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Abstract. We present, what to our best knowledge, is the most accurate numerical

investigation of the wind tunnel tests carried out over a model wind turbine (known

as NTNU Blind Test) at the Norwegian University of Sciences and Technology. We

show numerical benchmarking of wake measurements against experimental data and

similar investigations performed previously by researchers using Computational Fluid

Dynamics (CFD) simulations. We have made a full 3D model of the wind turbine and

used Sliding Mesh Interface (SMI) approach to handling the rotation of the rotor.

The simulations are done with the use of OpenFoam and the k − ω Shear Stress

Transport model to resolve turbulence using the Reynolds Average Navier-Strokes

(RANS) technique. We present the numerically simulated spatial distribution of the

flow field across the wake at zero angles of yaw for horizontal lines downstream of the

rotor plane as that was the focus of the NTNU Blind Test presented in [1]

1. Introduction

In recent years, we have observed a shift in the upcoming energy trends. The focus

has shifted from the traditional oil and nuclear-based energy production units to more

cleaner and more sustainable renewable resources [2]. Amongst the potential sources

for the generation of clean electricity, wind power is believed to have a promising future

owing to its significantly higher outputs and lower costs [3, 4]. The enormous potential

for future growth has persuaded the wind energy community to develop turbines which

can gain maximum yields from regions of large wind potential [5].

From a technical standpoint, this requires the development of highly sophisticated

tools/methods capable of analyzing the flow around the wind turbine efficiently, under a

minimal time frame [6, 7]. At present, the three most widely adopted procedures for wind

turbine flow analysis are based on analytical, numerical or experimental approaches. The

Blade Element Momentum (BEM) technique for the analytical solution of blade loading

provides reasonable estimates in a short time [8, 9]. One of the widely-known codes
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employing BEM, with a focus on the simulation of wind turbines, is FAST [10]. The

disadvantage of BEM tools is their inability to predict the distributions of pressure and

velocity over the structure of the turbine [11, 12]. On the other hand, experimental tests

conducted inside wind tunnels represent the actual flow field and blade loads, albeit on

a scaled-down geometry of the turbine [13]. The outputs could then be subsequently

upscaled to the real dimensions of the turbine. However, it is challenging to find

experiments in which the actual dynamics of flow around the turbines are accurately

measured and reported [1, 14, 15, 16].

Numerical investigations based on CFD [4] are an attractive alternative to the

analytical and empirical approaches; and owing to the availability of high-performance

computers and optimized methods for the solution of governing equations [17, 18], the

accuracy of CFD has improved significantly over the last decade. CFD allows one

to conduct high-fidelity simulations and provides means of visualizing the flow fields,

especially velocity and pressure, over the regions of interest. The CFD simulations for

present industrial wind turbines require tremendously high computational resources to

realistically account for the coupling of flow and blade dynamics [4, 13]. To manage

this challenge, various strategies are formulated to model the interaction of the flow

field and the wind turbine rotors. One such approach involves modeling the fully

resolved (FR) geometry of the turbine, with simplifications to the geometry (an isolated

blade, rotor without nacelle) made depending on the computational power at hand.

Performing FR CFD analysis requires a multi-physics toolbox like ANSYS Fluent or

OpenFOAM [19, 20]. Alternative approaches couple the two-dimensional lift and drag

forces, calculated using analytical methods like BEM, with a numerical flow solver

employing, typically, the Actuator Disc Method (ADM) or Actuator Line Method

(ALM). This strategy requires lesser computational resources in the modeling of wind

turbines and wind farms [21, 22]. Some of the known codes available for modeling using

these methods include SOWFA by NREL [23], Ellips3D by DTU [24, 25] and WIRE-LES

by EPFL [26, 27].

Herein we present high fidelity simulations of the so-called NTNU Blind Test

performed at the Norwegian University of Science and Technology (NTNU) [15, 1, 16].

Our computational model accurately represented the wind tunnel test set up, and

we discretized the full 3D geometry of the wind turbine (rotor, nacelle, and tower).

The rotation of the rotor was handled by means of the Sliding Mesh Interface (SMI)

technique and the governing equations for the incompressible Navier-Stokes equations

on a moving grid are given in Section 2. The most important features of our high-

fidelity computational model are described in Section 3. In Section 4, we present the

numerically simulated spatial distribution of the flow field across the wake, downstream

of the rotor plane, at zero angles of yaw. Finally, we conclude the present study in

Section 5.
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2. Governing Equations

The purpose of present work is to exploit a fully-resolved CFD model that explicitly

includes the turbine rotation and minimizes other geometric approximations. The

Sliding Mesh Interface (SMI) technique is employed to model rotor rotation in the

presence of the turbine nacelle and tower. Concerning the SMI methodology, the

mesh surrounding the rotor physically rotates, while the mesh away from the rotor

is held fixed – the two mesh regions are coupled through interfaces. In literature the

method is reported as highly computationally intensive; nevertheless, it has provided

accurate estimates of the flow field for rotating assemblies, especially turbines [28]. The

governing system of equations for incompressible Navier-Stokes flow are the momentum

and continuity equations, written in tensor notation as follows:

∂u

∂t
+∇ · ((u− ug)⊗ u) +∇ · (ν + νt)∇(u+ (∇u)T)−∇p = f (1)

∇ · (u− ug) = 0 (2)

Here u is the fluid velocity and ug is the grid velocity (which is zero for the static

part of grid), p the fluid pressure, ν and νt are respectively the fluid viscosity and the

turbulent eddy-viscosity, and f applied volume forces.

For the closure of turbulence quantities, ν+νt, which accounts for turbulent stresses

resulting from Reynolds averaging, is modeled with k-ω Shear Stress Transport (SST)

as follows:
∂k

∂t
+∇ · ((u− ug)⊗ k) = τij∇u+∇ ·

[
ν + νt
σk

]
∇(k + (∇k)T)− ωk (3)

(4)

∂ω

∂t
+∇ · ((u− ug)⊗ ω) =

γ

νt
τij∇u+∇ ·

[
ν + νt
σω

]
∇(ω + (∇ω)T)

− ω2β + 2(1− F1)
σω2

ω
∇.k∇.ω

The model damping functions, auxilliary relations and the trip terms as defined in [29]

τij = μt

(
2Sij − 2

3

∂uk

∂xk

δij

)
− 2

3
kδij, Sij =

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(5)

νt =
a1k

max(a1ω,ΩF2)
, φ = F1φ1 + (1− F1)φ2, F1 = tanh(arg41) (6)

arg1 = min

[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4σω2k

CDkωd2

]
(7)

CDkω = max

(
2σω2

1

ω

∂k

∂xj

ω

∂xj

, 10−20
)
, F2 = tanh(arg22) (8)

arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)
(9)

The model constants are γ=5/9, β=0.075, Cμ=0.09, σk1=0.85, σω1=0.65, β1=0.075,

σk2=1.00, σω2=0.856, β2=0.0828, β∗=0.09, and a1=0.31.
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3. Approach and methods

To establish a high-fidelity computational model for a wind turbine there are a number

of modeling decisions to be made. Herein, we will in particular mention four aspects of

the model that are important with respect to the accuracy of the numerical simulations:

• Geometric models: Simplified models represent only the rotor, without the nacelle

and tower. However, both the nacelle and the tower affect the flow in the wake, so

higher accuracy may be expected when they are included.

• Aerodynamic models: Two commonly used simplified methods are the Actuator

Line Method (ALM) and the Actuator Disc Method (ADM), which are coupled with

two-dimensional lift and drag forces, corrected to account for 3D effects, calculated

using analytical methods (BEM). However, one may obtain more accurate results

by fully resolving the 3D geometry of the rotor blades.

• Rotating rotor: For the case with fully-resolved aerodynamic models, there are

two common methods for handling the rotating rotor. In the Multiple Reference

Frame (MRF) approach the turbine rotor is made to remain stationary, while the

source/sink terms (centripetal and centrifugal forces) are added to the systems of

governing equations, yielding the desired rotational effects. In the Sliding Mesh

Interface (SMI) technique, the mesh surrounding the rotor is physically rotating,

whereas the mesh away from the rotor is held fixed. The SMI technique is most

accurate as it can properly handle time variation, whereas MRF is by construction

not able to handle transient effects.

• Turbulence models: The two broad classes of turbulence models are Reynolds

Average Navier-Stokes (RANS) and Large Eddy Simulation (LES), where the latter

one is considered most accurate and computationally demanding.

Notice, that in the discussions above, we have assumed that the mesh resolution is

sufficiently high in the more advanced methods to actually make them more accurate.

In Table 1, we have displayed the choices made, in the present and previous studies,

for the four aspects of modeling described above. The present study has for the three

first categories chosen to maximize model accuracy, but due to the computational cost,

it is limited to a RANS, as opposed to LES, turbulence model. Among the six previous

authors, only one has performed LES. However, in that study only simplified geometric

and aerodynamic models were used. In our opinion, the best results of the previously

published studies were achieved by Manger [1], who adopted the SMI technique with

fully resolved 3D geometry using the RANS framework, as we have herein. However,

Manger used a CFD mesh resolution with 5.3× 106 cells, whereas we used 40× 106 cells

in our study.

The Computer Aided Design (CAD) model is based on the wind tunnel setup

described in [1]. The CAD-model is constructed to have smooth interfaces between

different structural components, especially between the blades and the nacelle, to avoid

abrupt changes in the geometry which are not considered ideal from a computational
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Lund X X X X

Manger X X X X X X

Hansen X X X X

Sørensen X X X X

Melheim X X X

Kalvig X X X X

Present X X X X X X

Table 1: An overview of the geometrical complexity, aerodynamic models, techniques

for handling rotor rotation and turbulence model employed in the present and previous

studies of the wind tunnel test performed at NTNU [1]

.

point of view. An overview of the computational model is displayed in Figure 1. The

mesh is refined in the vicinity of the turbine to capture the highly dynamical flow

pattern in that area. As the flow filed becomes less dynamic away from the turbine,

the mesh resolution is decreased towards the outer walls of the tunnel. Since one of our

main interests is to explore the wake in the downstream direction, a region of highly

concentrated mesh cells is generated downstream of the turbine to capture the flow

dynamics accurately there.

The flow domain is decomposed into a rotating and a stationary part that is solved

using the SMI technique as described above. The rotating part contains the rotor and

its vicinity as illustrated in Figure 1. We have applied boundary conditions in order to

comply as closely as possible to the experimental setup. The inflow, outflow and wall

boundary conditions (as defined in OpenFOAM 4.0 [30] are imposed to inlet, outlet and

outer boundaries of the tunnel. The SMI-technique handles the coupling of the inner

rotating domain with the static surrounding domain.

The numerical solvers are developed in OpenFOAM-4.0 (OF) [30], which is an

open-source tool and based on the finite volume method (FVM). For these transient

simulations, a first-order implicit scheme is employed to handle the time-dependent

term. The convection term of the Navier-Stokes is discretized using the bounded

Gauss upwind scheme, whereas for the diffusion term a Gauss linear correction is used.

The resulting linear system of equations is solved using the Geometric Agglomerated

Algebraic Multigrid (GAMG) method. The simulations are run until the convergence

criteria is achieved for GAMG i.e., the linear algebra residuals fall below 10−6.
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Figure 1: NTNU Blind Test (TSR=6): Overview of computational domain and imposed

boundary conditions. Wind tunnel dimensions used in the numerical simulations are set

to 2.7m × 4.5m × 1.8m which is the same dimensions as the wind tunnel at NTNU [1]

.

Figure 2: NTNU Blind Test (TSR=6): Computational mesh comprises of 40×106 cells.

Mesh block downstream with refined cells for correct evaluation of wake profiles.
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4. Results and discussions

The participants in the NTNU Blind Test presented in [1] were asked to provide

predictions of the spatial distribution across the wake, at zero angle of yaw, for three

positions downstream of the rotor plane, X/D = 1, 3 and 5, and three operating

conditions (i.e. tip speed ratios), λ = 3, 6 and 10. In order to provide data for three

turbine rotor rotations, our fully resolved 3D simulations using SMI and RANS required

25 days on the high-performance supercomputer Vilje using 512 cores with 2.6 GHz

Intel(R) Xeon(R) E5-2670 processor having 4Mb cache memory. We were therefore

only able to do one of the three different operating conditions and present herein the

case with inflow velocity (Uref ) of 10m/s and turbine rotating speeds of Ω = 134 rad/s,

which corresponds to the tip speed ratio λ = 6 and Re = 1× 105 at the blade tip.

The comparison of the wake velocity deficit with experiments and the results

obtained by Manger [1] is displayed in Figure 3, where we plot U = 1- Uwake/Uref

over the horizontal line (y/R = −2 to y/R = +2) located at X/D = 1 and X/D = 3

downstream of the turbine. Given the inclusion of the nacelle and tower in the present

simulations, the overall shape of the wake generated by the rotor is not axisymmetric

and manifests an uneven expansion of the wake in the horizontal direction. We notice

that adjacent to the tower a kink in the profile, which is believed to occur because of the

wake generated by the rotor, is captured by our fully resolved 3D simulation using SMI

to handle the rotation of the rotor. Our simulations have captured well even the small

scales generated by the tower as shown in Figure 4 and compare significantly better to

the experiments than the results reported by Manger [1]. The differences are assumed

to be caused by the fact that we have eight times more CFD cells in our simulations

than those performed by Manger.

5. Conclusion

We have herein presented high-fidelity simulations of the wind tunnel tests of a model

wind turbine (known as the NTNU BlindTtest) carried out at the Norwegian University

of Science and Technology in 2011 by Krogstad et al [1]. Our computational model

accurately represented the wind tunnel test setup and we discretized the full 3D

geometry of the wind turbine (rotor, nacelle, and tower) using 40×106 finite volume cells.

The rotation of the rotor was handled by means of the Sliding Mesh Interface (SMI)

technique and we employed the Reynolds Average Navier-Stokes (RANS) framework

with the k − ω SST turbulence model. The simulation was done using OpenFOAM-

4.0 (OF) [30] and the high-performance supercomputer Vilje.

The focus of the NTNU Blind Test was to provide predictions of the spatial

distribution across the wake at zero angles of yaw for horizontal lines downstream of

the rotor plane, and our results compared very well with the experimental data. To our

knowledge, the results presented herein are the most accurate simulations conducted for

the NTNU Blind Test , and may indeed be described as high-fidelity .
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(a) x/D=1

(b) x/D=3

Figure 3: NTNU Blind Test (TSR=6): Comparison of the wake velocity deficit at

horizontal lines downstream of the turbine ((a) x/D = 1 and (b) x/D = 3) obtained

in the present study with those obtained by numerical simulations by Manger and

experimental wind tunnel tests by Krogstad et al [1].
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Figure 4: NTNU Blind Test (TSR=6): Contours of velocity magnitude over a cross-

section aligned with the inlet velocity through the center of the turbine. Tip vortices are

evident along with smaller flow disturbances emanating from the turbine tower. Fully

resolved 3D turbine geometry and the use of the SMI technique for handling the rotation

of the rotor captures well even small-scale flow structures and the turbulent flow field

around the wind turbine.

We think that such high-fidelity solutions can serve to generate snapshots for

Reduced Order Methods (ROM) based on Proper Orthogonal Decomposition. Such

methods have been tested before in study [31, 32] for benchmark flow problems (such

as flow around an airfoil [33], cylinder [32], etc.) and have shown encouraging results

for low Reynolds number flow. We are now in the process of enhancing this previous

attempt to realistic Reynolds number flow and will address the challenge of providing

ROM for the NTNU Blind Test model turbine.

Acknowledgments

The authors acknowledge the financial support from the Norwegian Research Council

and the industrial partners of NOWITECH: Norwegian Research Centre for Offshore

Wind Technology, OPWIND: Operational Control for Wind Power Plants and FSI-

WT (Grant No.:216465). Furthermore, the authors greatly acknowledge the Norwegian

Metacenter for Computational science (NOTUR-reference number: NN9322K/1589) for

giving us access to the Vilje high-performance computer at NTNU.



16th Deep Sea Offshore Wind R&D conference

IOP Conf. Series: Journal of Physics: Conf. Series 1356 (2019) 012044

IOP Publishing

doi:10.1088/1742-6596/1356/1/012044

10

High Fidelity CFD Assessment of Wind Tunnel Turbine Test

References

[1] Krogstad P A and Eriksen P E 2013 Renewable Energy 50 325 – 333

[2] Hansen M, Sørensen J, Voutsinas S, Sørensen N and HA M 2006 Progress in Aerospace Sciences

42 285–330

[3] Qin C, Saunders G and Loth E 2017 Applied Energy 201 148 – 157

[4] Siddiqui M S, Rasheed A, Tabib M and Kvamsdal T 2019 Renewable Energy 132 1058 – 1075

[5] Herraez I, Akay B, van Bussel G J W, Peinke J and Stoevesandt B 2016 Wind Energy Science 1

89–100
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