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Abstract
Cyber-physical empirical methods enable to address problems that classical empirical methods alone, or models alone,
cannot address in a satisfactory way. In CPEMs, the substructures are interconnected through a control system that includes
sensors and actuators, having their own dynamics. The present paper addresses how the fidelity of CPEMs, that is the degree
to which they reproduce the behaviour of the real system under study, is affected by the presence of this control system. We
describe an analysis method that enables the designer of a CPEM to (1) identify the artefacts (such as biases, noise, or delays)
that play a significant role for the fidelity, (2) define bounds for the describing parameter of these artefacts ensuring high-
fidelity of the CPEM, and (3) evaluate whether probabilistic robust fidelity is achieved. The proposed method is illustrated
by considering a substructured slender structure subjected to dynamic loading.

Keywords Cyber-physical empirical methods · Hybrid simulation · Fidelity · Control system · Artefacts · Sensitivity
analysis · Probabilistic robustness

Introduction

Cyber-physical empirical methods (CPEMs) are empirical
methods in which the dynamical system under study is
partitioned into physical and numerical substructures. The
behaviour of the physical substructures is partly unknown,
while the numerical substructures are described by validated
computational models. The substructures interact with each
other through a control system. CPEM therefore augment
classical empirical methods with validated numerical
models, to address problems that classical empirical
methods alone, or models alone, can not conveniently or
reliably address. This is for example the case: (Issue 1)
when the dynamical system under study is ”ill-conditioned”,
i.e. when it contains a large span of characteristic spatial
dimensions and/or time constants. In that case, the part of
the system that does not fit in the laboratory, or whose
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dynamics is slow, can advantageously be replaced by a
numerical model. (Issue 2) when scaling effects should be
tackled. Scaling laws, used in classical empirical methods,
aim at preserving the balance, at small scale, between
two effects that are known to be of importance for the
full-scale system. When other effects, disregarded by the
chosen scaling law, play an important role too, so-called
scaling effects occur, which may reduce the confidence in
experimental results. A CPEM might alleviate this issue by
isolating, in the numerical substructures, the parts of the
system that cause scaling issues. (Issue 3) when component
testing should be performed, that is when the focus is on
the performance of a specific uncertain substructure, that is
interacting with the other substructures as part of a complex
system.

CPEM have been concurrently developed and applied
in earthquake engineering [1], thermomechanics [2],
aerospace engineering [3], in the automotive industry to
develop engines [4], car suspensions [5], or more generally
to investigate chassis dynamics and vibrations [6]. Other
examples of applications of CPEM include studies of the
acoustic footprint of ships [7], of the dynamical behaviour
of offshore wind turbines [8], and of complex electrical
power systems [9].

In the following, we will postulate that the performance
of the system under study is quantified through Quantities
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Fig. 1 Real system

Fig. 2 Substructured system

Fig. 3 Substructured system and control system

of Interest (QoI) derived from the response of the system
to a given load. See Fig. 1. In a substructural partition,
as illustrated in Fig. 2, the power continuously exchanged
between the substructures can be modeled as the product
of a flow and an effort [10]. For example, in a translatory
mechanical system, the flow is the linear velocity, while the
effort is the force. For an electrical system, the flow is the
electrical current, and the effort the voltage. Compatibility
between two substructures is achieved when the sent and
received flows are equal at each instant, and similarly,
equilibrium refers to the consistency of the efforts.

Definition 1 The control system consists of hardware
components (such as sensors, actuators, computers and
network infrastructure) and software components (such as
observers, controllers and allocation algorithms), which
aim at ensuring compatibility and equilibrium between the
substructures. See Fig. 3.

To achieve compatibility and equilibrium a significant
amount of mechanical or electrical power must in general
be transferred through actuators or amplifiers, which have
their own dynamics.

Let us now recall that the very purpose of empirical
methods is to gain knowledge about the behaviour of some
system through observation of this system. When using a
CPEM, we do not observe the real system (Fig. 1), but
a substructured version of it, orchestrated by a control
system (Fig. 3). A legitimate question is then whether
the observations generated with this system, actually are

representative of those we would have obtained with the
real system. Only if this is the case, new knowledge about
the real system can be inferred from these observations.
Defining, loosely for now, the notion of fidelity of a cyber-
physical empirical setup as the degree to which the setup
reproduces the behaviour of the real system under study, the
following statement can then be made regarding CPEMs

Fidelity may be jeopardized by factors which are related
to each component of the CPEM represented in Fig. 3
(including the substructures themselves), but in the present
paper, we will focus on the role of the control system
that interconnects the substructures. In [11, Chapter 1], an
example from the field of fluid mechanics (sloshing) shows
how the control system could cause a severe loss of fidelity,
which might not be noticed by the experimentalist. The
influence of the control system on fidelity can be studied
by various approaches, the choice of which depends on (1)
the nature of the control system, and the way it is modeled,
(2) the way the physical and numerical substructures are
modelled, and (3) the choice of indicators representing the
fidelity. These aspects have been reviewed in details in
[11, Chapter 1].

Our conclusion is that (1) Heterogeneous types of
artefacts (such as delays, noise, sensor calibration errors,
and actuator saturation) may occur simultaneously leading
to problems which become intractable by purely analytical
methods. However, all of these artefacts should be included
in a fidelity analysis, if they cannot be eliminated. (2)
Artefacts may be non-deterministic, such as noise and
sporadic signal loss (3) The artefacts may interact with
substructures that exhibit a complex behaviour, which
should be modeled properly. In the example mentioned
above, the observed bifurcation phenomenon, that causes
the loss of fidelity can only be captured if a nonlinear
sloshing model is used to describe the behaviour of the
physical substructure. (4) The fidelity should be evaluated
based on the actual QoI, and not based on the actuator’s
performance, since there might not be continuity, in a
mathematical sense, between the two quantities.

This paper gathers, in a concise and accessible way,
the contributions of the author about this subject published
in the PhD thesis [11], and in the journal articles [12]
and [13]. These contributions are the following ones.
(1) We provide a unified and quantitative definition of
the fidelity of a CPEM, which fits to a wide class of
applications. (2) We present a method to systematically
identify and rank the control system-induced artefacts that
jeopardize the most the fidelity. This information is of
great operational relevance when designing a CPEM. (3)
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We present a framework to verify the probabilistic robust
fidelity of cyber-physical empirical setups, and to derive
fidelity bounds, which can be used as specifications to
the control system. The proposed analysis method is non-
intrusive, and thus not limited to analytic models, which
allows its application to the wide class of dynamical systems
represented in CPEM. It can handle an arbitrary number
and type of artefacts, which exhibit parametric uncertainty.
And finally the method is computationally efficient, even
for high-dimensional and high-reliability problems, as it is
based on modern surrogate modelling and active learning
techniques.

The paper is organized as follows. The method is
described in Sections “Fidelity of a CPEM” and “Analysis”.
It is then applied to study the fidelity of the active truncation
of a slender structure, in the section entitled “Example:
Active Truncation of a Slender Marine Structure”.

Fidelity of a CPEM

Let s denote the total number of substructures in the
substructural partition. Given a duration T > 0, let τ(t) =
(τ1(t), ..., τs(t)) represent an exogenous excitation, with
support [0, T ], acting on the substructural partition. A
generic way of modelling the ideal substructured system,
which is suitable for most existing applications of CPEMs,
is the following interconnected system:

∀i ∈ N
∗
s , ẋi = fi(xi, uij , τi) (1)

yi = hi(xi) (2)

and

∀i ∈ N
∗
s , ∀j ∈ N

∗
s \ {i}, uij ≡ yj (3)

where xi is the internal state of substructure �i , yi its
output, and uij is the input to �i originating from �j . A
block diagram of this interconnected system is presented,
for s = 3, in Fig. 4. The yi and uij are related to the
power continuously exchanged between the substructures.
If yi represents a flow, then ∀j �= i, uij represent efforts,
and vice versa. The behaviour of the system described by
equations (1–3), is in principle similar to the behaviour of
the real system. However, it does not account for the effect
of the control system.

Definition 2 An artefact �ij is a parametrized function
describing the effect the control system on the connection
between the output of substructure �j and the input of �i .

Artefacts are not necessarily first principles-based
models of the components of the control system, but model

Fig. 4 Block diagram of the ideal substructured system, with s = 3.
Note that, for clarity, the outputs (yi)i∈{1,2,3} are doubled

the consequences, on the exchanged signals, of including
these components in the substructural partition. In other
words, two components of the control system of different
natures, such as a communication link or an actuator, could
in a first approximation, be modelled by the same artefact,
such as a time delay.

An artefact �ij consists in general of a combination
of elementary artefacts of various natures (heterogeneous),
which simultaneously affect the signal. The effect of
selected elementary artefacts on a reference signal is shown
in Fig. 5. More examples of elementary artefacts, together
with their possible sources, are given in [11, Chapter 3].1

The properties of each elementary artefact are described by
one or several parameters denoted θi with support Di ⊂ R,
as examplified in Table 2.

The artefact �ij presented in Fig. 6 consists of five
elementary artefacts, and is parametrized by six values:
the scaling factor, bias value, noise variance, duration of
the delay, probability of occurrence of the signal loss, and
inverse duration parameter of the signal loss. The effect of
such a ”composite” artefact on an input signal is illustrated
in Fig. 7.

The ideal interconnection represented in Fig. 4 can now
be modified, to model the effect of the control system on the
signals. This is done as shown in Fig. 8. Equations (1) and
(2) remain valid, but the relationship equation (3) between

1This reference also discusses how to handle artefacts that intrinsically
involve randomness, such as noise or signal loss/jitter.
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Fig. 5 Effect of elementary artefacts on a reference signal. The
parameter(s) θi of each elementary artefact is/are given in parenthesis

the output of substructure j and the input to substructure i

originating from substructure j becomes:

∀i ∈ N
∗
s , ∀j ∈ N

∗
s \ {i}, ∀t > 0,

uij (t) = �ij

((
yj (t

′)
)
t ′∈[0,t] , θ

)
(4)

where θ ∈ D ⊂ R
M gathers all the θi parameters

describing the elementary artefacts in all �ij . In other
words, if the artefact �ij presented in Fig. 6 was affecting
all interconnections in Fig. 8, then θ would be of dimension
M = 36 (6 artefacts × 6 parameters per artefact).

For i ∈ N
∗
s , let x̄i denote the state of �i when ∀j �=

i, uij ≡ yj . In that case, no artefact is present, and the
CPEM behaves exactly as the emulated system (the ideal
substructured system in Fig. 4). For a given Q ∈ N

∗, let
then (γq)q∈N∗

Q
, be a family of cost functions satisfying

∀q ∈ N
∗
Q, (∀i ∈ Ns , xi |θ → x̄i ) ⇒ (γq → 0) (5)

We will now define the fidelity, in a quantitative manner, as
follows:

Fig. 6 Synthesis of an artefact �ij from elementary artefacts

Definition 3 The fidelity ϕ is defined as

ϕ : D → R

θ �→ − 1
2 log

∑
q∈N∗

Q
γ 2
q ({xi |θ (t), x̄i(t)}i∈N∗

s ,t∈[0,T ])
(6)

The rationale behind the proposed definition is the fol-
lowing. (1) Each γq function compares selected QoI derived
from the states (x1, x2, ..., xs)|θ with the corresponding
QoI derived from (x̄1, x̄2, ..., x̄s). If all states xi converge
towards x̄i , then all γq tend to zero, and ϕ → ∞. Fidelity
quantifies therefore the capability of the CPEM to gener-
ate QoIs that are similar to the real system, when subjected
to same excitation. (2) The reciprocal is however not true:
high fidelity can be achieved even if some states xi which
are not of interest, i.e. not included in the calculation of any
γq , differ from x̄i . This is a major difference with the con-
cept of resilient cyber-physical systems (see e.g. [14]). A
high fidelity value does not imply a correct estimation of the
complete state (xi)i∈N∗

s
in presence of artefacts, but rather a

correct estimation of selected state-derived quantities. (3) If
the setup becomes unstable because of the introduced arte-
facts, some γq may blow up in some domains of D . On
the other hand, when studying high-fidelity setups, we may
be interested in emphasizing the difference between small
values of the γq . The logarithm in equation (6) is intro-
duced for this reason. (4) A sum of the squares, rather a
maximum function, is used in equation (6) to combine the
cost functions γq , which preserves the smoothness proper-
ties of the functions θ �→ γq(θ). Using a maximum function
instead would have compromised the differentiability of ϕ

even if the γq were smooth functions. This choice will prove
convenient when analyzing the problem.

Definition 3 is rather general, and must be adapted to the
specific problem at hand. More specifically, the exogenous
excitation τ , and the functions γq that select and compare
the QoI, should be carefully defined. The excitation τ(t) must
reflect the loads that the empirical setup will eventually be
subjected to. It may for instance include impulsive loads,
ramps, frequency sweeps, pink noise, or combine several of the
above. If nonlinear effects are significant, several excitation
levels should be included. The selection of the QoI through
the γq functions must be connected to the very purpose
of the tests, and should not be necessarily related to the
outputs yi that play an active role in the interconnection.2

The QoI may also be of different natures. They can be
time series or more generally fields, such as in [15]. They
can also be derived quantities, such as statistical moments,
parameters of extreme value distributions, or derived transfer

2We will for instance show in Section “Example: Active Truncation of
a Slender Marine Structure” that scrutinizing the power mismatch at
the interconnection leads to erroneous conclusions
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Fig. 7 Effect of �ij on a reference signal represented by a dashed line

functions. The QoI should obviously be selected carefully,
and in accordance with the purpose of the tests: the fidelity,
calculated from the extrema of a signal for instance, will
convey a very different type of information from the fidelity
calculated from the complete time series.

The concepts introduced in this section enable us to
define, in a quantitative manner, the fidelity ϕ of a CPEM.

Fig. 8 Block diagram of the CPEM, including the control system, with
s = 3. Note that, for clarity, the outputs (yi)i∈{1,2,3} are doubled in the
block diagram

Our objective is to investigate how the control system,
modelled by the artefacts �ij (θ), may deteriorate the
fidelity. Even if CPEM are developed in a controlled
laboratory environment, some uncertainty is entailed to
the artefacts: sensor noise variance, or the interconnection
delays between the substructures, remain for example
uncertain at the design stage, may vary during the execution
of the experiment, and can only be quantified accurately a
posteriori, i.e. when the experiment has ended. However,
the amount of uncertainty on these quantities can be
estimated a priori from expert judgment or dedicated
surveys, and therefore modeled within a probabilistic
framework.

Assumption 1 The artefact parameter θ is the realization
of a multidimensional random variable � with a known, but
arbitrary, distribution f�.

Before adressing these RQ, let us first define the
following sets.

Definition 4 The domain of failure of a CPEM is the set
Df ⊂ D defined by:

Df := {θ ∈ D |ϕ(θ) ≤ ϕadm} (7)
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Definition 5 The limit state surface L ⊂ D is defined by

L := {θ ∈ D |ϕ(θ) = ϕadm} (8)

We notice that addressing (RQ2) and (RQ3) is equivalent
to identifying Df . Indeed, identifying Df answers immedi-
ately RQ3 since the θ leading to sufficiently high fidelity are
found in D \Df . Then, letting IDf

(θ) be the indicator func-
tion for Df , the probability of failure of a CPEM, involved
in (RQ2), can simply be evaluated from

Pf :=
∫

Df

f�(θ)dθ =
∫

D
IDf

(θ)f�(θ)dθ (9)

We will discuss the choice of the value of ϕadm in
Section “Example: Active Truncation of a Slender Marine
Structure”.

Analysis

We will address our RQ by using surrogate modeling
techniques, particularly suitable for uncertainty quantifica-
tion purposes. Surrogate models are functions that can be
quickly evaluated, and mimic the behaviour of a target func-
tion, here ϕ(θ), over its whole domain of definition, or over
part of it. Due to space constraints, ths paper will provide
only the minimum mathematical background necessary to
understand the principle of the analysis. For more details on
the employed techniques, the interested reader may consult
[11, Chapter 2] and the references therein for more details.
The fidelity analysis method we propose is presented as a
flow chart in Fig. 9, and described in the following.

Step 1: Sampling The functions fi describing the substruc-
ture dynamics, and hence involved in the calculation of ϕ,
may be non-analytical or so-called black boxes. A sampling-
based approach must therefore be employed to address our
problem. We therefore start by generating N samples of �

in D by using a space-filling sampling method such as Latin
Hypercube Sampling (LHS).

E := (θ(1), θ (2), ..., θ(N))� (10)

For each sample θ , the interconnected system including
artefacts (represented in Fig. 8), when subjected to τ , is co-
simulated.3 The fidelity ϕ(θ) is obtained for each θ(i) by
comparing the result of this co-simulation to the one without
artefacts (Fig. 4) using equation (6). We let

F := [ϕ(θ(1)), ϕ(θ(2)), ..., ϕ(θ(N))]� (11)

Step 2: Sensitivity Analysis For nonlinear functions such
as ϕ(θ), the sensitivity to θ may be radically different in

3Co-simulation of the system under study is not detailed in this paper,
the interested reader might consult [11, Chap. 3 and 4]

Fig. 9 Overview of the analysis method. Inputs are represented in blue
and outputs in red

different regions of D . This rules out the use of local
sensitivity analysis methods (considering e.g. the gradient of
ϕ at a given point), especially when there are uncertainties
regarding the value of θ . The global sensitivity of ϕ(�) can
however be studied by Analysis of Variance (ANOVA), i.e.
by determining how much of the variance of ϕ(�) can be
attributed to each component of �. Indeed, if fixing some
component of � to their ”true” value significantly reduces
the variance of ϕ(�), then it can be concluded that the
sensitivity to this component is large. If, on the contrary,
a component is left free to vary over its whole range of
uncertainty without causing large variations of the variance
of ϕ(�), then this component has no global influence on ϕ

and could be fixed.
To practically perform the ANOVA, we will make use of

Sobol’ indices [16], which satisfy

M∑
i=1

Si +
∑

1≤i<j≤M

Sij + ... + S1,2,...,M = 1 (12)

The Si are called first-order Sobol’ indices , Sij second
order Sobol’ indices, and so on. Si measures the proportion
of the variance of ϕ(�) that is due to �i only, and Sij

describes the proportion of the variance of ϕ(�) that is due
to �i and �j , but cannot solely be explained by individual
variations of �i or �j .

The fact that Si = 0 is a necessary, but not sufficient,
criterion to conclude on the insensitivity of ϕ to the ith

component of its input. Indeed, this component could play
a significant role in interaction with another component,
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which would be visible by examining the higher-order
Sobol’ indices.

Definition 6 The total Sobol’ index STi
is defined as the

sum of all Sobol’ indices in equation (12) that involve the
parameter i.

STi
quantifies the total effect of an input parameter,

either alone, or in combination with others. STi
= 0 is

then a necessary and sufficient condition to conclude that
�i is non-influential. Furthermore, by ranking the ST,i ,
the components of � having the greatest impact on the
variations of ϕ can be identified. Also, by comparing each
ST,i to Si , it is possible to evaluate whether �i influences
ϕ alone (in the case Si ≈ ST,i), or jointly with other
components of �.

When they were introduced, the Sobol’ indices were
computed using Monte-Carlo simulation [17]. This proved
to be quite time consuming, and higher-order Sobol’ indices
were rarely accessible in practice. Recently, [18] put in
evidence the analytical connection between the coefficients
of the Polynomial Chaos Expansion (PCE) of ϕ(�), and
the Sobol’ indices. In other words, once a PCE model
was established, the Sobol’ indices could be obtained at
practically no cost. Thanks to this finding and new methods
to efficiently compute sparse PCEs [19], PCE has become
an intermediate of choice for global sensitivity analyses.
More details about this are given in [11, Chapter 2].

Back to our problem, by using E and F defined in
equations (10) and (11), a PCE-based surrogate model of ϕ

is constructed, and the sensitivity of ϕ to the components of
� can be expressed through the Sobol’ indices derived from
the PCE. This answers (RQ1). Note that the the expected
fidelity E[ϕ(�)] and the associated uncertainty Var[ϕ(�)]
are also directly linked to the coefficients of the PCE.

Step 3: Reliability Analysis We stated in the end of
Section “Fidelity of a CPEM” that (RQ2) and (RQ3) could
be solved simultaneously through the identification of Df .
However, at the present stage, the information gathered on ϕ

is insufficient for this purpose. Indeed, the sampling E was
so far aimed at filling the spaceD , so if E[ϕ]was well above
ϕadm and Var[ϕ] was small, none or only few of the samples
of θ in E might land into Df , i.e. yield too low fidelity.

The strategy to resolve the limit state L (boundary
of Df , see Definition 5) is the following. We stepwise
add samples of �, i.e. enrich E , in locations that are
believed to be close to L (we will come back to that in
the next paragraphs, since L is a priori unknown) and
create a surrogate model, whose accuracy near L step-
by-step increases. Once estsablished, this surrogate model
can be interrogated to find out if a given θ is in Df

or not, whcih answers (RQ3). Furthermore, Monte-Carlo

Simulations, using a large number of auxiliary samples can
be performed since the cost of evaluating the surrogate
model is much lower than the cost of evaluating ϕ(θ) itself.
The enables us to evaluate Pf from equation (9), verify
probabilistic robustness of the setup, and answer (RQ2).

The surrogate model used in this step is a so-called
Polynomial Chaos Kriging (PCK) model. Details regarding
the structure of this model, the method to determin its
coefficients based on E and the corresponding values of
ϕ can be found in [20] and in [13]. The key aspect of
this surrogate model is that it associates, to any θ , not
only an estimated value of ϕ (denoted μK (θ)) but also an
uncertainty on this value (through a variance denoted σ 2

K ).
Once the PCK surrogate model of ϕ(θ) is identified

based on the available samples in E , additional relevant
samples of � can iteratively be generated to enrich E , in
strategic locations, characterized by a large probablity of
misclassification Pm:

Pm(θ) := 


(
−|μK (θ) − ϕadm|

σK (θ)

)
(13)

where 
 is the standard normal cumulative distribution
function. Pm(θ) estimates the probability of the PCK model
to predict that θ is in Df while it is actually not, or vice-
versa. From equation (13), we see that large values of
Pm(θ), correspond to regions of D where (1) θ is close to
L , since ϕ is probably close to ϕadm, and/or (2) there is a
large epistemic uncertainty (due to lack of data in E ) on the
value of ϕ(θ).

This is in the region where Pm is large that we select
K ∈ N

∗ new samples of �, and add them to E . The newly
obtained set E ′ is used to establish a new PCK model, and
generate K new samples that will be added to E ′, and so
on. Step-by-step, the boundary L between high- and low-
fidelity regions becomes more precise, and the accuracy of
Pf increases. More details on this method called Adaptive
Kriging can be found in [21].

Step 4 The PCE and PCK surrogate models established in
Steps 2 and 3, respectively, can also be used to perform
online, or a posteriori, fidelity assessment of a test based on
measured or estimated values of θ . The PCK model will be
a good classifier when θ is near the boundary of Df , and
adequate if we wish to know whether sufficient fidelity has
been achieved. The PCE model can be used when θ takes
higher probability values to estimate the achieved fidelity
value.

Note also that using the defined surrogate models, an
optimal control system design can be found as the one
minimizing some cost function c(θ) representing e.g. the
cost of the control system (increasing with its performance)
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while maximizing the fidelity, and with a hard constraint on
the minimum fidelity:

minimize
θ∈D

w1c(θ) − w2ϕ̂PCE(θ) (14)

subject to ϕ̂PCK(θ) − ϕadm ≥ 0

where w1 and w2 being positive weights.
In the present work, the surrogate models have been

established by using the UQLab software [22]. The reader
is referred to [23] for the documentation of UQLab related
to PCE, to [24] for sensitivity analysis, to [25] for PCK, and
to [26] for rare events estimation, and Adaptive Kriging in
particular.

Example: Active Truncation of a Slender
Marine Structure

During the design of a floating structure (such as an
oil production platform, or a floating wind turbine),
hydrodynamic model testing is usually performed at a scale
λ < 1 to validate the numerical models used by the designer,
to study of specific complex physical phenomena, and to
eventually perform a final verification of the design [27].
Slender marine structures such as mooring lines, risers, or
power cables connect then the floating structure to the sea
bed. Testing a structure in ultradeep water at a typical scale
λ = 1/60 would require a laboratory with a diameter of at
least 100 m and a water depth of 50m, which is much larger
than any of the existing ocean basins.

Active truncation of the slender marine structures is one
of the possible ways of alleviating this issue [11, Chapter 4].
The truncated part of the slender marine structure, denoted
�1 and depicted in blue in Fig. 10, becomes a numerical
substructure, simulated using the finite element method.
The connection between the physical substructure (�2, in
red) and the numerical substructure happens through a set
of sensors and actuators, located at the truncation point, in
other words on the floor of the hydrodynamic laboratory.
In this section, we will investigate the fidelity of the active
truncation setup. This will illustrate the capabilities of the
generic fidelity analysis method presented in the previous
section, when multiple, heterogeneous and random artefacts
are involved.

We will consider a simple taut polyester mooring line, as
depicted in Fig. 10. The properties of the mooring line are
given in Table 1. Without loss of generality, we assume that
the problem is two dimensional, and we define a direct x-
z coordinate system, whose z axis is vertical and pointing
upwards. The water depth is D=1200 m. The bottom of
the hydrodynamic laboratory, where sensors and actuators

Fig. 10 Top left: overview of active truncation with the physical
substructure�2 in red and the numerical substructure�1 in blue. Main
plot: snapshots of the upper part of the polyester line at t = 30s and
t = 70s, when subjected to the characteristic excitation τ(t)

are installed, is located at a water depth of (1 − α)Dλ

= 4 m. Active truncation is to be performed as shown in
Fig. 10, with a truncation ratio (proportion of the depth that
is covered by the numerical model) of α=0.8.

The fidelity of active truncation will be evaluated by
studying the response of this slender marine structure to an
external excitation τ(t), with a duration T = 200s. This
load is designed to be representative, in terms of amplitude,
frequency content and direction, of a severe load that can
be encountered during the testing of a floating system.
The dynamic part of τ(t) represents wave loads transferred
from the floater to the slender structure, and is therefore
applied to the top of the line. It has two components. The

Table 1 Properties of the polyester mooring line used in the case study

Parameter and symbol Value

Length L 1934 m

Diameter d 264 mm

Mass per unit length m 44.7 kg/m

Young modulus E 8.513 GPa

Submerged weight per unit length w 93.2 N/m

Rayleigh damping coefficient α2 4.77.10−2 s

Top tension module T0 2500 kN

Top tension angle γ0 50 o

Normal added mass coefficient Cm 1.0

Normal drag coefficient Cd 1.6

Axial stiffness 241.0 kN/m

Longitudinal wave velocity cl 3328 m/s

Transverse wave velocity ct 157.5 m/s
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first low-frequency component mainly acts axially, has an
amplitude of 1MN, and a frequency content sweeping [0,
0.02] Hz. It mimics the effect of second-order difference-
frequency wave loads on the floater. The superimposed
wave-frequency component has an amplitude of 250kN, a
frequency content sweeping [0,0.2] Hz, and a direction with
constant rate of change. Time series of the described top
load can be seen on the upper plot in Fig. 14. This dynamic
load comes in addition to the static top tension applied to
the slender structure (see Table 1), and to the drag load
associated to a shear current, whose velocity varies linearly
throughout the water column for 0m/s at the seabed to
0.5m/s at the free surface.

The force components fx and fz, originating from the
physical part of the line �2 at the truncation point are
measured by two independent force sensors. An actuator
prescribes the velocity (vx, vz) of the truncation point,
computed from the simulation of �1.

We will now focus on the definition of the fidelity indi-
cator ϕ for the active truncation problem. Hydrodynamic
model test campaigns focus generally on the behaviour of
the floater, and on extreme tensions in the slender marine
structures, but not on their local deflection or curvature.
The objective is therefore to make the interaction between
the truncated slender marine structure, the (physical) floater
and the (numerical) sea bottom reflect the corresponding
interactions in a fully physical setup. Based on this reason-
ing, two fidelity indicators are suggested. Let Vx,top and
Vz,top be the components of the top velocity of the slen-
der structure when it is subjected to τ(t), and Fx,bottom and
Fz,bottom the components of the force vector at its lower
end. These four values are calculated by co-simulation of
the substructured system, subjected to artefacts described by
a parameter θ that will be defined later on. Letting V̄top and
F̄bottom be their ideal counterparts, obtained by simulation
of the system without artefacts, the first fidelity indicator
can be written, consistently with equation (6)

ϕ1(θ) := −1

2
log10

(
γ 2
Vx(θ) + γ 2

Vz(θ)
)

(15)

where

γ 2
Vx(θ) :=

∫ T

0

(
Vx,top(t |θ) − V̄x,top(t)

)2
dt∫ T

0 V̄x,top(t)2dt
(16)

γ 2
Vz(θ) :=

∫ T

0

(
Vz,top(t |θ) − V̄z,top(t)

)2
dt∫ T

0 V̄z,top(t)2dt
(17)

ϕ1 quantifies how well the top end of the structure responds
to the prescribed external load τ , and thus how well the
substructured system manages to replicate the mechanical
impedance of the slender structure. ϕ1 is therefore important
when motions of the floater are investigated.

The second fidelity indicator is defined by

ϕ2(θ) := −1

2
log10

(
γ 2
Fx(θ) + γ 2

Fz(θ)
)

(18)

where

γ 2
Fx(θ) :=

∫ T

0

(
Fx,bottom(t |θ) − F̄x,bottom(t)

)2
dt∫ T

0 F̄x,bottom(t)2dt
(19)

γ 2
Fz(θ) :=

∫ T

0

(
Fz,bottom(t |θ) − F̄z,bottom(t)

)2
dt∫ T

0 F̄z,bottom(t)2dt
(20)

ϕ2 quantifies how well the external load is transferred to the
sea bottom, and is then more relevant when the focus is on
the loads at the anchors. If both aspects are important, ϕ1

and ϕ2 could easily be combined into a single indicator. In
the following, we use ϕ to designate either ϕ1 or ϕ2, for
conciseness.

Let us now move to the artefacts describing the control
system. As shown in Fig. 11, ten individual artefacts,
parametrized by M = 12 parameters, are assumed to affect
the setup. Each component of the force measurement is
assumed to be contaminated by calibration error (gain), bias,
and noise. In the acquisition process, the force signals can be
delayed, or lost, before entering the numerical substructure.
A signal loss artefact, affecting the output of the numerical
substructure, models the fact that nonlinear iterations in
the numerical substructure may not complete on time. An
additional delay on the actuation side models computation

Fig. 11 Structure of the system, modelled artefacts, and their describing parameters �i . τn represents the current loads acting on the numerical
substructure (in blue), and τp represents the current loads and varying wave loads acting on the physical substructure (in red)
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and communication processes. It is assumed that some
delay-compensation techniques have been applied, see e.g.
[28], so that only values of the residual delay are considered
here.

The artefacts and their probabilistic description are
summarized in Table 2. Estimates of upper bounds, lower
bounds, mean values, or standard deviations of the θi

parameters were obtained from the experimental work
reported in [28], and the maximum entropy principle was
used to define f�(θ).

Sampling and Uncertainty Propagation

As described in Section “Analysis”, the first step is to
sample � and ϕ(�). A set E of N = 512 samples of
� is generated with the space-filling LHS method. ϕ(θ)

is evaluated by co-simulation for each sample in E . These
co-simulations might be rather time consuming since they
involve iterations (1) due to nonlinearities when simulating
the dynamics of each substructure, but also (2) to achieve
equilibrium and compatibility between the substructures,
while accounting for the artefacts. This is detailed in
[11, Chapter 4]. However these N co-simulations are
independent of each other and can therefore be performed
in parallel.

Figure 12 represents a scatter diagram of ϕ1, plotted
against each component of θ , i.e. representations in ”slices”
of the 12-dimensional space containing θ . From this
representation, it is rather difficult to identify clear trends in
the behaviour of ϕ, or interactions between components of
θ influence this behaviour. This is where the Sobol’ indices
prove useful.

The distributions of ϕ1 and ϕ2 (and of an additional
indicator ϕ3 that will be introduced later on), estimated from
E are plotted in Fig. 13. Quantile-quantile plots (not shown
here) show that these distribution deviate significantly
from Gaussian distributions. They have heavier tails, which
makes the estimation of probabilistic robustness difficult,
based on the sole sample set E . This is where the Adaptive
Kriging process will come into play.

Based on the initial set E , a Polynomial Chaos Expansion
of ϕ(�), denoted ϕ̂ is established. It consists of 58
orthogonal polynomial terms,4 that represent best ϕ, in
the sense that it minimizes an error metric based on E .
The values of E[ϕ(�)] and Var[ϕ(�)] estimated from the
coefficients of the PCE, and from E directly, match and are
equal to:

E[ϕ̂1(�)] = 1.32 and Var[ϕ̂1(�)] = 0.132 (21)

4See [11] for a convergence study on the samples N , and the
advantages of the LAR method [29] to obtain such sparse PCEs

E[ϕ̂2(�)] = 1.77 and Var[ϕ̂2(�)] = 0.172 (22)

For illustration, Fig. 14 shows the realization of � leading
to the median value of ϕ1, for which ϕ1=1.33 and ϕ2=1.62.
Seen in light of equations (21) and (22), this realization
corresponds to an average fidelity if the behaviour of the
top of the line of interest, and to a quite poor fidelity if the
objective was to reproduce the bottom force correctly.

Note that this uncertainty propagation analysis does not,
by itself, assess whether the expected fidelity of the active
truncation setup at hand is sufficiently high. The value of the
minimum admissible fidelity depends on the intended use
of the empirical data, and is to be assessed by the designer
of the active truncation setup. Lower fidelity values might
be tolerated in early-stage conceptual studies of floating
systems, for instance, while high-fidelity would be required
for final verification tests, or for the validation of numerical
methods.

Sensitivity Analysis

The sensitivity analysis aims at identifying the artefacts
contributing the most to the uncertainty on the fidelity,
estimated in equations (21) and (22). This provides a
rational course of action to reduce this uncertainty, but also
to improve the expected fidelity if it is deemed too low.

In low-dimension (i.e. small M) cases, and particularly
when the number of samples in E is large, visual inspection
of scatter diagrams such as Fig. 12, enables one to determine
directly which artefact component(s) affects the most the
fidelity. This inspection-based method becomes however
less reliable in high dimensions, such as in the present case
with M = 12. Sobol’ sensitivity indices can instead be
used, and derived directly from ϕ̂. Before looking at the
Sobol’ indices, let us recall that the absolute values of the
total Sobol’ indices ST,i are of secondary importance: the
ST,i should be compared to each other to identify the most
influencing artefacts’ parameters. Furthermore, ST,i can be
compared to the first order Sobol’ index Si , to understand
whether the artefact parameter �i influences the variance of
ϕ(�) alone, or in an interaction with another parameter �j ,
or several others.

Let us first outline the main conclusions that can be
drawn from the total Sobol’ indices ST,i , represented by
grey ”background” bars in Fig. 15. The fidelity indicator
based on the top velocity response, ϕ1, is very sensitive to
θ9 (the duration of the signal loss on the force signal) and
to the calibration errors of the fx and fz measurement (θ1
and θ2). ϕ1 is much less sensitive to the other θi , and clearly
insensitive to noise (described by θ5 and θ6). Focusing now
on the bottom force, we see that ϕ2 is mostly sensitive to θ1,
then θ2 (calibration errors), and then to a much less extent
to the biases θ3 and θ4, which have both comparable total
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Table 2 Description of the artefacts affecting the setup, including their probabilistic description

Type of artefact Affected signal Describing parameter(s) Unit Probabilistic description

Calibration error fx �1 (gain) – N (1, 0.015)

Calibration error fz �2 (gain) – N (1, 0.015)

Bias fx �3 (bias value) N N (0, 0.05λ−3)

Bias fz �4 (bias value) N N (0, 0.05λ−3)

Noise fx �5 (noise variance) N2 U ((0.025λ−3)2, (0.05λ−3)2)

Noise fz �6 (noise variance) N2 U ((0.025λ−3)2, (0.05λ−3)2)

Delay fx, fz �7 (duration) s U (0, 5δt)

Signal loss fx, fz �8 (probability of occurrence) – U (1%, 10%)

�9 (duration parameter) s−1 U (0.1, 0.5)

Delay vx, vz �10 (duration) s U (0, 5δt)

Signal loss vx, vz �11 (probability of occurrence) – U (1%, 10%)

�12 (duration parameter) s−1 U (0.1, 0.5)

Here λ=1/60 and δt=10 ms, and the values are given in full-scale

Fig. 12 Scatter diagrams showing the value of ϕ1 (fidelity indicator based on the top velocity of the line), as a function of the twelve parameters
describing the artefacts. The dots correspond to N =512 samples of � obtained by Latin Hypercube Sampling (set denoted E in the text). The
samples leading to the highest and lowest fidelity are represented by red triangles
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Fig. 13 Cumulative distribution functions of ϕi(�) for the example
case

Sobol’ indices. ϕ2 is slightly sensitive to θ9, the duration
parameter for signal loss on the force measurement, and
insensitive to the other θi parameters.

Physical Interpretation

We will now relate these results, obtained by our systematic
and data-driven approach, to their physical causes.

It is clear from Fig. 14 that the noise affecting force
measurements (parametrized by θ5 and θ6) induces a
significant velocity response at the truncation point. This
response is however filtered mechanically by hydrodynamic
drag forces and, to a less extent, structural damping, before
reaching the top and bottom of the mooring line. Therefore
noise does not significantly affect the fidelity indicators ϕ1

and ϕ2. The fact that the ST,i associated to this artefact are
negligible, means that the corresponding parameters θ5 and
θ6 (noise variances) could have been set to deterministic
values (here, zero), without affecting the variance of ϕ.

The force sensors feeds the numerical substructure, while the
actuator controls the bottom part of the physical substructure,
whose response directly enters in the definition equation (15)
of ϕ1. A natural question, when looking at Fig. 15, is then
why the top velocity (or ϕ1) is more sensitive to signal
loss, when it acts on the force sensor (duration parameter
θ9) rather than when it acts on the velocity actuation
(parameter θ12). The reason is the following. When signal
loss on the velocity command happens, the velocity of
the truncation point keeps a constant value. On the other
hand, signal loss on the force sensor may cause large
variations of the truncation point’s velocity, due to an
interaction with the numerical substructure (commented in
detail in [11, Chapter 4]). Both the amplitude of these
perturbations and their duration increase when the signal
loss characteristic duration increases, which enhances their
propagation to the top of the mooring line.

The fact that ϕ2 is more sensitive to θ1 (calibration
error for fx measurement) than to its counterpart θ2 (acting
on fz) can be explained as follows. Transverse motions
of the mooring line are subjected to hydrodynamic drag
damping forces, while axial motions are only damped by

structural damping, which means that transverse motions
will be subjected to a significantly higher level of damping
than axial motions. Consequently, an axial dynamic force
error will be less damped than its transverse counterpart.
Since the mooring line forms an angle of γ = 39.2 o with
respect to the x-axis at the truncation point, the axial forces
have an x-component larger than their z− component,
and a calibration error on fx (parametrized by θ1) will
play a greater role for ϕ2 than a calibration error on fz

(parametrized by θ2).
Also, as explained earlier, Total Sobol’ indices and first-

order indices differ when there is a non-additive interaction
between two (or more) θi in ϕ. The nature of this interaction
can be determined by considering higher-order Sobol’
indices (not shown here). We found for example that the
interaction between θ1 and θ2 explains ≈ 20% of the
variance of ϕ1, and ≈ 15% of the variance of ϕ2. This is
due to the fact that if θ1 and θ2 differ significantly from
each other, the amplitude, but also the direction of the force
at the truncation point will be affected. Since the stiffness
and damping properties of the line are strongly anisotropic,
as explained earlier, this change in direction will have a
significant effect on the fidelity.

From Fig. 15, we then see that biases have a sensible
influence on ϕ1 and ϕ2 (total Sobol indices), and that this
influence is due to interactions (S5 � ST,5 and S6 � ST,6

in both cases). Here, the mechanisms in play are slightly
different for ϕ1 and ϕ2. The interested reader might consult
[11, Chapter 5] for more details.

We have, in this section, shown how the results of
the systematic sensitivity study, based on PCE and Sobol’
indices, leads to the identification of the the most critical
artefacts for this problem, and enables one to gain insight
in the complex coupling between the control system and the
mooring line dynamics. Note that time delays, which have
received a lot of attention in the CPEM literature, do not
play a major role for the present setup.

Reliability Analysis

While the previous subsections addressed (RQ1), described
in Section “Fidelity of a CPEM”, the present section will
exemplify how probabilistic robust fidelity of the active
truncation setup can be assessed (RQ2), and how the fidelity
bounds of the considered setup could be established (RQ3).
In this section, we will assume that the interaction of the top
of the line with the floater is of interest, and consider only
the fidelity indicator ϕ1.

As a design choice, we set the minimum admissible
fidelity for this setup to ϕadm = 0.8, and we will consider
that probabilistic robust fidelity is achieved if

Pf := P [ϕ1 < 0.8] < 10−3 (23)
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Fig. 14 Co-simulation of active truncation with a set of the artefacts leading to the median value of ϕ1. For this realization, the measurement of fx

(resp. fz) is affected by a -0.3% (resp. -3%) calibration error, a -0.012 N (resp. 0.28 N) bias, and noise with a standard deviation of 0.040 N (resp.
0.037N), in model scale. The force measurement is delayed by 2.6ms, and has a probability of signal loss of 7.5%, with a duration parameter of
0.47, which corresponds to frequent and short periods of signal loss. On the actuation side, the delay is 1.3ms, and the probability of occurrence
and duration parameter of signal loss are 6.8 % and 0.17, respectively. The resulting fidelity indicators are ϕ1=1.33 and ϕ2=1.62

By considering Fig. 12, we see that none of the samples
of � in the initial set E leads to a fidelity less than ϕadm.
However this set had a cardinality of N =512, which
is too low to confidently assess whether equation (23)
holds. Furthermore, as noted when commenting Fig. 13,
the distribution of ϕ1 has heavy tails, so extrapolating the
empirical distribution to lower quantile values is hazardous.

The Adaptive Kriging method is applied to address this
problem.. Batches ofK = 16 new samples of� are added at
each step of the enrichment process. The K co-simulations
and evaluations of ϕ(θ) are performed in parallel.

Starting from a subset E ′ of E which contains 256
samples of �, the first enrichment step is taken. In this
step, the PCK surrogate model established from E ′ is used

to evaluate (through the probability of misclassification)
where ϕ1 could have dropped close to ϕadm and/or is
highly uncertain. As illustrated in Fig. 16, the regions of D
associated with a large Pm are detected where the ratio θ2/θ1
deviates significantly from unity, where θ8 is small, and,
to some extent where θ7 and θ10 are simultaneously large.
In physical terms, this corresponds to a distortion of the
measured force angle, to long periods of signal loss of the
force sensor (both have a significant influence on the fidelity
as commented in Section “Sensitivity Analysis”), and to
significant delays in the loop, which may yield an unstable,
and thus low-fidelity, system. We note that since the K

new samples are chosen by a clustering algorithm, they are
nicely spread over the limit state margin L . These new
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Fig. 15 Comparison of the
outcomes of the sensitivity
analyses for the fidelity
indicators ϕ1 and ϕ2, and the
local performance indicator ϕ3.
In background (light grey), the
total Sobol’ indices ST,i for
i ∈ {1, ..., 12}. In the foreground
(color code in the legend), the
first-order Sobol’ indices Si

Fig. 16 Illustration of the first enrichment step. The grey dots represent the samples in the initial set E . The blue dots corresponds to areas of the
twelve dimensional space with large probability of misclassification (Pm > 0.45). The red diamonds represent the K =16 samples selected by
the clustering algorithm, at this step
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Fig. 17 Probability of failure,
estimated after each step of the
enrichment process. Results
converge towards
Pf � 3.59 × 10−4, while the
admissible probability of failure
was εadm = 10−3 (dashed line)

samples are added to E ′, a new PCK model is established, a
set of K new samples are obtained by AK, and so on at each
enrichment step.

The evolution of the estimated probability of failure Pf

during the enrichment process is shown in Fig. 17. From
the initial sample set (256 samples), Pf is estimated to
2.5 × 10−2 > εadm, but after about 50 enrichment steps in
which the accuracy of the PCK model near L is improved,
Pf stabilizes at 3.6 × 10−4 < εadm, which confirms robust
fidelity of this setup. Note that even for rather low values of
Pf , and even if the problem is twelve-dimensional, the total
number of required enrichment steps remains of the order of
102.

Fidelity vs Local Performance Indicators

Considering exactly the same truncation setup and set of
artefacts as in the previous section, we now introduce
another indicator denoted ϕ3, which quantifies the mechan-
ical power mismatch between the numerical and physi-
cal substructures at the truncation point. This indicator is
defined as

ϕ3 := −1

2
log10 γ 2

�P (24)

where

γ 2
�P :=

∫ T

0 (f1 · v1 − f2 · v2)
2dt∫ T

0 (f2 · v2)2dt
(25)

and where fi and vi denote the force and velocity vectors
at the truncation point, for the numerical substructure �1

and physical substructure �2, respectively. In other words,
considering the plots on the second and third rows of
Fig. 14, ϕ3 quantifies the mismatch between the power
obtained from the red curves and the blue curves. This type
of indicator has been previously used in the analysis of
several CPEM in the past [11, Chapter 1].

We qualify this performance indicator ϕ3 as ”local”,
since it penalizes a loss of compatibility and equilibrium at

the truncation point, without considering the behaviour of
other parts of the substructures. It is quite different from
ϕ1 and ϕ2, in the sense that it is not based on a quantity
of direct interest for the experiment, and does neither use
the emulated system (without artefacts) as a reference. The
indicator ϕ3 is therefore not a fidelity indicator, according to
Definition 3. However, ϕ3 is based on a similar comparison
structure (normalized time integration of the squared error)
as the one used in ϕ1 and ϕ2, which makes the comparison
between these three indicators meaningful and interesting.

Using the same set E as in the previous section, and the
same PCE-based approach, the two first moments of ϕ3 can
be estimated to

E[ϕ̂3(�)] = 1.01 and Var[ϕ̂3(�)] = 0.182 (26)

By comparing E[ϕ̂3(�)] to E[ϕ̂1(�)] and E[ϕ̂2(�)] given
in equations (21) and (22) for the same set of artefacts,
it is seen that the error on the transfer of power between
the substructures can be significantly larger5 than the
resulting errors on the quantities of interest. Furthermore,
the coefficient of variation for ϕ3 is 17%, while it was close
to 10% for ϕ1 and ϕ2, meaning that the local indicator is in
comparison more sensitive to the the given set of artefacts
than the fidelity indicators.

The Sobol’ indices for ϕ3 are shown in Fig. 15, and
can be compared to the Sobol’indices for ϕ1 and ϕ2.
The conclusions drawn from this sensitivity analysis are
radically different from the ones obtained for ϕ1 and ϕ2.
Indeed, while calibration errors and signal loss on the force
sensors were found to be the most influencing parameters
for ϕ1 and ϕ2, they have an insignificant effect on ϕ3.
Besides, ϕ3 is mostly affected by the artefacts acting the
velocity actuation (time delay and signal loss), which played
a very minor role for ϕ1 and ϕ2.

The probability of this indicator to drop below ϕadm =
0.8 can be directly estimated by considering the distribution
of ϕ3, without need for Adaptive Kriging, due to the

5We remind about the logarithm in the definition of the ϕi
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generally lower values taken by ϕ3. This probability is found
to be about 10%, which is significantly larger than εadm.

From this analysis, we can conclude that designing the
control system based on the local indicator ϕ3 would have
led to an over-conservative (or possibly unfeasible) design
for given performance targets. Furthermore, based on the
conclusions of the sensitivity analysis, the designer would
have attempted to minimize the artefacts present on the
velocity actuation side, which have been shown to be of
marginal importance for the fidelity.

Conclusion

We studied the fidelity of cyber-physical empirical methods
(CPEM), with a focus on the control system that inter-
connects the substructures. An imperfect control system
prevents the compatibility and equilibrium between the sub-
structures to be fulfilled, hereby influencing the properties
of the dynamical system under study. This jeopardizes the
validity of CPEMs as empirical methods.

To investigate this issue, we formulated a generic model
for CPEMs. In this model, the interconnections between
the substructures were subjected to multiple, random and
heterogeneous artefacts, modeling the imperfect control
system, and described by a parameter θ . The effect of the
artefacts on the quantities of interest for the experimentalist
was quantified by a performance indicator, denoted the
fidelity. It was assumed that a probabilistic description of
θ was available, based on previous experience or on a
dedicated survey.

Based on this problem formulation, we developed a
pragmatic method that enables the designer of a CPEM
to identify artefacts that play a significant role for the
fidelity (RQ1). We also showed how absolute bounds
on θ could be established, which guarantee sufficiently
high fidelity (RQ3). Associating this result with the
probabilistic description of θ enabled us to conclude
whether probabilistic robust fidelity of a given CPEM was
achieved (RQ2). An overview of the method was given in
Fig. 9.

The developed method was illustrated by studying the
fidelity of the active truncation of a slender marine structure.
In this problem, the substructures had to be described by
non-closed form models, and the setup was subjected to
a larger number of heterogeneous artefacts (gains, biases,
noise, signal losses and time delays), parametrized in
a twelve-dimensional space. Strong assumptions would
have been required to make this problem tractable with
classical analytical methods, which would have weakened
the obtained conclusions about fidelity.

Through this case study, we also showed the importance
of assessing the considered CPEM through its fidelity, based

on the the Quantities of Interest for the experimentalist,
rather than through local performance criteria, such as the
ability of the control system to transfer the mechanical
power between the substructures.

The computational efficiency of the method for higher-
dimensional and high-reliability problems was put in
evidence through this example. Global sensitivity results
could be obtained with a few hundred simulations, and
probability of failures of the order of 10−4 could be
estimated with less than 100 enrichment steps, even if θ was
taking values in a twelve-dimensional space.

The present fidelity analysis framework is generic and
application-agnostic. Further work should be targetted at
developping guidelines suggesting relevant τ , γq , and ϕadm

for other CPEMs than active truncation.

Acknowledgments This work was supported by the Research Council
of Norway through the Centres of Excellence funding scheme (project
number 223254 - AMOS). SINTEF Ocean is acknowledged for its
support to NTNU AMOS. The corresponding author states that there
is no conflict of interest.

Funding Information Open Access funding provided by NTNU
Norwegian University of Science and Technology (incl St. Olavs
Hospital - Trondheim University Hospital).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. McCrum D, Williams M (2016) An overview of seismic
hybrid testing of engineering structures. Eng Struct 118:240–261.
https://doi.org/10.1016/j.engstruct.2016.03.039

2. Korzen M, Magonette G, Buchet P (1999) Mechanical loading
of columns in fire tests by means of the substructuring method.
Zeitschrift für Angewandte Mathematik und Mechanik 79:617–
S618

3. Wagg D, Neild S, Gawthrop P (2008) Real-time testing with
dynamic substructuring. In: Bursi OS, Wagg D (eds) Modern
testing techniques for structural systems, no. 502 in CISM
international centre for mechanical sciences. Springer, Vienna,
pp 293–342

4. Filipi Z, Fathy H, Hagena J, Knafl A, Ahlawat R, Liu J, Jung D,
Assanis DN, Peng H, Stein J (2006) Engine-in-the-loop testing
for evaluating hybrid propulsion concepts and transient emissions-
HMMWV case study. Tech. rep., SAE Technical Paper

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1016/j.engstruct.2016.03.039


Exp Tech

5. Misselhorn WE, Theron NJ, Els PS (2006) Investigation of
hardware-in-the-loop for use in suspension development. Veh Syst
Dyn 44(1):65–81. https://doi.org/10.1080/00423110500303900

6. Plummer AR (2006) Model-in-the-loop testing. Proceedings
of the Institution of Mechanical Engineers Part I: Jour-
nal of Systems and Control Engineering 220(3):183–199.
https://doi.org/10.1243/09596518JSCE207

7. Botelho RM, Christenson RE (2014) Mathematical framework
for real-time hybrid substructuring of marine structural systems.
In: Dynamics of civil structures, vol 4. Springer, pp 175–
185

8. Sauder T, Chabaud V, Thys M, Bachynski EE, Sæther LO (2016)
Real-time hybrid model testing of a braceless semi-submersible
wind turbine. Part I: the hybrid approach. In: ASME 2016 35th
international conference on ocean, offshore and arctic engineering

9. Edrington CS, Steurer M, Langston J, El-Mezyani T,
Schoder K (2015) Role of power hardware in the loop
in modeling and simulation for experimentation in power
and energy systems. Proc IEEE 103(12):2401–2409.
https://doi.org/10.1109/JPROC.2015.2460676

10. Gawthrop PJ, Wallace MI, Wagg DJ (2005) Bond-graph based
substructuring of dynamical systems. Earthquake Engineering &
Structural Dynamics. https://doi.org/10.1002/eqe.450

11. Sauder T (2018) Fidelity of cyber-physical empirical methods.
Application to the active truncation of slender marine structures.
PhD Thesis Norwegian University of Science and Technology.
Trondheim

12. Sauder T, Marelli S, Larsen K, Sørensen AJ (2018) Active
truncation of slender marine structures: influence of the
control system on fidelity. Appl Ocean Res 74:154–169.
https://doi.org/10.1016/j.apor.2018.02.023

13. Sauder T, Marelli S, Sørensen AJ (2019) Probabilistic robust
design of control systems for high-fidelity cyber-physical testing.
Automatica 101:111–119

14. Fawzi H, Tabuada P, Diggavi S (2014) Secure estima-
tion and control for cyber-physical systems under adver-
sarial attacks. IEEE Trans Autom Control 59(6):1454–1467.
https://doi.org/10.1109/TAC.2014.2303233

15. Drazin PL, Govindjee S, Mosalam KM (2015) Hybrid simulation
theory for continuous beams. J Eng Mech 141(7):04015005.
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000909

16. Sobol IM (1993) Sensitivity estimates for nonlinear math-
ematical models. Math Modell Comput Exper 1(4):407–
414

17. Homma T, Saltelli A (1996) Importance measures in global
sensitivity analysis of nonlinear models. Reliab Eng Syst Safety
52(1):1–17

18. Sudret B (2008) Global sensitivity analysis using polynomial
chaos expansions. Reliab Eng Syst Safety 93(7):964–979.
https://doi.org/10.1016/j.ress.2007.04.002

19. Blatman G, Sudret B (2010) An adaptive algorithm to
build up sparse polynomial chaos expansions for stochas-
tic finite element analysis. Probab Eng Mech 25(2):183–197.
https://doi.org/10.1016/j.probengmech.2009.10.003
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