377 127671 127671	0-70000	8760		
00			Output	Cooling water	Liquid	Water	25		Tosea	720		300	8760		

Figure 2: Screenshot of surplus heat database. Alcoa's plants are used as example.

1.1 "Workflow"

To complete the database, we rely on in-kind contributions from the industry, which means that gathering data takes time. The workflow of collecting data is described below.

- 1) Search literature and previous projects for data
 - a. Some relevant previous projects for the material sector
- 2) Create model process sketch and identify main sub-processes. Example in Figure 3.
- 3) Request data from industry start direct cooperation/discussion
- 4) Create energy/ exergy loss process flow diagram. Example in Figure 4.
- 5) Use data in several work packages in HighEFF, e.g. thermal energy storage, process improvements, design of novel heat recovery concepts.

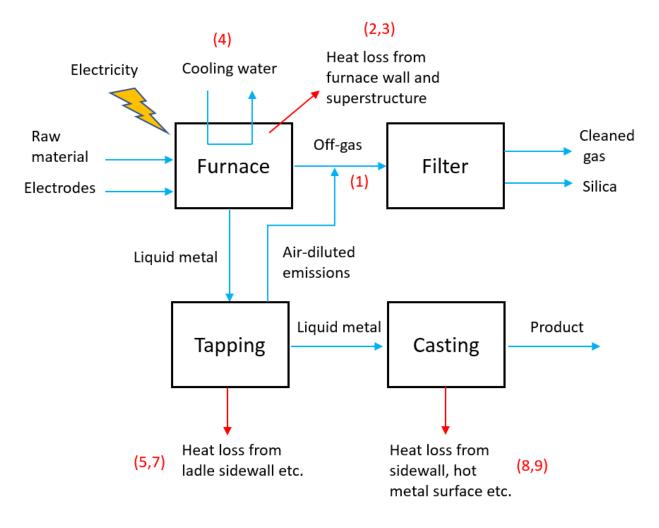


Figure 3: Example of process sketch divided into sub-processes for Wacker's plant at Holla.

2 Status on data acquisition

The HighEFF centre covers three industries: metals and materials, food and chemicals and oil and gas. The metals and materials sector was chosen as the starting point for the database. Contact has been established with all partners except Glencore, and work still remains before the database is complete for metals and materials. In Table 1, the progress on data acquisition for this sector is summarized.

Table 1: Status on data acquisition for the metals and materials sector.

Partner	Status	List of plants	Data from literature or previous projects	Sketch w/ sub processes created	Data provided from partner	Diagram w/ energy and exergy losses
Alcoa	Data for both Mosjøen and Lista has been acquired, some refinement required	Lista, Mosjøen	None	No	80%	No
Elkem	Idea was discussed at the HighEFF autumn workshop in October. Follow-up e-mail was sent in November, but Elkem has not responded yet.	Bjølvefossen, Bremanger, Rana, Salten, Thamshavn	[1], [2], [3], [4]	No	0%	No
Eramet	Initial contact in October, but we agreed on delaying the work to the middle of November. Follow-up e-mail has been sent, but Eramet has not responded yet.	Porsgrunn, Sauda, Kvinesdal	[1], [2]	Yes	0%	No
Finnfjord	Finnfjord was contacted in November, but no answer has been received yet. Will be followed up after Christmas.	Finnfjord	[1], [2], [3], [4]	No	0%	No
Glencore	Work has not started	Kristiansand (Ni), Mo i Rana (Mn)	None	No	0%	No
Hydro	Data for all primary Al plants has been acquired, some refinement required	Husnes, Høyanger, Karmøy, Sunndalsøra, Årdal	[1]	Yes	80%	Begun
Wacker	Data for the Holla plant has been acquired. Some additional information might be needed, this will be discussed in plant visit on the 15 th of December 2017.	Holla	[2], [3], [4], [5]	Yes	70%	No

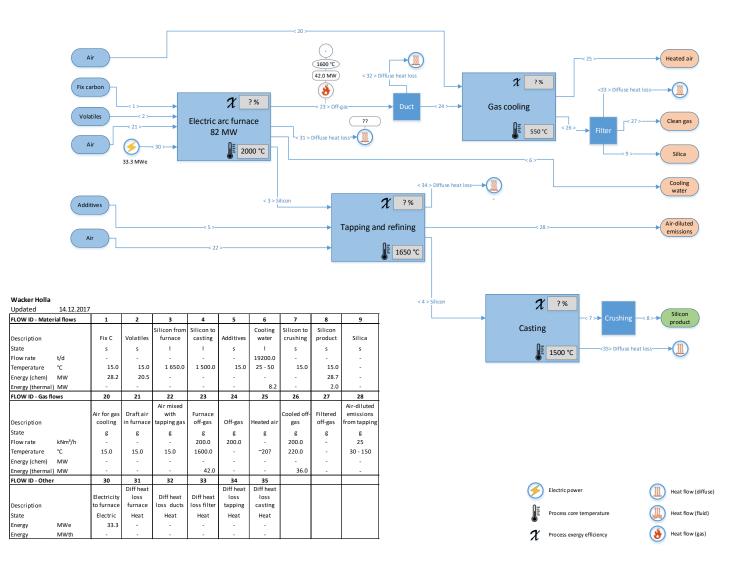


Figure 4: Early draft of energy/exergy loss flow diagram for Wacker Holla.

3 Conclusion

The work with the surplus heat database is progressing well. However, a lot of work remains before it is finished. By the spring of 2018, the goal is to finish the database for the metals and materials sector. By the end of 2018 we aim at extending the database to either the food and chemicals or oil and gas sector.

References

- [1] "KMB Roma, confidential report," 2009.
- [2] M. Tangstad, *Metal production in Norway*. Trondheim: Akademika publishing, 2013.
- [3] N. E. Kamfjord, "Mass and Energy Balances of the Silicon Process," NTNU, 2012.
- [4] M. T. Børset, "Energy Dissipation and Recovery in the Context of Silicon Production: Exergy Analysis and Thermoelectricity," NTNU, 2015.
- [5] Z. Borkowska, "Silicon production process: energy and exergy analysis for Holla silicon plant," NTNU, 2012.