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Abstract 

Capture conditions for cement plant flue gas differ substantially from other industrial flue gases due to the high 
partial pressure of CO2, presenting an opportunity for polymeric membranes to compete with other capture 
technologies. In this work, two membrane processes are designed by applying a recently developed graphical 
methodology to identify promising membrane properties, number of stages and operating points for each stage. The 
net present values of cost and the CO2 avoidance costs are compared with an MEA based capture unit when applied 
to a 0.7 MtCO2/year cement plant. The membrane designs are shown to have a significantly lower investment cost 
(32.6 M€ vs. 294 M€) and CO2 avoidance cost (27 €/t vs 55 €/t) than the reference MEA based capture process. The 
investment cost for turbomachinery and the operating cost for electricity are also shown, in this particular case, to be 
more important than the membrane investment and replacement costs over the lifetime of the membrane capture 
plant. The present work underlines the importance of using a cost-based approach to balance the trade-offs in 
membrane process design. 
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1. Introduction 

In the transition to a low-carbon society, carbon capture technologies are considered for a range of industrial 
sectors. Post-combustion gas separation by permeation membranes is a promising alternative that has potential to 
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reduce the capture cost in the short-term perspective. A variety of process layouts and membrane improvements 
have been studied for post-combustion capture in the power industry. However, due to the low driving force for 
separation from these flue gases, relatively complex membrane systems are needed in order to compete with 
chemical absorption on an energy efficiency basis. 

When considering other industries, such as steel and cement production, capture conditions vary substantially 
from the power plant cases [1]. Specifically, the flue gas CO2 concentration is higher, providing a higher driving 
force for separation. While chemical absorption is considered also for these cases, particularly using 
monoethanolamine (MEA), there is very little energetic benefit of increasing the CO2 concentration beyond that of a 
typical coal power plant case (12 vol% CO2) [2]. Membrane separators, on the other hand, benefit from the 
increased CO2 partial pressure. 

Significant work in literature is devoted to sensitivity analysis of single stage membrane units as inputs to process 
design. The trade-off between permeate purity and capture ratio can be explored by varying the membrane pressure 
ratio, area, permeation properties (flux and selectivity) and flow pattern (cross flow, co-current or counter-current 
flow). Single stage membrane separation is however infeasible with current membrane properties if stringent capture 
ratios and CO2 purity requirements are to be met (e.g. 85-90% capture at 95% purity). The complexity for the design 
of a multi-stage membrane process increases as the process configuration and associated trade-offs at each stage 
must be considered. 

Previous work on multi-stage process design for post-combustion capture involves establishing "good" process 
configurations based on insights from single-stage unit sensitivities for the case at hand. Global sensitivity studies 
for the multi-stage processes are then performed to find membrane properties and/or operating conditions which 
give a reasonable trade-off between membrane area and energy consumption. It is normally not known beforehand 
whether the process designed will achieve the targeted capture ratio and product purity simultaneously. 

Merkel et al. used this methodology to establish optimal membrane properties and synthesize complex processes 
for post-combustion capture from a coal power plants [3] and natural gas combined cycle power plants [4]. Similar 
work has also been performed by other authors. Kundu et al. [5] investigated the use of dual stage membrane 
systems for post-combustion capture from a cement plant. A hybrid between membrane and solvent based capture 
units were also explored. Scholes et al. [6] built on the work of, among others, Merkel et al. [3], designing three 
different processes and comparing their energy use and cost. For the simplest layout, a parameter variation of the 
total stage cut of the first stage was used to find suitable operating parameters and membrane selectivity. All these 
studies, however, focus mainly on reducing power consumption while maintaining an acceptable membrane area. If 
economic results are included in the studies, they are calculated as a post-processing step. 

For systems where energy and investment costs are of the same order of magnitude and follow opposing trends, 
overall process design need to address the economic tradeoff between these two costs in order to avoid sub-
optimization. Membrane systems for CO2 capture is an example of such a process, due to the high investment and 
replacement costs for the membrane and the high energy consumption associated with feed compression and 
vacuum pumping of the permeate. The trade-off between membrane area and pressure ratio must be dictated by a 
rigorous economic model for cost minimization. 

A graphical methodology developed at SINTEF Energy Research [7] is used in the present work to design two 
near-cost-optimal membrane systems that fulfil requirements on CO2 capture ratio (CCR) and product purity. The 
attainable region diagram is used to identify promising membrane properties, stage configurations and estimated 
capture cost for a typical cement case (~20% CO2). The underlying membrane model and cost framework is then 
used to back-calculate operating conditions and break down the cost structure of the processes. Results on CO2 
avoidance cost and net present value of cost are finally compared to an MEA based solvent reference case. 

2. Case study and benchmarking reference  

The IEA case study [8] on CO2 capture in the cement industry from 2008 is used as the foundation in the present 
work. This report presents detailed process simulations and economic evaluations of a hypothetical new-build 
1Mtclinker/year cement plant in Scotland, UK, with and without CO2 capture. 

The cement plant without capture is used in the present study to determine the flow rate and CO2 concentration of 
the flue gas fed to the membrane units. The total CO2 flow rate in the exhaust is 0.72 MtCO2/year, corresponding to 
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0.62 MtCO2/year captured with an 85% CCR. Since the membrane unit does not require any CHP plant for steam 
production, the CO2 flow rate is significantly smaller than in the MEA case and the flue gas has a slightly higher 
CO2 concentration. For consistent comparison, all economic assumptions in the membrane cost model of the present 
work is taken from the cement plant with capture and all data will be presented in 2008 euros, as in the IEA report. 

The cement plant with MEA based CO2 capture is used as the benchmarking reference to the developed 
membrane system. The annual operating costs, investment costs and emissions of CO2 presented in the report are 
used to calculate the CO2 capture cost and CO2 avoidance cost consistently with the membrane cost evaluation. For 
comparison, the capture- and avoidance costs without flue gas desulfurization (FGD) and selective catalytic 
reduction (SCR) units are also calculated. These costs correspond to a case where these units would have to be 
included in the base plant without capture because of emissions regulations. 

3. Design and modeling approach 

3.1. Membrane properties 

Three different membranes are considered for the 
present application: a) A dense polymeric membrane 
from literature with excellent permeation properties, b) 
a hypothetical polymeric membrane with a significantly 
higher selectivity but with the permeance scaled 
according to Robesons' upper bound relationship [9] 
and c) an ultra-thin facilitated transport membrane that combines a high selectivity with a permeance considerably 
exceeding Robesons' upper bound. 

The parameters for the membrane model are given in Table 1. All membranes are modeled according to the 
solution-diffusion theory, implying that membrane properties are invariant to the pressure ratio. The membrane cost 
and lifetime are also assumed to be the same. 

Table 1: Membrane properties 

 = /   Reference 
 - m3(STP)m-2hr-1bar-1  
Membrane A 50 5.94 [4] 
Membrane B 200 0.108a [9] 
Membrane C 200 1 [10] 
a Assuming the same membrane thickness as Membrane A 

3.2. Design methodology 

A graphical methodology for systematic and consistent design of membrane processes for post combustion 
capture has previously been developed at SINTEF Energy Research [7]. This methodology is now applied to the 
cement plant case to design simple, near-cost-optimal membrane processes with a high CO2 capture ratio. The 
membrane separation task is divided into several stages, where each stage includes a membrane unit as well as its 
own rotating equipment and intercoolers (cf. Figure 1). The combination of a membrane model, a rotating 
equipment model and a cost model is used to calculate the technical and economic performance of each stage. An 
attainable region diagram is used to visualize the possible operating window of each membrane stage in addition to 
its optimal operating region. The number of stages and operating points are then easily identified using a step-wise 
approach similar to the McCabe Thiele diagram. Complex process features, such as retentate recycles or retentate 
heating before expansion, are not included in the graphical solutions generated. 

The attainable region diagram is a plot of feed composition versus permeate/retentate purity and is drawn for a 
certain stage carbon capture ratio. This stage carbon capture ratio is in turn determined from the overall capture ratio 

 

Figure 1: Membrane unit used to create the attainable region diagram 
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to be attained and an assumption on the number of stages. The overall capture ratio can be subject to economic 
optimization, but is set to 85% in this work in line with the IEA report [8]. Additionally, the minimum allowable 
permeate side vacuum must be set. In this work, 0.2 bar is used. The minimum cost curve (locus of 
permeate/retentate purities) is then calculated for the entire range of feed CO2 mole fractions (0-1), using the cost 
model to determine the membrane pressure ratio and area which gives the lowest cost for each point. In addition, 
curves of constant cost can be drawn as a function of feed composition. These curves intersect the minimum cost 
curve at the lowest feed composition for which the given separation can be attained to the required specifications. 
The envelope formed by the iso-cost curves represents the attainable region for a given membrane and indicate the 
ranges of purity which are attainable without unreasonable increases in cost for a given feed composition. 

The total specific capture cost (CC, in €/t CO2) for n separation stages can be calculated from the stage capture 
costs and the stage capture ratios: = + + +      ( 1 ) 

3.3. Membrane model 

The design methodology requires robust models for the membrane separator, the rotating equipment. A 
membrane model for two gas components, after Saltonstall [11], is adopted for the present work. The model 
assumes a membrane unit in cross-flow configuration with plug flow on the feed side and no mixing with the bulk 
stream on the permeate side. These assumptions allow analytical solution of all model equations, which is favorable 
in terms of robustness and computational speed. A disadvantage of this approach is that water vapor permeation 
cannot be modeled. As a result, the cost and/or power consumption of drying units before or after the membrane 
unit(s) cannot be included in the present analysis. To ensure that the analysis is conservative with respect to 
membrane performance, the water vapor is treated as an inert gas contributing to reducing the partial pressure of 
CO2 in the exhaust. It should be noted that although a multicomponent model could have included water in the 
performance analysis, experimentally validated membrane permeation constants in the presence of water vapor are 
scarce in open literature. 

3.4. Cost assessment methodology 

The additional cost of equipping a cement plant with membrane CO2 capture is evaluated for an 85% capture 
ratio and compared to the additional cost of a cement plant with MEA CO2 capture. This study assumes costs of a 
"NOAK" (Nth Of A Kind) plant to be built at some point in the future, when the technology is mature. Investment 
and operating costs are given in 2008 prices which correspond to the reference year for costs in the IEA report [8]. 

The costs for the MEA capture facility and FGD/SCR units are adopted from the IEA report [8]. The costs of the 
membrane capture process is evaluated using cost function based on Aspen Process Economic Analyzer following 
the IEA cost methodology in order to obtain consistent and comparable costs estimates. For membrane unit 
equipment costs, more details can be obtained in Roussanaly et al. [12]. The average direct and indirect cost factors, 
the maintenance costs and utility costs of the cement plant with MEA CO2 capture considered in the IEA report are 
used to evaluate the investment cost of the cement plant with membrane capture considered in this paper. 

The technical characteristics and costs associated with CO2 conditioning from 1 to 150 bar are modelled using the 
BIGCCS transport modules previously presented and illustrated [13,14]. 

The CO2 avoided cost (€/tCO2) , presented in Equation ( 2 ) is here used as a key performance indicator to measure 
the unitary cost of capturing CO2 from a cement plant. The CO2 avoided cost approximates the average discounted 
CO2 tax or quota over the project duration that would be required as income to match the net present value of 
additional capital and operating costs due to the CCS infrastructure. The calculations are performed considering a 
real discount rate of 10%, 7 884 operating hours per year and an economic lifetime of 25 years [8]. To be consistent 
with the IEA report, the CO2 avoided is calculating considering only the direct electricity linked emissions with a 
climate impact of 520 kgCO2/MWhconsumed. 
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CO2 avoided cost [€/tCO2] = Annualized investment + Annual OPEX 
Annual amount of CO2 captured - Annual direct emission

  ( 2 ) 
4. Results 

4.1. Dense polymeric membranes 

Figure 2 shows the attainable region diagram for membrane A and B, representing the trade-off between 
permeance and selectivity normally seen in polymeric membranes. Due to its high permeance, membrane A has a 
relatively wide attainable region (the convex hull which encompasses all iso-cost curves). The iso-cost curves also 
extend far down in feed gas CO2 concentration for the same reason. Membrane B on the other hand, has an 
extremely narrow operating window, and can in practice only reach one particular permeate purity for a given feed 
gas. In addition, the cost level of a membrane B system is much higher than for a membrane A system, as indicated 
by the iso-cost curves, mainly due to the need for larger membrane area and greater feed compression. Membrane B 
can indeed be used in a single stage configuration since it can reach 95% purity with a cement flue gas feed, but it 
will require massive feed compression (16.2 bar) in addition to a large membrane area (> 2 10  m2). This leads to 
a prohibitively large specific cost for separation (33 €/t without final compression). Membrane B is therefore not 
considered further. 

The number of stages for membrane A is determined by first considering a design using the minimum cost curve 
alone. Adhering strictly to the minimum cost, three separation stages is required to reach 95%+ purity, since the 
permeate from the second stage will only be about 90% CO2. Since the third stage will reach far beyond 95% purity, 
a three stage design will either separate the components excessively or be operated below the minimum cost curve to 
reach the desired separation. In practice, it is never desirable to operate any stage below the minimum cost curve, 
since this implies a higher cost, lower purity and a larger number of units than necessary. Two stages are therefore 
chosen, with operating points determined by the iso-cost curves. 

By considering the gradient of the iso-cost curves, it is clear that a two-stage design should aim for a high purity 
in the permeate from the first stage to avoid an excessively expensive second stage. The indicated Design I is not 
optimal, since it operates quite far away from the minimum cost in the first stage but very close to it in the second 
stage. Design III does not represent a good trade-off either – the second stage cost is too high since it ends up in a 
region with a large gradient in the cost function. Design II is the design of choice for the present application. 

The two-stage design of Scholes et al. [6] is plotted in the attainable region for comparison with the present work. 
This design uses minimal feed compression, presumably in an attempt to limit power consumption, and is therefore 
unable to combine a high stage capture ratio with a decent permeate purity. Significant energy is wasted through the 
vacuum pumping of nitrogen/water, and a larger area than necessary is used. Consequently, the second stage 
becomes prohibitively expensive due to the low intermediate purity. This example shows why a consistent, cost-
based approach is needed to design membrane systems even as "simple" as a two stage design. 

Finally, the potential for recycling the retentate stream from the second stage is evaluated for Design II. As 
indicated by the dotted line, the retentate purity is only about 15% CO2. It is therefore not judged likely that 
recompressing this stream and mixing it with the feed stream will contribute to reducing the cost for capture. 

4.2. Facilitated transport membranes 

Figure 3 shows the attainable region diagram of membrane C, modelled as a solution-diffusion governed 
membrane. Compared to the curves for membrane B in Figure 2, the attainable region is significantly wider and the 
costs are lower. However, the process based on membrane C (Design IV) must be operated above the minimum cost 
for the cement feed, leading to a significant feed compression (7 bar). The cost is in a reasonable range due to the 
smaller number of units compared to a two-stage design and the smaller required area. It should however be noted 
that the operating point is in a region with a large gradient in the cost function, indicating that the cost results are 
sensitive to changes in underlying assumptions or errors in the membrane model (e.g. feed composition or permeate 
purity). 
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Figure 2: ,  = 50) and B (CCR: 0.85,  = 200). Numbers in plot area indicate iso-curve 
for specific capture cost (€/t) without final compression to transport conditions. Total specific capture costs without compression: Design I – 18.6 
€/t; Design II – 18.0 €/t; Design III – 18.6 €/t 

 

Figure 3: Attainable region diagram for membrane C (CCR: 0.85,  = 200). Numbers in plot area indicate iso-curve for specific capture cost (€/t) 
without final compression to transport conditions. Total specific capture cost without compression: Design IV – 22.7 €/t 
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4.3. Economic comparison 

A summary of the key results from the economic evaluation is given in Table 2. The membrane processes of the 
present work represent a major improvement in investment and operating costs over the base case MEA process, 
since they avoid building and operating a CHP plant. The CO2 avoidance costs of the membrane systems are 
therefore also superior to the MEA case, despite the significant climate impact of the consumed electricity. 

Figure 4 presents a breakdown of the Net Present Value (NPV) of the capture unit cost for the four cases. It is 
clear that the membrane systems are favorable compared to the MEA case not only due to the lower total NPV, but 
due to the much smaller investment cost compared to the operating cost. 

Figure 5 compares the cost structure of the two different membrane process designs in the present work. 
Compressors and electricity dominate the cost, particularly for the facilitated transport membrane. It is clear that the 
Design II is preferable over Design IV for two reasons: Even if it were possible to fabricate membrane C at the same 
cost and with the same lifetime as membrane A, this combination of selectivity and permeance requires too much 
feed compression to be competitive with multi-stage systems. Increased permeance is not expected to change this, 
since the membrane area represents a small share of the total cost for this particular case. Moreover, designing for a 
slight overcapacity with membrane C is much more costly, since Design IV already operates at a point with a steep 
gradient in the cost function with respect to e.g. feed composition and target purity. 

  

Figure 4: Comparison of cost types for the membrane processes and the 
reference MEA capture unit [8] 

Figure 5: Breakdown of costs of the membrane processes 

Table 2: Summary of key results 

  Design II Design IV MEA without 
FGD/SCR 

Base case 
MEA 

Specific energy penalty MJe/kg CO2 captured 0.91 0.98 - - 
Specific capture cost €/t CO2 captured 24 29 45 58 
Climate impact of electricity MtCO2/year 0.056 0.097 -0.054a -0.054a 

Specific avoidance cost €/t CO2 avoided 27 32 43 55 
CAPEX M€ 33 50 234 294 
OPEX M€/yr 7.7 8.8 23 31 
a The electricity produced in the CHP plant has a lower climate impact than the average grid electricity 
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Conclusions 

Two cost competitive membrane processes for CO2 capture from a cement plant have been designed based a 
recently developed graphical methodology. The designs are shown to have a significantly lower CO2 avoidance cost 
than the reference MEA based capture process, even when disregarding SOx and NOx removal units. Moreover, the 
investment cost for turbomachinery and the operating cost for electricity are shown to be, in this case, more 
important than the membrane investment- and replacement cost over the lifetime of the capture plant. The present 
work underlines the importance of using a cost-based approach to balance the trade-offs in membrane process 
design. 
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