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Abstract—One of the present barriers to the widespread use
of Modular Multilevel Converters (MMC) is the complexity of
its control. We use a suitable degree of simplifications of the
MMC converters, under given conditions, to allow system level
studies over potentially large networks. The analysis is based on
a recently proposed simplified model of the MMC. Based on this
model, we propose an analysis using the theory of Contraction
to define some stability conditions. Some simulation results allow
to see the advantages of the proposed method.

Index Terms—Contraction Analysis, Modular Multilevel
Converter, stability.

I. INTRODUCTION

THE increasing penetration of renewable energy in the
traditional power system and particularly the massive

integration of offshore wind farms has created the need to
generate new control and analysis strategies in the Power
systems. The use of the Voltage Source Converter (VSC)
technology, with independent control of active and reactive
power at the AC terminals is considered and advantage to
support weak power systems [1].
Classic stability analysis in power systems requires three main
steps: modelling, load flow calculation and dynamic analysis.
For this purpose, in this paper, we used a simplified model of
the MMC converter and for the dynamic analysis we applied
the contraction theory instead of Lyapunov theory which is the
most used technique [2]. Contraction theory is introduced as a
powerful concept to treat the stability properties of nonlinear
dynamical systems. Besides, the contraction theory provides
an elegant way to analyze the behaviors of certain nonlinear
dynamical systems [2], [3]. Contraction analysis is motivated
by the elementary idea that talking about stability does not
require to known what the nominal motion is: intuitively, a
system is stable in some region if the final behavior of the
system is independent of the initial conditions [4], [5]. Many
questions of nonlinear systems theory call for an incremental
version of the Lyapunov stability concept, in which the
convergence to a specific target solution is replaced by the
convergence or contraction between any pairs of solutions
[6]. Essentially, this stronger property means that solutions
forget about their initial condition. The difference between the
Lyapunov and contraction stability analysis is that stabilization
in the sense of Lyapunov occurs at the minima of a generally

defined a given function (particular) of any solution, while
contraction theory proceeds to a differential approach and the
stability of trajectories of a dynamical system with respect to
one another [7]. In addition, the convergence of solutions is
determined to be independent of initial conditions [8].
This paper is organized as follows: Section II gives the
Dynamic model of Modular Multilevel Converter. Section III
presents basic concepts about Contraction Analysis. In Section
IV we show simulation results using contraction analysis in
one MMC. Finally in section V, the discussion and conclusions
are presented respectively.

II. DYNAMIC MODEL OF MODULAR MULTILEVEL
CONVERTER

The modular multilevel converter (MMC) is the preferred
topology for voltage source converter (VSC)-based HVDC
transmission schemes. Different approaches to the model of
the MMC have been made, for the purpose of this paper, we
will take as reference the development in [9] and [10]. It is a
common procedure in power systems analysis to approximate
the fast transient behaviour of the power electronics converter
to an active power injection model as presented in [1]. This
approximation is based on the reasonable assumption that
the converters are tightly-regulated, the harmonic distortion is
negligible, DC faults are outside the scope of the analysis, the
transient response is typically in the range of few milliseconds,
losses can be neglected and a generic model can be used to
represent the dynamics. The MMC depicted in Figure 1 is the
most suitable converter topology due to its improved harmonic
ac-voltage output, avoiding the need of installing harmonic
filters.

The system can be described with the set of equations
(1)-(3).

La
di
dt

= E− v−Rai− J · ωLai (1)

La
diΣz
dt

= −RaiΣz +
vdc
2
− uΣz (2)

dWz

dt
= 2ucziσz −

1

2
(edid + eqiq)− αpWz (3)

where, the AC side variables are i = (id, iq)
T , E = (ed, eq)

T ,
v = (vd, vq)

T J ∈ R(2×2) is a skew-symmetric matrix. The
DC side variables are vdc, uΣz and iΣz . The inductance is La
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and the resistance is Ra. The parameter αp considers the power
losses of the capacitors for the sub-modules of the MMC.

With the case of internal regulation of the quadrature current
iq to zero and the tight regulation of iΣz to the reference i?Σz .
We can write a reduced model as

Lai̇d = −Raid + ed − vd (4)

Ẇ = ξ − 1

2
edid − αpWz (5)

Figure 1. MMC dynamic model

III. CONTRACTION ANALYSIS

Contraction analysis emerges with the works of Slotine on
his seminal paper [11] as an alternative to analyze the stability
of a nonlinear system, without requiring the well-known
Lyapunov theory. The mathematical framework applied on
this theory uses differential forms and variational principles
[12] to establish an incremental stability set up, then it is
possible to relates the results found on contraction theory with
the Lyapunov stability notion. We consider the general and
deterministic dynamical systems of the form

ẋ = f(x, t) (6)

where x ∈ Rn is the system states, f : Rn −→ R the vector
field, t ∈ R+, is the continuous time.

Consider the local flow s(x, t) at a point x where it is
possible to analyze the convergence among two trajectories.
If both trajectories converges to each other global exponential
convergence to a single trajectory could be established.
Assuming that f is sufficiently smooth, we have

δẋ =
∂f

∂x
(x, t)δx

where δx is a virtual displacement, formally it defines linear
tangent differential form with a quadratic tangent δxT δx,
this equivalently means that the squared distance between
trajectories is defined through these differential forms, so using
the ideas before the rate of change is written as,

d

dt

(
δxT δx

)
= 2δxT δẋ = 2δxT

∂f

∂x
δx

Defining an upper bound for the solution

‖δx‖ ≤ ‖δxo‖ e
∫ t
o
λmax(x,t)dt

Assuming that λmax(x, t) is uniformly strictly negative.
Then, any infinitesimal length ‖δx‖ converges exponentially
to zero.

Definition 1. [11] Given a system of equations ẋ = f(x, t),
a region of the state space is called a contraction region if the
Jacobian ∂f

∂x is uniformly negative (UND) in that region.

The UND Jacobian condition is defined as

Definition 2. The Jacobian uniformly negative accomplish
with ∃β > 0,∀t ≥ 0,∀x

1

2

(
∂f

∂x
+
∂fT

∂x

)
≤ −βI < 0

in any region considered as an open connected set. As a
consequence a semi-contraction region is said to ∂f

∂x being
negative semi-definite, and a indifferent region to ∂f

∂x being
skew-symmetric.

Consider the figure 2, any open set defined under a
normed ball encircles some trajectory inside this ball and
it remains there ∀t ≥ 0. So, any trajectories distance
decreases exponentially and converges exponentially to the
given trajectory (ball center). So, this leads to the following
theorem:

δxT δx

Figure 2. Squared Distance between two neighboring trajectories

Theorem 1. [11] Given the system dynamics

ẋ = f(x, t)

any trajectory, which starts in a ball of constant radius
centered about a given trajectory and contains at all
times a contraction region, remains in that ball and
converges exponentially to this trajectory. Furthermore, global
exponential convergence to the given trajectory is guaranteed
if the whole state space is a contraction region

With this mathematical foundations about contraction
theory, the following analysis is performed on the MMC model
defined in the sections above.

Let the dynamics separation of the MMC simplyfied model
be,

Lai̇d = −Raid + ed − vd
Ẇ = ξ − 1

2edid − αpWz
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clearly this model has a nonlinear structure, considering the
convention above, and rewriting this model we have,

ẋ1 = −Ra

La
x1 +

u
La
− d1

La

ẋ2 = d2 − 1
2ux1 − αpx2

For the ease of the analysis and without loss of generality, we
propose a change of variable over the control input u(t), so,

u =

∫ t

0

v(λ)dλ

This establishes the model alike that has used for an integral
backstepping design [13], then,

ẋ1 = −Ra

La
x1 +

x3

La
− d1

La

ẋ2 = d2 − 1
2x3x1 − αpx2

ẋ3 = v

being v(t) the new control input, the objective through this
analysis is consider the potential use of the contraction theory
to design a control law stabilizing this nonlinear system, to
consider this methodology let assume that v ∈ V is defined
over a set of admissible controls and v : Rn −→ R is
a nonlinear function of the states. In this representation is
possible to define a Jacobian which depends on v(x), so the
UND condition could be achieved.

∂f

∂x
=

 −Ra

La
0 1

La

− 1
2x3 −αp − 1

2x1
∂v
∂x1

∂v
∂x2

∂v
∂x3

 (7)

Using the symmetric decomposition we obtain,

1

2

(
∂f

∂x
+
∂f

∂x

T
)

=

1

2

 −2Ra

La
− 1

2x3
∂v
∂x1

+ 1
La

− 1
2x3 −2αp ∂v

∂x2
− 1

2x1
∂v
∂x1

+ 1
La

∂v
∂x2
− 1

2x1 2 ∂v
∂x3

 (8)

Consequently UND Jacobian implies that, all leading
principal minors are negative, so is important to(

1

2

)[
(−1

2
x3)(

∂v

∂x2
)(
∂v

∂x1
+

1

La
)+

(
∂v

∂x1
+

1

La
)(−1

2
x3)(

∂v

∂x2
− 1

2
x1)−

(−2Ra
La

)(
∂v

∂x2
− 1

2
x1)(

∂v

∂x2
− 1

2
x1)−(−

1

2
x3)(−

1

2
x3)(2

∂v

∂x3
)
]

≤ 0 (9)

Consider the case where the equality remains, it is possible to
define an analytic form to derive v(x) as a potential function
such that its derivatives form a gradient vector. Let

v(x) =

∫ x1

0

g1(y1)dy1 +

∫ x2

0

g2(x1, y2)dy2 + · · ·+∫ xn

0

gn(x1 . . . , yn)dyn (10)

One possible solution for v(x) is presented in (11).

v(x) =
−x1

La

∫ x3

0

y3

y3
2
dy3 −

Ra
La

x1
2

∫ x3

0

dy3

y3
2
−

16x1
2

∫ x3

0

1

y3
2
dy3 (11)

v(x) =16La|x1|+
Rax1

2

Lax3
− x1

La
log(x3)

This last inequality is a particular case of the expression (9),
there, we can use the partial derivatives on v(x) to establish its
degree of freedom selecting a suitable function which leads the
Jacobian to achieve a desired contracting behavior, obtained
by (10). This implies partial differentiation in the very general
case, however assuming some structure on these derivatives,
and suitable boundary conditions there exists a simpler
expression which can be solved. This problem in particular is
alike to that used for synthesizing a control law starting with
a Control Lyapunov Function (CLF) achieving asymptotically
stability behavior. Although the results presented so far,
defines a methodology for stabilizing a nonlinear system,
the idea behind contraction theory is to analyze the stability
problem of a nonlinear system in a differential framework with
enriches the classical methodology like Lyapunov theory, in
fact the results presented in [11] shows a generalization of
exponential stability which is a strong property comparing
with asymptotic stability. The conclusions about the system
using contraction theory are strong and extends the results
applying classic nonlinear stability studies.

Remark 1. In the equation 7 the UND Jacobian is considered,
it requires that principal minors of the matrix to be strictly
negative according to the Sylvester theorem, therefore, the
control law designed must hold this property for all time

IV. SIMULATION RESULTS

For simulation we have used the following parameters
about the simplified MMC model, the results are simulated
using MATLABTM 2018b The figures 3, 4, 5 show the

La Ra d1 d2

0.093500 0.94465 400000 13542400

state trajectories achieving a contracting behavior when v(x)
is applied, as the theory dictates the initial conditions are
“forgotten”, so the steady state value corresponds to the fixed
point of the nonlinear system. The phase space shown in 6,
demonstrates the fixed point stability, locally, as a stable spiral,
since the oscillatory behavior of the nonlinear system. The
behavior observed on each of the states allows us to conclude
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Figure 3. x1 state evolution
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Figure 4. x2 state evolution

that the global stability is achieved considering the uniqueness,
and isolation of the equilibrium point.

V. DISCUSSION AND CONCLUSIONS

The use of contraction theory to study the stability of a
MMC with the Jacobian in function of the states eases the
identification of the region of attraction. Therefore, this tool
can be used by the engineers to find physical limitations on
the application and design of the converter. The convergence
analysis and limit behavior are in a sense treated separately.
In a control context, once contraction is guaranteed through
feedback, specifying the final behavior reduces to the problem
of shaping one particular solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7
10

5

Figure 5. x3 state evolution

Figure 6. Phase Space

One of the most important problems arising in the control
and the analysis of dynamical systems is to determine if the
system is stable. Typically, stability is defined in the sense of
Lyapunov but it is clear with the information in this paper
that the contraction analysis could be used in conjunction
with the Lyapunov theory to guarantee stability conditions.

Current research includes systematically guaranteeing
global exponential convergence for general nonlinear systems,
stable adaptation to unknown parameters, and further
applications to mechanical and chemical systems. We reduced
the model of the MMC based on its normal application on
HVDC grids. First, a pure active power converter is used.
Followed, the DC power of the converter is tightly regulated.
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Hence, the initial model can be reduced to the nonlinear
structure with two states.

In the future, our recommendation is to use the complete
model of the MMC instead of the reduced because with the
latter case it is possible lose valuable information. Also the
complete model considers all the states and this allows us to
understand in a better way the overall behavior of the system.

REFERENCES

[1] S. Sanchez, A. Garces, G. Bergna, and E. Tedeschi, “Dynamics and
stability of meshed multiterminal hvdc networks,” IEEE Transactions
on Power Systems, pp. 1–1, 2018.

[2] Z. Aminzarey and E. D. Sontagy, “Contraction methods for nonlinear
systems: A brief introduction and some open problems,” in 53rd IEEE
Conference on Decision and Control, Dec 2014, pp. 3835–3847.

[3] W. Lohmiller and J. Slotine, “Contraction analysis of nonlinear
hamiltonian systems,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 6586–6592.

[4] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, Jun. 1998. [Online].
Available: http://dx.doi.org/10.1016/S0005-1098(98)00019-3

[5] G. Russo, M. di Bernardo, and J. E. Slotine, “A graphical approach to
prove contraction of nonlinear circuits and systems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 58, no. 2, pp. 336–348,
Feb 2011.

[6] F. Forni and R. Sepulchre, “A differential Lyapunov framework for
contraction analysis,” IEEE Transactions on Automatic Control, vol. 59,
no. 3, pp. 614–628, March 2014.

[7] D. Del Vecchio and J. E. Slotine, “A contraction theory approach to
singularly perturbed systems,” IEEE Transactions on Automatic Control,
vol. 58, no. 3, pp. 752–757, March 2013.

[8] M. Yilmaz and F. K. Bayat, “Contraction region analysis for power
systems,” in 2019 IEEE Texas Power and Energy Conference (TPEC),
Feb 2019, pp. 1–6.
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