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Abstract

The CO2Mix project is established in order to fill important knowledge gaps regarding thermophysical properties of 
CO2-rich mixtures relevant for CCS conditioning and transport. Even small amounts of impurities can have a large
effect on these properties and hence on the design of process equipment and flow assurance calculations. Hence, 
accurate models backed up by experimental data of high quality are required for efficient and safe design and 
operation of CCS infrastructure and equipment. In the CO2Mix project, SINTEF Energy Research, Norwegian
University of Science and Technology (NTNU) and Ruhr-Universität Bochum (RUB) will perform accurate
measurements of phase equilibria, density, and speed of sound.  In this paper, the need for measurement of thermo-
physical properties will be discussed, and the experimental setups will be described.
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1. Introduction 

In order improve the prediction of the performance of processes and process equipment in a CCS 
chain, it is necessary to accurate describe the behavior of the fluids that are involved. For a range of 
relevant conditions within the CCS chain, there are still large gaps with insufficient experimental data 
characterizing CO2-rich mixtures to describe system behavior with an acceptable level of accuracy. The 
aim of the research project CO2Mix is to fill these gaps for selected mixtures and physical properties. The 
focus will be on properties and CO2 mixtures that are relevant for CCS conditioning and transport.  

CO2Mix is a KPN project (Knowledge-building Project for Industry) under the CLIMIT program 
managed by the Research Council of Norway (RCN). The duration of CO2Mix project is between 2010 
and 2014, and the project is organized under the BIGCCS research center.  This project will focus on 
phase equilibrium, density and speed of sound measurements. The phase equilibrium measurements will 
be performed by SINTEF Energy Research and Norwegian University of Science and Technology 
(NTNU) in Trondheim, whereas the speed of sound and density measurements will take place in Ruhr-
Universität Bochum (RUB). 

In the current paper we will provide a motivation for the project by discussing the effect of impurities 
on thermophysical properties of CO2-rich mixtures and the scarcity of experimental data for accurate 
property model development and verification. In addition, we will provide an overview of the different 
measurement setups that will be used in the project. 

2. Thermodynamiceffects of impurities 

The CO2Mix project is focusing on CCS processes related to CO2-conditioning and pipeline transport, 
for which typical operating ranges in pressure and temperature are listed in Table 1 and realistic mole 
fractions are shown in Table 2. Operation is either at low (< 4.8MPa) or supercritical pressure, but due to 
cooling and pressure loss both single- and two-phase might be possible in pipelines. The mole fractions of 
the impurities will also be dependent on the conditioning and capture technology prior to transport. For 
flow assurance, accurate prediction of thermodynamic and transport properties like phase behavior, 
density, compressibility, viscosity, and hydrate formation are important. For pipeline transport of CO2, 
the pressure and temperature range should also cover abnormal operation like for instance 
depressurization  

Thermodynamic models are often developed based on regression of parameters from experiments on 
vapor-liquid equilibrium (VLE) of binary mixtures. Experiments on mixtures of more than two 
components are useful in order to verify the developed models. For models to be more accurate and 
useful over a wider range, the experimental composition range must be wider than the mole-fractions 
listed in Table 2.  
 

Table 1. Estimated operating conditions for temperature (T) and pressure (P) [1] 

CCS process  P (MPa)  T (K) 

CO2 conditioning < 11 219.15 423.15 

CO2 transport  < 4.8 or > 8-9 < 323.15 
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Table 2. Realistic mole fractions for the different components [1] 

Component Min mol% Max mol% 

CO2 75 99 

N2 0.02 10 

O2 0.04 5 

Ar 0.005 3.5 

SO2 <0.0001 1.5 

H2S+COS 0.01 1.5 

NOx 0.0002 0.3 

CO 0.0001 0.2 

H2 0.06 4 

CH4 0.7 4 

 

2.1. Effect of impurities on vapor-liquid equilibria 

To do an initial evaluation of the design temperature and pressure range for the experimental facilities, an 
estimate of the effects of various impurities on the phase behavior has been done, using available 
thermodynamic models. A phase diagram for pure CO2 is illustrated in Fig. 1a, with the vapor-liquid 
equilibrium forming a line between the triple point and the critical point. Thermo-physical properties for 
pure CO2 are described by good models like the ones presented in refs. [2, 3]. Presence of any of the 
impurities shown in Table 2 will alter the phase behavior and split the equilibrium line into a bubble-point 
and a dew-point line, forming a phase-envelope in between. For temperature and pressure states inside 
this phase envelope, a liquid and gas phase will coexist.  

a) b) 

Fig. 1 a) Illustration of phase diagram for pure CO2. b) and mixture of CO2 and 5 mole% of impurity 
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The listed impurities can have a very different effect on the shape of the phase envelope. Anff
illustration of typical phase envelopes for a binary mixture of CO2 and 5 mole % of either CH4, N2 or SO2
is shown in Fig. 1b. The phase diagrams are calculated using the SPUNG equation of state (EOS) [4].
This equation is based on an extended corresponding state principle. A 32-term MBWR EOS for propane
is used as reference equation and the scaling factors for the temperature and density between the mixture
and reference fluid models are determined from Peng-Robinson EOS. This approach was also described 
by Michelsen and Mollerup in [5]. This formulation is reasonably fast and utilizes the cubic equations'
good behavior for prediction of VLE with an added advantage of higher accuracy on the volumetric
predictions in the liquid and supercritical region.

In Fig. 1b, the pure CO2 saturation line is shown together with conventional closed phase-envelopes of
binary mixtures between CO2 and CH4 or SO2. Both these phase envelopes have a higher maximum
pressure, cricondenbar, than the critical pressure for either of the components in the mixture, thus 
extending the pressure range for the two-phase region. This is classified in the literature as a Type I phase
behavior. The N2-CO2 mixture is a type of mixture with an atypical phase behavior it has a separate
(short) bubble-line and has a dew-line with two critical points. The dew-line extends to infinite pressure at 
low temperatures. For higher concentrations of N2, the dew-line will not envelope to lower pressures but 
just extend toward infinite pressure with an equilibrium line between two dense high pressure phases with
different compositions. The bubble-line in the displayed illustration is here hypothetical in the sense that 
the CO2 in a liquid phase in that region will form solid. 

When designing the experimental facility, an estimation of the two-phase regions was done by
plotting the two-phase locus. The locus appears when phase envelopes for the impurity mole fraction 
from 1.0 to 0.0 are plotted and the cricondenbar for each envelope is connected. A diagram for CH4-CO2
is shown in Fig. 2a, where the maximum pressure for the two-phase region reaches 90 bar, about 15 bar 
above the critical pressure of pure CO2. For temperatures below the triple point of CO2 solid will be
formed from the liquid phase the freezing line for 75 mole% of CO2 is shown. For higher CO2
concentrations the freezing temperature will move slightly to the right ending in the melting line for 
pure CO2 shown in Fig. 1a.

a) b)

Fig. 2 a) The two-phase region with the critical locus for CO2/CH4 b) Pressure-composition diagram for CO2/N2 and CO2/O2 at 
different temperatures
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For the atypical phase behavior of CO2 and N2, a pressure-composition phase diagram shown in Fig. 
2b can be used for illustration of the two-phase region. The graphs show the predicted phase transition 
lines for three different temperatures: At 293.15 K, at 253.15 K and at 218.15 K. As seen for the lowest 
temperatures, the two-phase region extends upward to above 200 bar. The two phases can be considered 
as two dense phases with different composition.  In Fig. 2b examples for the binary mixture of CO2 and 
O2 also show wide two-phase regions. 

2.2. Effect of impurities on density 

A similar analysis can be done on a CO2 mixture with 5% impurity of relevant residuals. In Fig. 3a, the 
relative effect on the density compared to pure CO2 at 90 bar over a temperature range from -30 to 50°C 
calculated with the SPUNG equation of state. The average deviation with this equation for pure CO2 was 
1.23% compared to the reference equation of Span and Wagner.  

 

a)  b) 

Fig. 3 a) Change in density between pure CO2 and a mixture with 5% impurity. b) Example of reported measurements for CO2/O2  

As seen for instance with 5% N2, the relative density has a minimum around 35°C with a density 41% 
lower than pure CO2. Disregarding the difference in viscosity and the effect on the friction factor at this 
point, the pressure drop ratio will be proportional to the inverse of the density-ratio, giving 1/0.59=1.69 
times higher pressure drop for the same flow rate in a pipe at this condition. The theoretical power 
consumption will then be 2.86 times that of pure CO2. With correction of the viscosity on the friction 
factor, the numbers will be lower. The maximum limit for a CO2 transport pipeline is 4% N2 according to 
[6]. At higher transportation pressure, the deviation peak will occur at higher temperature further away 
from the critical temperature of CO2. This is a very good rationale for improved thermodynamic models 
that can predict the density of a mixture with high accuracy, but knowing the density will also be very 
important for instance for metering purposes and EOS development. 
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3. Available experimental data 

In the overview from Li et.al[1] there are several gaps of missing data for density and VLE. The 
quality of the data was also questioned, with some of the sources for CO2 and SO2 being more than 100 
years old. As an example, for CO2/O2 mixtures, phase equilibrium data are available over a large range of 
temperatures and pressures, while no single phase density measurements are found in the literature.  This 
is illustrated in Fig. 3b, where each point represents one reported measurement point from [7-9] and the 
curves are calculated using the SPUNG EOS. Some of the measured two-phase points are predicted by 
the EOS to be in a single phase region. It can be mentioned that the VLE data for CO2/O2 were rejected in 
the development of the GERG-2004 equation of state because the deviations were too large from 
simulated results using Peng-Robinson EOS. However, the deviations are not necessarily a proof for poor 
data, and some of these data points should be repeated by new measurements with high accuracy.  Also 
for the case of CO2/CO and CO2/COS none or very little density data have been reported. This is also true 
for the liquid density of CO2/H2 

In addition, Li et.al reported inconsistencies between different data sources on phase equilibrium 
measurements of CO2/CH4 and on dew-point measurements of CO2/H2 at temperatures above 290 K. New 
measurements should be conducted for these compositions as well. 

Very little speed of sound data have been reported for mixtures of CO2 and the impurities relevant for 
CCS given in Table 2. Only one data set by Kachanov et al. [10] for the binary mixture of CO2  and N2  
could be found in literature, and, unfortunately, this data set has a relative broad, unsystematic scatter. 
Thus, providing new and accurate speed of sound data is necessary.  

4. Experimental facilities in the CO2Mix project 

In the CO2Mix project, experimental setups have been developed to measure density, speed of sound, and 
phase equilibrium to a high accuracy. The phase equilibrium measurement rig is now installed and 
experimental results will be reported soon.  The speed of sound and density measurement setups have 
been redesigned for the mixtures to be studied, and measurements will commence next year. 

4.1. Vapor-Liquid equilibrium 

The phase equilibrium measurements will be performed using an analytical technique [11], i.e. the 
composition of all phases present at equilibrium will be measured.  The experimental setup is described in 
detail by Stang et al. [12].  

The VL(L)E experimental test facility can be used to measure mixtures with all relevant impurities like 
the ones that are listed in Table 2, including explosive, corrosive, and toxic components. In addition to 
phase-equilibrium measurements, formation of solids and hydrates can be detected. Based on the initial 
predictions of phase behavior for these mixtures, the measurement equipment is designed to cover a 
temperature range from -60°C to 150°C with an accuracy and uniformity of 10 mK, and a pressure range 
from 3 to 200 bar with an accuracy of 0.10 %. The concentration range of the impurities in the CO2 
mixtures will initially be from 50 to 100 %. 

4.2. Density 

The density measurements in this project will be undertaken by means of a single-sinker densimeter 
with a magnetic suspension coupling. This kind of apparatus has been developed by Wagner et al. [13], 
the state of the art of this technique is described by Wagner and Kleinrahm [14]. In order to provide an 



2894   Sigurd W. Løvseth et al.  /  Energy Procedia   37  ( 2013 )  2888 – 2896 

absolute determination of the density, the instrument applies the Archimedes principle. This principle 
says that any object which is immersed in a fluid is buoyed up by a force equal to the weight of the 
displaced fluid. This means that by determining the buoyancy of the object, the density of the fluid can be 
calculated. Therefore, the difference of the weight force of a sinker is determined employing an analytical 
balance (Co. Mettler, Type AT 261) in vacuum and in the fluid of interest. The sinker is made from 
single-crystal silicon, and has a volume of Vs = 19 cm3, mass of ms = 44 g and density of s = 2329 kg/m3. 
Since the volume Vs(T,p) of the sinker is well known through calibration with references fluids, the 
density  of the fluid can then be calculate by means of the following equation: 

To be able to measure the density over a wide pressure and temperature range, the measuring cell and 
the analytical balance have to be separated. For this purpose the magnetic suspension coupling is applied. 
A schematic of the single-sinker densimeter can be seen in Fig. 4.  

Fig. 4 Schematic of the single-sinker densimeter 

Basically, the magnetic suspension coupling consists of an electromagnet, a permanent magnet, a 
position sensor and transducer, and a control system. The electromagnet is attached to the analytical 
balance, while the permanent magnet is part of a so-called coupling unit inside the pressure resistant 
measuring cell. This coupling unit reaches through the silicon-sinker and at the end the position sensor 
detects the vertical location of the coupling unit. Two stable positions can be realized with the magnetic 
suspension coupling. In the first, the so called tare position, the sinker is not lifted by the coupling unit. In 
this position the balance the tare weight is determined to eliminate buoyancy. In the second position, the 
so called measuring position, the permanent magnet is lifted up and the coupling unit elevates the sinker. 
In this position the weight of the sinker is recorded.  

4.3. Speed of Sound 

The speed of sound measurements in this project will be carried out utilizing a speed of sound 
apparatus with a dual path length cell, first developed by Murringer et al. [15]. The piezoelectric quartz 
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crystal is operated at high frequencies and serves as emitter and receiver. The crystal is mounted 
asymmetrical between the two reflectors at a distance of L1 = 20 mm and L2 = 30 mm, respectively, A 
schematic of the speed of sound sensor can be seen on the left side in Fig. 5.  

Fig. 5: Principle of the speed of sound measurement. Left: Schematic of the speed of sound sensor. Right: Illustration of the run of 
the sound waves of two pulses; depicted for interference. 

Due to the asymmetrical path lengths the echoes of a pulse arrive successively at the piezo, separated 
by the time difference tEcho. Therefore, the modified pulse-echo method [16] can be employed, whereby 
the cancellation of pulses is used to determine the time of flight. 

As can be seen on the right side in Fig. 5 two pulses are sent out successively, separated by a time 
difference which is called tPulse. The pulses have the same shape (sinusoidial) but are inverted. 
Furthermore, the amplitude of the second pulse is reduced to fit the higher damping on the longer path 
length. The time difference tPulse is now varied until the second echo of the first pulse and the first echo 
of the second pulse interfere destructively. For this case tPulse equals tEcho and the speed of sound can be 
calculated by means of the following equation: 

In this equation  describes the path length difference of the speed of sound sensor, 
which has to be calibrated with a reference fluid with well known speed of sound. 

5. Conclusions 

In CO2Mix project, thermophysical properties of CO2-rich mixtures relevant for CCS conditioning and 
transport will be measured. Current models indicate that even rather small amounts of relevant impurities 
can have major impact on the thermophysical properties of CO2 rich mixtures.  These properties are 
necessary to predict with high accuracy in order to design and operate transport CCS infrastructure in a 
safe and cost effective manner. Accurate predictions require that the models can be improved and verified 
by accurate experimental data.  

Currently, there are large knowledge gaps in the reference experimental data to be covered for all these 
properties for a range of relevant mixtures anticipated in CCS conditioning and transport. Hence, in the 
CO2Mix project, advanced measurements setups have been designed, and highly accurate measurements 
of phase equilibria, density, and speed of sound are under way. The measurements will be performed by 
SINTEF Energy Research, Norwegian University of Science and Technology (NTNU), and Ruhr-
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Universität Bochum (RUB). 
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