
SHAPE OPTIMIZATION USING THE FINITE ELEMENT METHOD1

ON MULTIPLE MESHES WITH NITSCHE COUPLING∗2

JØRGEN S. DOKKEN† , SIMON W. FUNKE † , AUGUST JOHANSSON † , AND STEPHAN3

SCHMIDT ‡4

Abstract. An important step in shape optimization with partial differential equation con-5
straints is to adapt the geometry during each optimization iteration. Common strategies are to6
employ mesh-deformation or re-meshing, where one or the other typically lacks robustness or is7
computationally expensive. This paper proposes a different approach, in which the computational8
domain is represented by multiple, independent non-matching meshes. The individual meshes can9
move independently, hence mesh deformation or re-meshing is entirely avoided if the geometry can10
be parameterized by a combination of rigid motions and scaling. For general geometry changes, we11
present a deformation scheme tailored to non-matching meshes. This deformation scheme is robust12
because the non-matching mesh interfaces are free to move, and computationally cheap because the13
scheme is applied only on a subset of the meshes. To solve the state and corresponding adjoint equa-14
tions we use the multimesh finite element method. This method weakly enforces continuity over the15
non-matching mesh interfaces by using Nitsche and additional stability terms. To obtain the shape16
derivatives we analyze both the strong formulation (Hadamard formulation) and weak formulation17
(method of mappings). We demonstrate the capabilities of our approach on the optimal placement18
of heat emitting wires in a cable to minimize the chance of overheating, the drag minimization in19
Stokes flow, and the orientation of nine objects in Stokes flow.20
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1. Introduction. During the last two decades, there has been an increasing24

need to couple simulation with optimization [52]. Of particular industrial relevance25

are shape optimization problems, which aim to optimize the shape of an object subject26

to physical constraints, typically described by partial differential equations (PDEs).27

Examples of industrial problems that have been modeled are the drag minimization of28

airplanes and cars [28, 32, 38], the shape optimization of acoustic horns [44], and the29

optimal design of current carrying multi-cables [19]. The success of these applications30

is driven by efficient optimization algorithms and methods for solving PDEs. More31

specifically, gradient-based optimization methods have shown to converge quickly and32

often independently of the number of design variables. The required shape gradients33

are derived through shape calculus and the adjoint PDE [15, 43, 46]. The finite34

element method (FEM) is an efficient and flexible method for solving a wide range of35

PDEs. In the last decades, this method has gained popularity in both the scientific and36

industrial environment due to its mathematical foundation and geometrical flexibility.37

A critical part in shape optimization algorithms is handling of geometry changes38

during each optimization iteration. For FEM based models this means that the com-39

putational mesh must be updated to a new target geometry at low cost while main-40

taining a high mesh quality. Mesh deformation and re-meshing are commonly used41

strategies to update the mesh. Mesh deformation methods often involve the solution42

of an auxiliary PDE. However, the mesh quality may degrade or even degenerate43
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for large deformations. Several deformation schemes have therefore been proposed44

to handle large deformations [42, 51] at the expense of higher computational cost.45

In contrast, re-meshing guarantees high quality meshes for any geometrical change.46

However, drawbacks are that a tight coupling between the finite element model and47

the meshing algorithm is required, and the high computational cost of meshing algo-48

rithms [9].49

To overcome these limitations, we propose a shape optimization algorithm where50

the domain is represented by multiple, non-matching meshes, as illustrated in Fig-51

ure 1. Each mesh can be freely rotated, scaled or translated at a low computational52

cost without impacting the mesh quality. Therefore if the goal is to optimally rotate,53

scale or translate objects within a larger geometry, the need for re-meshing and mesh54

deformation is alleviated. For arbitrary geometry changes, mesh deformation on mul-55

tiple meshes is more robust than on a single mesh, since the non-matching interfaces56

can deform freely and hence avoid compression effects. Furthermore, re-meshing and57

mesh deformation is computationally cheaper on an individual mesh than on the full58

geometry.59

We rely on the multimesh finite element method (multimesh FEM) [22] to solve60

PDEs on multiple non-matching meshes. This method is highly embedded in the61

finite element setting, as opposed to existing approaches like Chimera [11, 49, 50] and62

Overset methods [4, 14] and references therein.63

In this paper, we present methods for solving shape optimization problems with64

the multimesh FEM. Specifically, we derive shape derivatives in a multimesh FEM set-65

ting using both the method of mappings [30, 37] and the Hadamard formulation [46].66

We conclude that the Hadamard formulation is better suited for the multimesh FEM.67

In a numerical example, we investigate the discrete inconsistencies in the shape deriva-68

tive introduced by the Hadamard formulation. We also propose a mesh deformation69

scheme, tailored to the multimesh FEM, based on the linear elasticity with Neumann70

boundary conditions. To the best of our knowledge, this is the first instance of a FEM71

with multiple overlapping meshes in the setting of shape optimization.72

T = 0 T = 1 T = 0 T = 1
Fig. 1. A comparison of a moving object described with a single mesh and with multiple meshes.

To deform the single mesh, we use an Eikonal convection equation, combined with a centroidal
Voronoi tessellation (CVT) smoothing [42]. The mesh quality, quantified by the minimum radius
ratio decreases from 0.75 to 6 · 10−4, and the mesh is degenerated. In the multimesh approach
we introduce one fixed background mesh and one mesh containing the ball which can be translated
arbitrarily. Here the mesh quality is not impacted by translation. The minimum radius ratio is 0.72.

1.1. Related work. The use of multiple meshes was first used to overcome73

the limitations of structured meshes in finite difference and structured finite volume74

schemes [5, 20, 48, 55]. These many-mesh techniques (also known as Chimera or75
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Overset techniques) [49] allow for multiple holes and moving domains, making them76

particularly popular for aerodynamic applications [47] and shape optimization [25].77

A recent method for generalized domain descriptions for FEM is the cut finite78

element method (CutFEM) [12]. This method uses a Nitsche based formulation to79

weakly enforce boundary conditions on non-resolved boundaries, typically described80

by a level-set function. CutFEM has been used for a wide range of shape and topol-81

ogy optimization problems, such as acoustics [8], elasticity [3, 13] and incompressible82

flow [54]. The multimesh FEM [22] is a generalization of the CutFEM, where the com-83

putational domain is described by an arbitrary number of overlapping non-matching84

meshes. The multimesh FEM has so far been explored for the Poisson and Stokes-85

equations [18, 23, 24], but not yet in the setting of shape optimization.86

For other methods for shape optimization of complex computational domains, we87

refer to [6, 31, 34, 53] and the references therein.88

1.2. Outline. This paper is organized as follows. Section 2 introduces the mul-89

timesh finite element method. Section 3 presents how to compute shape derivatives90

for problems discretized with the multimesh FEM. In Section 4 we present how to91

perform mesh updates on multiple meshes. Thereafter, we present several numerical92

examples in Section 5. Finally, we summarize and draw conclusions in Section 6.93

2. The multimesh finite element method. In this section, we give a brief94

introduction to the multimesh finite element method. To simplify the notation, we95

restrict ourselves to the case where at most two meshes may intersect at each point.96

We further assume that the j-th mesh will only intersect with the 0-th mesh, j =97

1, . . . , N . More detailed information, including the case of an arbitrarily number of98

intersecting meshes can be found in [22] and references therein.99

As a guiding example, consider the Poisson problem,100

−∆T = f in Ω,

T = g on ∂Ω,
(2.1)101

102

where Ω is the problem domain, with boundary ∂Ω.103

We introduce a composition of Ω, such that Ω ⊆
⋃N
i=0 Ω̂i, where Ω̂i is defined as104

the i-th predomain. If a point x ∈ Ω is in multiple predomains, we associate it with105

the highest index i. Thus, if interpreted visually, the predomain with the higher index106

appears to be on top of the predomain with the lower index. Due to our assumptions,107

the j-th predomain will only overlap with the 0-th predomain for j = 1, . . . , N .108

We define the visible part of Ω̂0 as Ω0 = Ω̂0 \ ∪Nj=1Ω̂j , and the visible part of Ω̂j109

as Ωj , j = 1, . . . , N . We denote the boundary of the j-th visible domain as Λj . Note110

that Ω0 is a function of the other predomains, which is crucial in the setting of shape111

optimization. An example composition for the domain is shown in Figure 2(a)-(c).112

Using this domain composition, we can reformulate the single domain problem113

(2.1) into a multidomain problem. For that we define a function Ti on all visible parts114

Ωi, i = 0, . . . , N . Then the multidomain problem is:115

−∆Ti = f in Ωi,

Ti = g on ∂Ω ∩ ∂Ω̂i,

Tj = T0 on Λj ,

DTjnj = DT0nj on Λj ,

(2.2)116

117

for i = 0, . . . , N and j = 1, . . . , N . The normal vector nj is pointing outwards of the118
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domain Ωj . The two interface conditions on Λj ensure sufficient smoothness of the119

solution across the interface.120

∂Ω̂1

Ω̂1

Ω̂0

∂Ω̂0

(a) (b)

∂Ω
Λ1

Ω1

Ω0

Covered

Cut

Uncut

(c) (d)
Fig. 2. (a) and (b) show two predomains Ω̂0,Ω̂1. In (c) the predomain Ω̂1 has been positioned

on top of predomain Ω̂0. The picture shows the resulting visible domains. In (d) we introduced the

premeshes K̂h,0 (black) and K̂h,1 (red) of the predomains. The cell-types of the background mesh
are visualized.

Next, we discretize the computational domain. For that, we create a premesh121

K̂h,i of each predomain Ω̂i, and denote its maximum cell diameter hi. The elements122

of K̂h,i can be categorized as uncut, cut and covered elements. Uncut elements are123

the fully visible elements, cut elements are the partially visible elements, and covered124

elements are the hidden elements. The i-th active mesh Kh,i consists of all cut and125

uncut elements of K̂h,i. We define the cut domain Ωcuti as the union of all cut elements.126

Note that ΩcutN = ∅. The i-th overlap is defined as Oi := Ωcuti \Ωi, i = 0, . . . , N . This127

is the hidden part of the active mesh. We define the visible part of the cut cells as128

Ci := Ωcuti \ Oi. Figure 2(d) shows an example of premeshes and the classification of129

the cells on the background mesh.130

2.1. The variational form for the multimesh finite element method. We131

can now formulate the multimesh variational formulation of problem (2.2). Let Vh,i,132

i = 0, . . . , N , be a continuous piece-wise polynomial finite element space on the active133

mesh Kh,i. We define Vh :=
⊕N

i=0 Vh,i. Let V gh denote the corresponding function134

space that satisfy the boundary condition. The multimesh finite element formulation135

for the Poisson problem is: Find T = (T0, . . . , TN ) ∈ V gh such that136

a(T, v) + aIP (T, v) + aO(T, v)− l(v) = 0 ∀v ∈ V 0
h ,(2.3)137138

where v = (v0, . . . , vN ). The volume terms for each visible domain are139

a(T, v) :=

N∑
i=0

∫
Ωi

(∇Ti,∇vi) dx, l(v) :=

N∑
i=0

∫
Ωi

(f, vi) dx.(2.4)140
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141

Here (·, ·) denotes the Euclidean inner product. The symmetric interior penalty terms142

enforce the interface conditions of (2.2) weakly using a Nitsche method [33]:143

aIP (T, v) :=

N∑
j=1

∫
Λj

−(〈DT 〉nj , JvK)− (JT K, 〈Dv〉nj) +
β0

〈h〉
(JT K, JvK) dS,(2.5)144

145

where 〈ψ〉 = 1
2 (ψj + ψ0) denotes the average, JψK = ψj − ψ0 denotes the jump, and146

β0 > 0 is a sufficiently large penalty parameter. The overlap stability term is147

aO(T, v) :=

N∑
i=0

∫
Oi

β1(J∇T K, J∇vK) dx,(2.6)148

149

where β1 > 0 is needed to obtain a stable system even in cases where the mesh150

intersections become arbitrarily small.151

This variational form is stable and well conditioned [22]. Since the interfaces Λj152

is not aligned with the meshes, custom quadrature rules are needed to perform the153

volume and interface integrals that appear in the formulation. We refer to [22] for154

details. A multimesh variational form for a Stokes equations can be found in [24].155

2.2. Creation of holes with the multimesh FEM. It is often useful to embed156

obstacles in the computational domain. In the multimesh FEM this can be achieved157

by changing the status of visible elements to covered elements. This is exemplified in158

Figure 3. Since the covered cells are never removed from the mesh, the placement of159

holes can easily be changed. This is very convenient for shape optimization problems.160

Covered

Cut

Uncut

(a) (b)
Fig. 3. (a) Visualization of the simplistic premeshes K̂h,0 (black) and K̂h,1 (red) used to

represent a channel with an obstacle. The initial uncut, cut and covered elements of K̂h,0 are

shown. (b) The element types after introducing a hole in the domain by setting all elements in K̂h,0

that are cut or covered by the obstacle on Ω̂0 to being covered. The boundary of the obstacle is now
a physical boundary of K̂h,1.

161

3. Shape calculus for the multimesh finite element method. In this sec-162

tion, we derive the shape derivative for optimization problems constrained by mul-163

timesh models. We start by considering the necessary prerequisites for computing164

shape derivatives in general, and then derive the specific shape derivatives for mul-165

timesh problems. Given a domain Ω, we assume that we have the following shape166

optimization problem167

min
Ω
J(u,Ω),(3.1)168
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subject to169

F (u, v) = 0 ∀v,(3.2)170171

where F (u, v) is the residual of the variational formulation of a PDE. The state u172

and test-function v are in the respective space of the variational PDE problem. They173

are assumed smooth enough for the shape differentiation to hold. In our application174

examples, we typically have u,v in H1(Ω) with respective boundary conditions. We175

assume that (3.2) yields a unique solution u for any given domain Ω. We define the176

reduced functional Ĵ(Ω) := J(u(Ω),Ω), and the perturbed domain as177

Ω(ε)[s] := Lε[s](Ω) = {Lε[s](x) : x ∈ Ω} ,(3.3)178179

where Lε[s](x) := x(ε) := x+ εs(x), s(x) : Ω→ Rn, ε > 0. With these definitions, we180

define the shape derivative as181

dĴ(Ω)[s] := lim
ε→0+

Ĵ(Ω(ε)[s])− Ĵ(Ω)

ε
.(3.4)182

183

We will use the notation u(ε, x) to denote the evaluation of the PDE solution in the184

perturbed domain, that is u(Ω(ε)[s])(x). We will further use the notation u to denote185

u(0,Ω(0)[s]). The material and local shape derivatives of u are defined as186

δm (u(x(0))) [s] := lim
ε→0+

u(ε, x(ε))− u(0, x(0))

ε
, u′[s] := δm(u)[s]−Dus,(3.5)187

188

where Du is the Jacobian. With these definitions, one can use the method of map-189

pings [30, 37] to represent the shape derivative of the functional J as an integral over190

the unperturbed domain.191

Theorem 3.1 (The method of mappings). For a general volume objective func-192

tion k : [0, δ]× Ω(ε)[s]→ R with δ > 0,193

K(Ω(ε)[s]) =

∫
Ω(ε)[s]

k(ε, x) dx,(3.6)194

195

the shape derivative is given by196

dK(Ω)[s] =

∫
Ω

div (s) k + δm (k) [s] dx,(3.7)197

198

Similarly, for a surface objective function h : [0, δ]× ∂Ω(ε)[s]→ R199

H(∂Ω(ε)[s]) =

∫
∂Ω(ε)[s]

h(ε, x) dS,(3.8)200

201

the shape derivative is given by202

dH(∂Ω)[s] =

∫
∂Ω

h(div (s)− nTDsn) + δm (h) [s] dS,(3.9)203

204

where n is the outwards pointing normal of ∂Ω. Please note that we omit the ε205

argument when ε = 0 fixed.206
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The method of mappings is discretely consistent. In other words, when the prob-207

lem is discretized, the gradient computed with method of mappings is the exact gra-208

dient of the discretized problem.209

Next we apply the method of mappings to the multimesh Poisson problem (2.3).210

Perturbing the j-th predomain Ω̂j , implicitly change the integration domain Ω0. We211

therefore consider each summand of (2.3) independently. Denoting the i-th summand212

as ai, we have a0 :=
∫

Ω0

(∇T0,∇v0) dx. Using Theorem 3.1 we obtain the shape213

derivative214

da0[sj ] =

∫
Ω0

div (s̄j) (∇T0,∇v0)− ((Ds̄j)
T∇T0,∇v0)− (∇T0, (Ds̄j)

T∇v0) dx

+

∫
Ω0

(∇T0,∇(δm (v0) [s̄j ])) + (∇(δm (T0) [s̄j ]),∇v0) dx,

(3.10)

215

216

where s̄j is an extension of the movement of the domain Ωj to Ω0. Since we assume217

that Ωj is not dependent of Ωk, j 6= k, j, k = 1, . . . , N , we obtain the following shape218

derivative for aj =
∫

Ωj

(∇Tj ,∇vj) dx:219

(3.11)

daj [sj ] =

∫
Ωj

div (sj) (∇Tj ,∇vj)− (∇Tj , (Dsj)T∇vj)− ((Dsj)
T∇Tj ,∇vj) dx

+

∫
Ωj

(∇Tj ,∇(δm (vj) [sj ])) + (∇(δm (Tj) [sj ]),∇vj) dx.

220

Since Oi, i = 0, . . . , N depends on the position Ω̂j , j = 1, . . . , N , we write each221

term in (2.6) as aOj :=
∫
Oj
β1J∇T K : J∇λK dx. Using Theorem 3.1 we obtain the shape222

derivative223

daOj [sj ] =

∫
Oj

β1div (s̄j) (J∇T K, J∇λK) dx

−
∫
Oj

β1((Ds̄j)
T J∇T K, J∇λK) + β1(J∇T K, (Ds̄j)T J∇λK) dx

+

∫
Oj

β1(J∇(δm (T ) [s̄j ])K, J∇λK) + (β1J∇T K, J∇(δm (λ) [s̄j ])K) dx.

(3.12)224

225

Similarly, we can split the interior penalty terms (2.5) into N integrals, aIPj , j =226

1, . . . , N with aIPj =
∫
Λj

−(〈DT 〉nj , JvK)− (JT K, 〈Dv〉nj) + β0

〈h〉 (JT K, JvK) dS to obtain227
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the shape derivative228

(3.13)

daIPj [sj ] =

∫
Λj

(div (sj)− nTj Dsjnj)

− (〈DT 〉nj , JvK)− (JT K, 〈Dv〉nj) +
β0

〈h〉
(JT K, JvK)

+ ((〈DT 〉Dsj)nj , JvK)− (〈DT 〉δm (nj) [sj ], JvK)
+ (JT K, (〈Dv〉Dsj)nj)− (JT K, 〈Dv〉δm (nj) [sj ])

− β0

〈h〉2
δm (〈h〉) [sj ](JT K, JvK)

− (〈Dδm (T ) [sj ]〉nj , JvK)− (〈DT 〉nj , Jδm (v) [sj ]K)
− (Jδm (T ) [sj ]K, 〈Dv〉nj)− (JT K, 〈Dδm (v) [sj ]〉nj)

+
β0

〈h〉
(Jδm (T ) [sj ]K, JvK) +

β0

〈h〉
(JT K, Jδm (v) [sj ]K) dS.

229

Let’s study the extensions s̄j in more detail. In order to evaluate the shape230

derivatives above, we need to evaluate and represent the smooth extension s̄j on231

Kh,0. Mesh deformations of the j-th mesh, j > 0 can be expressed as piece-wise232

continuous finite element functions. Hence it seems natural to represent s̄j as a finite233

element function. As illustrated in Figure 4 the multimesh finite element function234

spaces are not rich enough to describe this movement. An alternative option is to235

resolve the interfaces between the meshes, would which however defeat the purpose of236

multimesh FEM. A third option is to approximate s̄j as a finite element function on237

the background mesh, for instance with a projection scheme. Numerical experiments238

showed that the quality of the resulting shape derivative is poor.239

For these reasons the method of mappings is not used for the multimesh FEM240

and the Hadamard formulation [46] is considered instead.241

(a) (b)

Fig. 4. (a) A perturbation of the upper mesh with two elements (red) implicitly changes the
visible integration domain of the bottom cell (blue). (b) The integration domains O0 (dashed green
line) and C0 (dashed red line) after perturbing the top domain. Note that these changes of integration
domains (black arrows) cannot be described by a finite element function on the background mesh.
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Theorem 3.2 (The Hadamard formulation of the shape derivative). For a gen-242

eral volume objective function k : [0, δ]× Ω(ε)[s]→ R where δ > 0,243

K(Ω(ε)[s]) =

∫
Ω(ε)[s]

k(ε, x) dx,(3.14)244

245

the shape derivative is given by246

dK(Ω)[s] =

∫
∂Ω

(n, s)k(x) dS +

∫
Ω

k′[s] dx.(3.15)247

248

Similarly, for a surface objective function h : (ε, φ, ζ)→ h(ε, φ, ζ) involving the normal249

vector,250

H(∂Ω(ε)[s]) =

∫
∂Ω(ε)[s]

h(ε, φ(ε, x), n(ε, x)) dS,(3.16)251

252

the shape derivative is given by253

dH(∂Ω))[s] =

∫
∂Ω

(s, n)

(
∂h

∂φ
Dφn+ divΓ

(
∂h

∂ζ

)T
+ κ

(
h− ∂h

∂ζ
n

))
+
∂h

∂φ
φ′[s] dS,

(3.17)

254

255

where ∂h
∂φ ,

∂h
∂ζ are the partial derivatives of h with respect to φ, ζ, respectively, divΓ (a) =256

div (a) − (nTDan) is the tangential divergence and κ is the additive mean curvature257

of ∂Ω. The ε argument is omitted when ε = 0.258

Proof. The generalized Hadamard formulation with normal variation can be found259

in [41].260

The Hadamard formulation alleviates the use of the projection s̄j of movement sj261

to Ω0. However, as opposed to the method of mappings, the Hadamard formulas re-262

quires higher smoothness. The main drawback of the Hadamard formulation is that it263

is discretely inconsistent, which might slow down the convergence of the optimization264

algorithm. In subsection 5.2, we will investigate the impact of the discrete inconsis-265

tency. Using a sufficiently fine mesh, the Hadamard variational form converges to the266

discretely consistent gradient.267

In order to derive the shape derivatives with the Hadamard formulation, we con-268

sider multidomain problem (2.2), where we have introduced an artificial interface269

with corresponding boundary conditions. For brevity, we consider Ti, i = 0, . . . , N ,270

to be scalar valued. In the following analysis, we will consider the functional J(T ) =271 ∑N
i=0

∫
Ωi

T 2
i dx. We create the Lagrangian272

L(Ω0, . . . ,ΩN ) :=

N∑
i=0

∫
Ωi

T 2
i + λi(−∆Ti − f) dx+

∫
∂Ω∩∂Ωi

pi(Ti − g) dS


+

N∑
j=1

∫
Λj

qj(Tj − T0) + wjD(Tj − T0)nj dS,

(3.18)273
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274

where pi, qj and wj are Lagrange multipliers that enforce the boundary conditions.275

Using Theorem 3.2 we obtain276

dL(Ω)[s] =

N∑
i=0

( ∫
∂Ωi

(s, ni)
(
T 2
i − λi∆Ti − λif)

)

+

∫
Ωi

2T ′i [s]Ti − λ′i[s]∆Ti − λi∆T ′i [s]− λ′i[s]f − λif ′[s] dx

+

∫
∂Ω∩∂Ωi

(s, ni)
(
κpi(Ti − g) + pi

∂(Ti − g)

∂ni
+
∂pi
∂ni

(Ti − g)
)

dS

+

∫
∂Ω∩∂Ωi

p′i[s](Ti − g) + piT
′
i [s]− pig′[s] dS

)

+

N∑
j=1

(∫
Λj

(s, nj)
(
κqj(Tj − T0) + qj

∂(Tj − T0)

∂nj
+
∂qj
∂nj

(Tj − T0)
)

dS

+

∫
Λj

(s, nj)
(
D(Tj − T0)njDwjnj + wjn

T
j D

2(Tj − T0)nj

)
dS

+

∫
Λj

(s, nj)
(

divΓ (wj∇(Tj − T0))
)

+ q′j [s](Tj − T0) + qjT
′
j [s]− qjT ′0[s] dS

+

∫
Λj

D(Tj − T0)njw
′
j [s] + wjD((Tj − T0)′[s]nj) dS

)
.

(3.19)

277

To derive the Hadamard expression for surface integrals involving the normal from278

Theorem 3.1, a tubular extension of the normal is needed, for which we choseDnn = 0.279

We observe that the Lagrangian above contains local shape derivatives T ′, λ′, p′, q′,280

w′, of both the state variable and the Lagrange multipliers. When these are assembled281

for all test functions, each local shape derivative is a dense matrix which is prohibited282

to compute. Instead, we use the adjoint method [21] to avoid explicit computations283

of these terms.284

To obtain the adjoint equation we split ∂Ω0 into N + 1 disjoint sets, namely285

∂Ω∩∂Ω0,Λ1, . . . ,ΛN . Similarly, ∂Ωj can be split into two disjoint domains, ∂Ω∩∂Ωj286

and Λj for each j = 1 . . . , N . Carefully integrating the terms involving ∆T ′i [s] in287
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(3.19) by parts yields the following adjoint equation288

(3.20)

0 =

N∑
i=0

(∫
Ωi

2T ′i [s]Ti − λ′i[s]∆Ti −∆λiT
′
i [s]− λ′i[s]f dx

+

∫
∂Ω∩∂Ωi

p′i[s](Ti − g) + piT
′
i [s]− λi

∂T ′i [s]

∂ni
+
∂λi
∂ni

T ′i [s] dS

)

+

N∑
j=1

(∫
Λj

q′j [s](Tj − T0) + qjT
′
j [s]− qjT ′0[s]

+D(Tj − T0)njw
′
j [s] + wjD(T ′j [s]− T ′0[s])nj

+ λ0
∂T ′0[s]

∂nj
− ∂λ0

∂nj
T ′0[s]

− λj
∂T ′j [s]

∂nj
+
∂λj
∂nj

T ′j [s] dS

)

289

The corresponding strong for of the adjoint equation(3.20) is290

(3.21)

−∆λi = −2Ti in Ωi,

pi = −∂λi
∂ni

, λi = 0, on ∂Ω ∩ ∂Ωi,

∂(λj − λ0)

∂nj
= 0, λj − λ0 = 0, wj = λj , qi = −∂λj

∂nj
on Λj ,

291

where i = 0, . . . , N and j = 1, . . . , N . Using the state (2.2) and adjoint equation292

(3.21), the shape derivative (3.19) can be simplified to293

dL(Ω)[s] =

N∑
i=0

( ∫
∂Ωi∩∂Ω

(s, ni)
(
T 2
i −

∂λi
∂ni

∂(Ti − g)

∂ni

)
− pig′[s] dS −

∫
Ωi

λif
′[s] dx

)

+

N∑
j=1

(∫
Λj

(s, nj)
(
JT 2
j K− λj∆(Tj − T0)− λjJfK)

)

+

∫
Λj

(s, nj)
(
λjn

T
j D

2(Tj − T0)nj + divΓ (λj∇(Tj − T0))
)

dS

)
.

(3.22)

294

295

Since
∂Tj−T0

∂nj
= 0 on Λj , ∇(Tj − T0) = ∇Γ(Tj − T0) where ∇Γ is the tangential296

gradient. Here, we can note that since Tj = T0 on Λj , ∇Γ(Tj − T0) = 0. We can297
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therefore transform the last term in (3.22) to298

divΓ (λj∇(Tj − T0)) = divΓ (λj∇Γ(Tj − T0))

= λjdivΓ (∇Γ(Tj − T0)) +∇Γλj∇Γ(Tj − T0)

= λj∆Γ(Tj − T0) +∇Γλj∇Γ(Tj − T0)

= λj∆(Tj − T0)− λjκ
∂(Tj − T0)

∂nj
− λjnTj D2(Tj − T0)nj)

= λj∆(Tj − T0)− λjnTj D2(Tj − T0)nj).

(3.23)

299

300

In addition to (3.23), we have that T 2
j = T 2

0 on Λj since Tj = T0 on Λj . Thus, for the301

Λj-terms in (3.22), the only term remaining is the jump of the source term f across302

the interface Λj .303

If f is continuous at the interface Λj then the internal multidomain interface Λj304

does not contribute to the shape derivative. In addition, if the right hand side of the305

Dirichlet condition g is “moving along” with the deformation then g′[s] = −Dgs [7].306

Thus if g is constant on each boundary and f is a function fixed to the computational307

domain we obtain308

dL(Ω)[s] = dJ(Ω)[s] =

N∑
i=0

∫
∂Ωi∩∂Ω

(s, ni)
(
T 2
i −

∂λi
∂ni

∂Ti
∂ni

)
dS.(3.24)309

310

We realize that this gradient is equivalent to the traditional shape derivative for a311

Poisson problem. This result also holds for arbitrary many overlapping meshes since312

one has the same interface conditions.313

4. Optimization algorithm and mesh deformation. In general, we would314

like to use the shape sensitivity of the functional to update the domain. At iteration315

k, we have the domain Ωk. The functional sensitivity at the current iterand is denoted316

dJ(Ωk). The discretized domain used in the next iteration, will be written as317

Ωk+1 = F( dJ(Ωk), ξ),(4.1)318319

where F represents an optimization strategy with step-length ξ. For a steepest descent320

algorithm, we can write321

Ωk+1 = Ωk(ξ)[−R( dJ(Ωk))],(4.2)322323

where R(·) is a Riesz representation of the shape derivative.324

The choice of the Riesz representer is important to retain a high mesh quality325

during the optimization process. The H1(∂Ωi) Riesz representer would be natural,326

since the i-th term of the shape derivative of (3.24) is
∫
∂Ωi

(si, ni)gi(x) dS. However,327

such a Riesz representer only deform the boundary mesh nodes, and hence quickly328

result in degenerated meshes. Hence a Riesz representation which extends into the329

volume is needed. Since a H1(Ωi) representation often results in compression effects,330

we consider an approach adapted from [45].331

As in [45], we use the elasticity equations to represent the mesh deformation,332

div (σ) = 0 in Ωj ,

∂rj
∂nj

=

{
gj(x) on ∂Ωj ∩ ∂Ω,

0 on Λj ,

(4.3)333
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334

where the solution rj , j = 1, . . . , N is used a replacement for the Riesz representer in335

(4.1), and336

σ(rj) = λelasTr(ε(rj)) + 2µelasε(rj),

ε(rj) =
1

2
(∇rj +∇rTj ).

(4.4)337

338

For our numerical experiments, we use λelas = 0, µelas = 400. In the traditional339

finite element method, a homogeneous Dirichlet condition is often imposed on the340

outer boundaries of the domain. However, with the use of multiple domains, Ω̂j ,341

j = 1, . . . , N , we do not need to impose Dirichlet conditions on the boundary Λj .342

Therefore, we impose a no-stress condition at the interfaces Λj . Also in contrast343

to [45], we choose µelas to be constant. To obtain a unique solution of (4.3), we344

have to remove rigid motions from the solution space, as they are in the null-space345

of the operator. We can write our deformation formulation as, find rj ∈ H1(Ω̂j), j =346

1, . . . , N such that347 ∫
Ω̂j

(σ(rj), ε(sj)) dx =

∫
∂Ω̂j∩∂Ω

(sj , nj)gj(x) dS ∀sj ∈ H1(Ω̂j).(4.5)348

349

In subsection 5.3, we show that this method yields good mesh quality proper-350

ties for large deformations. Also, since we do not employ this algorithm on the full351

computational domain Ω, but on the subdomains Ω̂i, this method is computationally352

cheaper than traditional mesh deformation.353

As opposed to deforming the computational domain, one could use re-meshing354

as an approach to update the computational domain. Re-meshing adds a similar355

discrete inconsistency as using the Hadamard formula, as the new positioning of356

interior cells are arbitrary. We have not employed the method of re-meshing in this357

article. However, note that by employing the multimesh FEM approach, meshes can358

be re-meshed independent of each other, possibly saving some computational effort.359

A common case in practical problems is that the domains Ω̂j , j = 1, . . . , N are360

parameterized by its position and rotational angle, see Figure 1. Using the chain rule,361

we obtain the shape sensitivities of the centroid cj as362

dJ(Ω̂j(cj))

dcj
= dJ(Ω̂j)

[
dΩ̂j
dcj

]
,(4.6)363

364

where
dΩ̂j
dcj

= (e1, e2) where ek is the k-th unit vector in 2D. For the multimesh FEM365

this approach does not require any deformation, since the gradient corresponds to a366

translation of the j-th mesh.367

Similarly, by parameterizing the j-th domain with respect to rotation θj around368

the point pj , then369

dJ(Ω̂j)

dθj
= dJ(Ω̂j)

[
dΩ̂j
dθj

]
,(4.7)370

371

where
dΩ̂j
dcj

= (−y + pj |0, x− pj |1) is the first order approximation of rotation around372

the point pj in 2D. As for the case of parameterizing by the position of the meshes,373

the rotation parameterization alliviates the need for mesh deformation when using374

multimesh FEM, as one simply can rotate the j-th mesh around the point pj .375
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5. Numerical examples. This section discusses three numerical examples to376

demonstrate different aspects of multimesh FEM shape optimization. We optimize377

both unparameterized as well as parameterized shapes, such as the position and an-378

gle of objects as discussed in Section 4. We further investigate the impact of the379

Hadamard formulation in the accuracy of the shape derivative, and compare the per-380

formance of the multimesh strategy against traditional shape optimization.381

5.1. Implementation. The numerical experiments were implemented using the382

FEniCS project [1, 26], version 2018.1.0. Details on the multimesh implementation383

in FEniCS can be found in [22]. For this paper, we implemented additional FEniCS384

functionality that allows for automatically marking holes in domains (see subsec-385

tion 2.2) as well as extending FEniCS’ Python interface. These features were also386

released as part of FEniCS 2018.1.0. Since the current version of multimesh FEM387

in FEniCS does not support parallel execution, all experiments were performed on a388

single core. The meshes in this section were generated with GMSH, version 3.0.6 [17],389

the Python interfaces pygmsh, version 4.3.6 [39] and meshio, version 2.3.3 [40]. The390

implementation of the examples and installation instructions are available at https:391

//github.com/jorgensd/MultiMeshShapeOpt code.392

5.2. Optimization of Current Carrying Multi-cables. An important cate-393

gory of shape-optimization are problems where the position of individual objects are394

to be optimized [16, 19, 29]. In this section, we investigate such an example, namely,395

the design optimization of a multi-cable. The basic construction of a multi cable396

consists of a bundle of individual cables surrounded by a single outer jacket, as shown397

in Figure 5. A critical design goal of multi-cables is to position the internal cables to398

minimize the risk of overheating.399

This multi-cable design problem has been formulated as a mathematical opti-400

mization problem in [19], where the design variables are the positions of each internal401

cable of the multi-cable. Since, each optimization iteration results in new cable posi-402

tions, a re-meshing strategy was used to update the mesh to ensure that the internal403

cable boundaries are always resolved by the mesh. As we will see in this example,404

multimesh FEM allows to completely avoid re-meshing by describing each internal405

cable by a separate mesh.406

Fig. 5. A current carrying multi-cable as studied in subsection 5.2.

Motivated by [19, 27], we consider the multi-cable problem:407

min
c1,...,cN ,T

∫
Ω

1

q
|T |q dx, q > 1,(5.1)408

409
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(a) (b)

Γ1
i

Γ2
i

Γ3
iΓ1

e

Γ2
e

Γ3
e

Ω̂0

Λ1

Ω̂1

Ωfill

Ωinsulation

Ωmetal

Fig. 6. (a) Illustration of the material composition of a multi-cable with annotated boundaries.
(b) Illustration of how an internal cable is represented by a separate domain. Every domain includes
an extra halo surrounding the cable.

subject to410

−∇ · (λ∇T )− 0.01T = f in Ω,

λ
∂T

∂n
+ (T − T ex) = 0 on ∂Ω,

(5.2)411

412

where Ω = Ωfill ∪ Ωinsulation ∪ Ωmetal describes a 2D slice through the multi-cable413

with N internal cables, as specified in Figure 6 (a). We define the normal vector n414

as the vector pointing in the outwards radial direction of each internal cable. The415

internal interface between the fill and insulation material of the k-th internal cable is416

denoted by Γke . Similarly, Γki denotes the interface between insulation and metal. The417

centroid of the k-th cable is denoted as ck. The source-term f and heat-conductivity418

λ are constant in each material but discontinuous across the material boundaries.419

Therefore, these terms are dependent on the optimization variables cj , j = 1, . . . , N .420

The linear source term in the state equation describes the rise of electrical resistivity421

for increasing temperatures in conductive material. The external boundary condition422

is a Robin-condition, related to the air surrounding the outer jacket, with temperature423

T ex = 3.2. Furthermore, we set q = 3 to approximate the L∞ norm, as done in [19].424

Due to the discontinuities in f and λ, the temperature profile T is continuous but has425

kinks across the interface of the different materials. These kinks are important for426

the derivation of the Hadamard representation of the shape gradient [19]. Additional427

constraints must be added to (5.2) in order to avoid movement of internal cables428

outside the outer jacket and overlaps of internal cables.429

For the multimesh FEM formulation, we chose to represent the domain Ω by430

one mesh for the outer jacket, and N meshes for the internal cables, as shown in431

Figure 6 (b). Following the strategy laid out in Section 2, we obtain the multidomain432

formulation of (5.1) and (5.2):433

min
c1,...,cN ,T

J(c1, . . . , cN , T ) =

N∑
i=0

∫
Ωi

1

q
|Ti|q dx,(5.3)434

435
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subject to436

−∇ · (λ∇Ti)− 0.01Ti = f in Ωi, i = 0, . . . , N,

λ
∂T0

∂n
+ (T0 − T ex) = 0 on ∂Ω,

JT K =

s
λ
∂T

∂nj

{
= 0 on Λj , j = 1, . . . , N.

(5.4)437

438

Note that the meshes for the internal cables, Ω1, . . . ,ΩN include a halo of filling439

material, which is sufficiently large so that the heat conductivity λ is constant over440

the cells categorized as overlapped. As a result, the derivation of the multimesh441

variational form of (5.4) is the same as in subsection 2.1. In the numerical test, we442

used continuous, piecewise linear finite elements and the penalty parameters in the443

interior penalty and overlap terms, (2.5) and (2.6), were set to β0 = β1 = 4.444

In the original problem formulation (5.1) and (5.2), the optimization variables445

cj , j = 1, . . . , N appeared the in the source f and the heat-conductivity λ. In contrast,446

in the multimesh formulation (5.3) and (5.4), the optimization variables appear as a447

dependency of the sub-domains, Ω0(c1, . . . , cN ) and Ω1(c1), . . . ,ΩN (cN ). This enables448

us to applying the Hadamard shape analysis as presented in Section 3, which results449

in the shape derivative450

dJ(Ω)[s] =

N∑
j=1

∫
Γji∪Γje

(s, n)
(
J−0.01Tp− fpK− λ+ ∂p

+

∂n

s
∂T

∂n

{

+ JλK(∇Γp
+,∇ΓT

+)
)

dS.

(5.5)451

452

Here, the super-script + denotes the evaluation of a function from the fill side at Γje,453

and evaluation at the insulation side of Γji , J·K denotes the jump over the interface454

Γji or Γje from the external side of the interface, and p is the solution of the adjoint455

equations of (5.3) and (5.4):456

−∇ · (λ∇pi)− 0.01pi = −Ti|Ti|q−2 in Ωi,

λ
∂p0

∂n0
+ p0 = 0 on ∂Ω,

JpK = Jλ
∂p

∂nj
K = 0 on Λj ,

(5.6)457

458

where i = 0, . . . , N and j = 1, . . . , N .459

5.2.1. Results. First, the adjoint equation and shape derivative were verified460

using a Taylor test. The test was performed on a multimesh with radius 1.2 and one461

internal cable placed at (0, 0.1) with 0.2 radius plus a 0.055 thick insulation. For the462

source term f and the heat diffusivity, we used the parameters:463

Ωfill Ωinsulation Ωmetal
f 0.0 0.0 10.0
λ 0.33 0.03 205.0

464

The convergence rates for the first order residual for different mesh resolutions are465

shown in Figure 7. We observe that the discrete inconsistencies of the Hadamard466

formulas are present on coarse meshes, which results in a decreased convergence rate467

for smaller perturbations. For finer meshes, the discrete inconsistency decreases. The468
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Fig. 7. Results of the Taylor test of a multi-cable with a single internal cable placed at c1, as
described in subsection 5.2.1. The plot shows the convergence rates of the the first order residual
|J(c1 + εs)− J(c1)− ε dJ(c1)[s]| in direction s = [0, 1]T for different meshes and purturbation sizes
ε. We observe that the expected convergence rate 2.0 is obtained on fine meshes.

same behavior was also observed in [19]. Based on these results, we use the mesh with469

151, 056 cells for the following experiments.470

Next, we test the optimization algorithm on a setup with a known optimal solu-471

tion. For a multi-cable with three identical internal cables the heat in the domain is472

minimized when the cables are placed as far from each other as possible. Therefore,473

the optimal positions of the internal cables form an equilateral triangle [19]. Since the474

problem suffers from rotational symmetry, we fix the x-position of one of the cables475

on the y-axis. The initial guess is depicted in Figure 8(a). IPOPT [56] terminated476

with the default stopping criteria after 16 iterations. The functional has decreased477

from 180.4 to 135.4, and the optimized cable positions form a triangle with angles478

59.94, 60.00 and 60.06 degrees which is in agreement with [19]. The final positioning479

is visualized in Figure 8(b).

(a) (b)
Fig. 8. Design optimization of a multi-cable with three internal cables with common sizes and

material parameters, as described in subsection 5.2.1. (a) The cable cable positions and temperature
distribution before the optimization. (b) The cable cable positions and temperature distribution after
the optimization. The inner cables form an equilateral triangle.
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We also considered the same minimization problem with five internal cables of480

different sizes and insulation parameters, as listed in Table 1. The initial and opti-481

mized cable configurations are shown in Figure 9. The IPOPT algorithm terminated482

after 22 iterations, when the functional decreased from 152 to 140.

Table 1
The setup for the 5 multi-cable optimization shown in Figure 9. The parameters λfill, λmetal,

are the same as for Figure 8. The scaling rscale is the relative scale of the cables compared to those
used in Figure 8.

Cable 1 Cable 2 Cable 3 Cable 4 Cable 5
Init. Positions 0, 0.6 −0.4, 0.2 −0.1,−0.4 0.6, 0.4 0.45,−0.45
Opt. Positions 0, 0.85 −0.88, 0.26 −0.85,−0.25 0.82,−0.22 −0.18,−0.89

rscale 1 0.75 0.9 1 0.8
λiso 0.03 0.12 0.06 0.04 0.02
f 10 5 2.5 5 10

(a) (b)
Fig. 9. Design optimization of a multi-cable with five internal cables with different sizes and

material parameters, as described in subsection 5.2.1. (a) The cable cable positions and temperature
distribution before the optimization. (b) The cable cable positions and temperature distribution before
the optimization. The smallest cable is placed as far away from the other cables since it has the
lowest insulation and highest heat source.

483

Finally, we compared the computational expense of the multimesh shape opti-484

mization approach against a traditional shape optimization strategy. For that, we485

implemented a solver for the multi-cable problem (5.2) and its gradient (5.5) using486

the traditional (single-mesh) FEM with FEniCS and benchmarked the problem with487

three identical internal cables, see Figure 8. The mesh for the single-mesh setup488

was created such that the total number of cells is similar to the total number of489

cells in the multimesh setup. The number of active cells (cut and uncut cells) in490

the multimesh was 227, 746 and 246, 176 if the covered cells are included. The single491

mesh had 211, 008 cells. At every optimization step, we re-meshed the domain to492

resolve the boundary of the internal cables. A more advanced setup could combine493

re-meshing with mesh-deformation techniques, but this was disregarded for simplic-494

ity. The optimization process was manually terminated after 16 iterations. Without495

manual termination, the re-meshing would eventually fail after 35 iterations due to496

an internal cable moving outside the outer jacket. The angles between the optimized497

cable positions were 59.84, 60.26 and 59.91 degrees.498
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The computational costs of the multimesh and traditional FEM approaches are499

contrasted in Table 2. Each optimization iteration typically consists of assembling500

and solving one state equation and one adjoint equation, followed by a mesh update501

and a mesh building step. In the traditional FEM approach, the mesh update consists502

of triangulating the domain, while the build step prepares and converts the mesh data503

between the mesh generator and the finite element solver, as implemented in pygmsh.504

In the multimesh approach, the mesh update changes the mesh coordinates, while the505

build step determines the cut and uncut cells, computes intersections of cutting cells506

and create corresponding quadrature rules, see [22] for details.507

The timings show that the assembly of the multimesh system is slower than with508

traditional FEM, primarily caused by the additional overlap and interior integrals509

in the multimesh variational form. The resulting linear systems were solved using510

a direct LU decomposition, and no significant differences in time was observed. In511

contrast, the mesh update and building steps differ significantly between the two512

approaches. When combining both steps the multimesh FEM is about 48 times faster513

than the traditional FEM approach. Overall, the estimated runtime for a single514

optimization iteration for the multimesh FEM approach (2, 530 ms) is about five515

times faster compared to the traditional FEM approach (12, 895 ms).516

It should be noted that these benchmark runtimes can likely be improved. For517

instance, the traditional FEM approach does not require an expensive re-mesh step518

at every optimization iteration. Instead, a common strategy is to deform the domain519

with respect to a deformation equation as described Section 4. However, even a simple520

deformation equations, such as computing a smoothed H1-Riesz representation, will521

have approximately the same assembly and solve time as the state equation of this522

problem. Thus, assuming the same assembly and solve time, the runtime of a single523

iteration with the traditional FEM would be 3, 232ms. Since this Riesz representation524

does not preserve mesh quality, re-meshing would still be required after every few525

optimization iterations.

Table 2
The timing results of the traditional FEM versus multimesh FEM, as described in subsec-

tion 5.2.1. The table states the average time that different operations (assembly of linear systems,
solver time using a LU decomposition, mesh update and build steps, and one optimization iteration)
took during optimizing a multi-cable with three identical internal cables.

Cells Assembly Solve Mesh Update Build Opt iter.
MultiMesh FEM 22,7746 406 ms 749 ms 0.94 ms 222 ms 2,530 ms
Traditional FEM 21,1008 270 ms 807 ms 6,368 ms 4,372 ms 12,895 ms

526

5.3. Shape Optimization of an Obstacle in Stokes Flow. This example527

considers the drag minimization of an object subject to a Stokes flow in two dimen-528

sions. In contrast to the previous example, the shape to be optimized is here not529

parameterized. This problem has a known analytical solution consisting of a rugby-530

ball shaped object, which was first presented in [36]. The drag is measured by the531

dissipation of kinetic energy into heat, that is532

JS(Ω, u) =

∫
Ω

2∑
i,j=1

(
∂ui
∂xj

)2

dx,(5.7)533

534

where Ω = [0, 1]2 is the computational domain, u is the velocity vector and ∂ui
∂xj

denotes535

the derivative of the i-th velocity component in the j-th direction. The trivial solution536
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to this problem would be to remove the object from the Stokes-flow completely. This is537

avoided by introducing additional constraints on the area and centroid of the obstacle.538

Denoting the target centroid of the obstacle as (cx0, cy0) = (0.5, 0.5) and the target539

area as VO = 0.047, we enforce these constraints with quadratic penalty terms. This540

yields the cost functional541

(5.8)

J(Ω, u) = JS(Ω, u) + JV (Ω) + JCx(Ω) + JCy(Ω),

JV (Ω) = γ1 (V (Ω)− V0)
2
,

JC(Ω) = γ2

(
(cx − cx0)2 + (cy − cy0)2

)
,

542

with penalty parameters γ1 > 0 and γ2 > 0 and actual area of the object V (Ω). The543

actual object area can be computed as V = 1 −
∫

Ω
1 dx, and the coordinate of the544

obstacle’s centroid with cx = (0.5−
∫
Ω

x dx)/V and cy = (0.5−
∫
Ω

y dx)/V .545

The complete shape optimization problem is then:546

min
Ω,u

J(Ω, u)(5.9)547
548

subject to549

(5.10)

−∆u+∇p = 0 in Ω,

∇ · u = 0 in Ω,

u = 0 on Γ2,

u = u0 on Γ1 ∪ Γ3,

∂u

∂n
+ pn = 0 on Γ4,

550

where p is the fluid pressure, u0 a prescribed boundary velocity. Further, Γ1 is the551

left boundary, Γ2 is the boundary of the obstacle, Γ3 is the top and bottom boundary552

and Γ4 is the right boundary.553

The multimesh variational formulation of the Stokes equations for two overlapping554

domains has been derived and analyzed in [24]. We used this formulation in our555

experiments with the penalty value β = 6. The system was discretized using the556

Taylor-Hood element pair, that is second order piece-wise continuous polynomials557

for the velocity and first order piece-wise continuous polynomials for the pressure.558

The arising linear systems were solved using the direct solver MUMPS [2], which is559

sufficient for the problem sizes considered. For finer discretizations, the options of560

using iterative solver should be explored.561

The Hadamard formulation of the shape sensitivity of JS has been derived in [28]562

and is563

dJS(Ω, u, p)[s] =

∫
Γ2

−(s, n)

(
∂u

∂n
,
∂u

∂n

)
dS.(5.11)564

565

The shape sensitivity of JV and JS is obtained by applying the product rule and566

quotient rule, respectively, and then Theorem 3.2:567

dJV (Ω)[s] = −2γ1(V (Ω)− V0)

∫
Γ2

(s, n) dS.(5.12)568

This manuscript is for review purposes only.



SHAPE OPTIMIZATION USING MULTIMESH FEM 21

dJCx(Ω)[s] = 2γ2(1− V (Ω))−1(cx − cx0)

∫
Γ2

(s, n)(cx − x) dS.(5.13)569

570

More details can be found in [45]. Similar result can be derived for dJCy. Combining571

(5.11)–(5.13) and obtain the shape sensitivity572

(5.14)

dJ(Ω, u, p)[s] =

∫
Γ2

(s, n)

(
−
(
∂u

∂n
,
∂u

∂n

)
− 2γ1(V (Ω)− V0)

+ 2γ2(1− V (Ω))−1
[
(cx − x)(cx − cx0) + (cy − y)(cy − cy0)

])
dS.

573

We note that (5.14) does not depend on the adjoint solution. This is due to the fact574

that with the given functional, the adjoint solution λ can be expressed through the575

state variable u, see for instance [41].576

5.3.1. Results. We decided to describe the domain using two meshes: one fixed577

background covering the domain [0, 1]2 and one top mesh that represents the obstacle.578

This is visualized in Figure 11(a). Similar to [6], the top mesh has a circular geometry579

with a front and back wedge. To create the hole to represent the flow obstructing580

object, the background cells inside the hole of the top mesh were marked as inactive,581

as described in subsection 2.2.582

The steepest descent method with an Armijo linesearch was employed as opti-583

mization algorithm. The mesh deformation was preformed using (4.5). To ensure584

that the volume and centroid constraints are sufficiently satisfied, we increased the585

penalty coefficients γ1 and γ2 every 8th iteration, starting with γ1 = γ2 = 5 · 104.586

Figure 10 visualizes the initial mesh and the mesh after 24 iterations and the587

velocity magnitude. The solution inside the object is set 0, since the associated588

element are marked as inactive. During the optimization, the functional reduced589

from initially 21.5 to 18.2. The final volume were 2.29% smaller less than the desired590

volume and the offsets in the barycenter were 0.005% and 0.000004%. Note that the591

front mesh contains much fewer elements (2, 545) than the background mesh (8, 223).592

The deformation scheme is only solved on the top mesh, and hence significantly more593

efficient than if the entire domain had to be deformed.594

Figure 11 shows close-ups of the top mesh after 0, 8, 16 and 24 optimization595

iterations. The shape of the object after 8 iterations is visually in agreement with596

the results published in [6, 10]. After iteration 8, the volume and barycenter penalty597

increases, but causes only minor changes to the geometry. This figure also indicates598

that the scheme conserves mesh quality during the optimization. Indeed, the initial599

top mesh has a maximum element radius ratio of 1.57, while the top mesh after 24600

iterations has nearly identical a maximum element radius ration of 1.53. The reason601

why the mesh quality can be conserved, is because the movement of the (physical)602

boundary of the top mesh is well transferred to the outer (non-physical) boundary of603

the top mesh.604

5.4. Orientation of 9 objects in Stokes-flow. As a final example, we con-605

sidered the problem of optimally rotating nine obstacles in Stokes flow to minimize606

dissipation of energy. This time, we parameterize the domain, a channel with 9 obsta-607

cles, through the angles of the obstacles, as shown in Section 4. We consider 9 identical608

objects placed in a structured fashion, as shown in Figure 12(a), with two inlets on609
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(a) (b)
Fig. 10. The velocity magnitude of the (a) initial and (b) optimal mesh of the shape optimization

of an obstacle in stokes flow, see subsection 5.3. Notice that the number of cells on the front mesh
(2, 545) is considerably less than the background mesh (8, 223). Thus deformation of the top domain
is not as computationally expensive as deforming the full domain in a traditional finite element
method with similar mesh size.

Fig. 11. The initial mesh describing the obstacle is compared to the mesh after 8, 16 and 24
iterations. The volume and barycenter penalization factor was doubled every eighth iteration. We
observe that increasing the volume and barycenter penalization only creates minor changes in the
geometry. The deformed mesh does not experience distortion in the same way as with a traditional
mesh, as the outer boundaries are not subject to a homogeneous Dirichlet Condition, but are free to
deform.

the left wall of the domain, with different sizes and inlet profiles, and one outlet on the610

top right of the domain. Using the chain rule, we get that functional sensitivity with611

respect to the j-th rotation angle is dJ
dθj = dJ(Ω)[ ∂Ω

∂sjθ
], where sjθ = (−y + cjy, x+ cjx)612

is the first order approximation of the rotation vector.613

The optimization was performed using a multimesh consisting of a total of 10614
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meshes, where each obstacle was represented by a separate mesh. The number of cells615

in the background mesh was 33, 283 and in each front mesh 1, 900. Using Scipy [35]616

and its Newton-CG method, we optimized the angles of the nine obstacles. The617

stopping criterion was that the average change in the angle of the obstacle was less618

than 0.1 degrees. This criterion was reached after 18 iterations, when the functional619

had decreased to 5.59 from 5.85. The optimal angles were 16.48, 13.05, 34.13, 12.80,620

20.23, 52.72, 13.33, 13.00 and 47.02. The velocity magnitudes for the initial and621

optimized configuration is shown in Figure 12.622

Fig. 12. The initial and optimal configuration of the 9 objects in Stokes-flow. The initial
functional value was 5.85 and the final value was 5.59.

6. Concluding remarks. The main purpose of this work is analyzing how the623

multimesh FEM influences the computation of shape sensitivities in the shape op-624

timization setting. For this analysis, we consider the method of mappings and the625

Hadamard formulation. In the numerical examples, we illustrate that for shape opti-626

mization problems parameterized by rigid motions, re-meshing and deformation equa-627

tions are not required, as we can move meshes independently of each other. For tradi-628

tional shape optimization problems, we presented a new robust deformation scheme,629

where we described the design boundaries on a separate mesh, which can be moved630

independently of the fixed domain boundaries. Since we deform subdomains, our631

deformation scheme yields a speed-up compared to similar schemes for single-mesh632

problems.633

Nevertheless, since the multimesh FEM is a fairly new method, further study of634

Nitsche enforcement of interface conditions is required to obtain stable finite element635

methods for other equations than the Poisson and Stokes-equations.636

In conclusion, the results reported in this paper, shows that the combination637

of shape optimization and the multimesh FEM holds great promise as a powerful638

method. In a later paper, we will extend this approach to time-dependent problems,639

with more complex state-equations.640
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[33] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung723
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