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ABSTRACT

An optimal truncated least square support vector machine (LS-SVM) is proposed for the parameter estimation 

of nonlinear manoeuvring models based on captive manoeuvring tests. Two classical nonlinear manoeuvring 

models, generic and vectorial models, are briefly introduced, and the prime system of SNAME is chosen as 

the normalization forms for the hydrodynamic coefficients. The optimal truncated LS-SVM is introduced. It 

is a robust method for parameter estimation by neglecting the small singular values, which contribute 

negligibly to the solutions and increase the parameter uncertainty. The parameter with a large uncertainty is 

sensitive to the noise in the data and have a poor generalization performance. The classical LS-SVM and 

optimal truncated LS-SVM are used to estimate the parameters, and the effectiveness of optimal truncated 

LS-SVM is validated. The parameter uncertainty for both nonlinear manoeuvring models is discussed. The 

generalization performance of the obtained numerical models is further tested against the validation set, 

which is completely left untouched in the training. The R2 goodness-of-fit criterion is used to demonstrate 

the accuracy of the obtained models.

Keywords: Optimal truncated LS-SVM; System identification; Parameter uncertainty; Nonlinear 
manoeuvring model; Generalization performance.

NOMENCLATURE

m Mass of the ship [kg]
zzI Yaw moment of inertia with Z-axis [kg m2]

Gx Gravity centre of the ship in x-direction [m]

11 22 66, ,   Added mass and moment [kg ; kg m]
X,Y,N Dimensioned external forces and moment [N; N m]

 0 , ,uu uuuX X X    Nondimensionalized hydrodynamic coefficients of surge motion

 0 , , ,uv urY Y Y    Nondimensionalized hydrodynamic coefficients of sway motion
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 0 , , ,uv urN N N    Nondimensionalized hydrodynamic coefficients of yaw motion
u,v,w Velocity in surge, sway and heave [m/s]
p,q,r The angular velocity of roll, pitch and yaw [rad/s]

 , ,u v r   Acceleration of the surge, sway and yaw motions. [m/s2; rad/s2]
 η Generalized position in North-East-Down frame [m]

R(ψ) Transfer matrix from Body frame to North-East-Down frame.
v The velocity of a rigid body, expressed in Body-fixed frame 
MRB Rigid-body mass matrix
MA Added mass matrix
CRB(v) Rigid-body Coriolis-centripetal matrix
CA(v) Added Coriolis-centripetal matrix
D(v) Nonlinear damping matrix

 RBτ Hydrodynamic forces and moments
S Training set
w Weight matrix

 ( )xφ Mapping function

  K x x Kernel function

b Bias term
C Regularization factor

 ( , , , )i ib e wL Lagrange function

 2
1

N
ii

e
 Empirical error

 A Kernel matrix
Y Output matrix
θ Parameter matrix

 U Left-singular vectors
 V Right-singular vectors

  Singular values matrix
 rU Truncated left-singular vectors
 rV Truncated right-singular vectors

r Truncated singular values matrix
θ Hydrodynamic coefficients matrix
y Measurement data 

 yV Diagonal matrix of variances of y

̂
V Error propagation matrix. 

θ Hydrodynamic coefficients matrix

̂
 Standard error of the parameters

R2 The goodness of fit criterion

1.  Introduction

Ship manoeuvrability is drawing more attention and is urgently required by the maritime industry, especially 

after International Maritime Organization (IMO) have added Autonomous Ships to its agenda in 2017. 

Autonomous shipping is in the future agenda of the maritime industry, however, safety and security are 

always the key factors need to be considered. The development of numerical computation makes it possible 

to simulate the ship response travelling with the complicated environmental disturbance. The vessel 
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simulators based on high-fidelity ship manoeuvring model plays an important role in the testing and 

verification of the complex system such as Dynamic positioning (DP) ships [1], ROVs operations and control 

systems [2,3], Ship Simulator [4,5], among others. It is also a good way to test the autonomous shipping 

system in the future.

Numerical models are widely used to describe the dynamic of marine ships. Many mathematical models 

have been proposed to meet different application considering the trade-off between the complexity and 

fidelity. For example, Abkowitz model, [6], is one of the most popular ones. The hydrodynamic forces and 

moments are approximated using 3-order truncated Taylor expansion techniques. This model has a good 

generalization performance, as well as its modified versions [7,8], but the disadvantage is that the model is 

complex and redundant, as many hydrodynamic coefficients have no physics meaning. The MMG model [9] 

approximates the forces on hull, propeller and rudder separately. Nomoto model [10] is a simplified linear 

model, is mostly used for autopilot design. The vectorial model proposed by Fossen (2011) is describing the 

motion of ships in a vectorial setting. Vectorial model benefits the designing controllers and observers for 

marine ships and the stability analysis. Sutulo and Guedes Soares proposed a model to describe arbitrary 

3DOF ship manoeuvring motions [12,13]. 

Once the structure of the manoeuvring model is established, the next important tasks are to calculate the 

hydrodynamic coefficients. As described in the report by the Manoeuvring Committee of 24th International 

Towing Tank Conference [14], the hydrodynamic coefficients can be obtained using captive model tests, 

CFD calculations or system identification, just to name a few. Captive model test carried out in a multi-

purpose towing tank, is a reliable and effective method to measure the hydrodynamic forces and moments, 

from which hydrodynamic coefficients in manoeuvring model can be identified [15]. System identification 

is a mature technique for building mathematical models of dynamical systems from measured data [16]. Now 

it has been widely used for estimation the hydrodynamics coefficients for marine vessels [8,17–23]. Least 

Square (LS) is one of the most widely used methods. Golding et al. [17][17] used the least square method to 

estimate the nonlinear viscous damping matrix of a marine surface vessel.  Ross et. al [22] estimated the 

hydrodynamic coefficients of a nonlinear manoeuvring model based on Planar Motion Mechanism (PMM) 

tests using the nonlinear least square method. The obtained manoeuvring model was then validated in full 

scale [24]. Sutulo and Guedes Soares [18], proposed an optimal offline system identification method 
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combining least squares with genetic algorithm to estimate the parameters of a nonlinear manoeuvring 

mathematical model. 

However, there are some drawbacks of the least square methods, such as sensitivity to outliers and 

overfitting, and it usually leads to non-consistent estimations [25]. In order to get a robust estimation, 

truncated singular value decomposition (TSVD) [26] was used to solve the ill-conditioned problem of the 

least square method [27]. The least square method combined TSVD can get a robust estimation by neglecting 

the smaller singular values [28], because the data corresponding to smaller singular values usually imposes 

more uncertainty in the process of estimating uncertain parameters. Söderström, [29], used a regularized 

least-square method for parameter estimation of large data sets. Tikhonov regularization, [30], can also be 

used for solving the ill-posed problems. It can significantly improve the condition number by modifying the 

normal equations in the least square method while leaving the estimated parameter relatively unchanged. 

The effect of Tikhonov regularization is to estimate the parameters while also keep them near the reference 

values [31,32].

Many methods for system identification have been proposed for the modelling of marine vessels, such as, 

maximum likelihood method [21,33], Extended Kalman filter (EKF) [34,35], Support vector machine (SVM) 

[19]. SVM is a supervised machine learning algorithm that can be used for both classification [36] or 

regression [37]. Recently, SVM has been used to estimate the hydrodynamic coefficients for marine vessels. 

In [38], a least square support vector machine (LS-SVM) is used to identify a nonlinear steering model for 

ship autopilot design. Further results can be found in [39,40]. In [19], a least square support vector machine 

(LSSVM) was used to estimate the hydrodynamic coefficients of an Abkowitz model. The further work on 

this topic can be found in [41], in which, Particle Swarm Optimization was employed to choose the 

regularization factor. Hydrodynamic parameters of a catamaran were estimated using SVM by Luo et. al 

[20]. Hou and Zou, [42], identified a roll motion equation for floating structures in irregular waves was using 

a ε-support vector regression. In [43], used an optimal LS-SVM combined with artificial bee colony algorithm 

to estimate a dynamic model of a large container ship.

For parameter estimation, uncertainty analysis is always a challenging topic due to the noise. The parameter 

with a large uncertainty is not stable and the correspondent model usually has a poor generalization 

performance. As discussed in [7,41,44], the parameter drift happens when estimating the hydrodynamic 
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coefficients. The multicollinearity was considered the main reason for the parameter drift. Multicollinearity 

is commonplace in the regression analysis, mostly due to the redundancy of the structure of the model [13]. 

It is also called the ill-posed problem [27,28]. In [7], the dynamic cancellation was found and the linear 

hydrodynamic coefficients drift simultaneously using slender-body theory. 

In [44], several methods, such as model simplification, parallel processing and additional excitation, were 

used to diminish the parameter drift. It needs to point out that the main purpose of these methods is to 

reconstruct the samples and lighten the multicollinearity. The parameters with large uncertainty easily drift 

from the true values. So, it is necessary to analyze the parameter uncertainty induced by the noise. In [45], 

the singular value decomposition was used to give an explanation of the parameter uncertainty. The least 

square methods combined with truncated singular value decomposition was used to diminish the parameter 

uncertainty and provide good results.

The main contribution of this paper is to propose an optimal truncated least square support vector machine 

(LS-SVM), and then use it to estimate the nondimensionalized coefficients of nonlinear manoeuvring models 

based on the captive model tests. A series of PMM tests, such as pure surge, pure drift, pure sway, pure yaw 

and mixed sway and yaw, was carried out by SINTEF Ocean in their multi-purpose towing tank using a 

scaled ship model of research vessel Gunnerus [24]. The optimal truncated LS-SVM is different from the 

method in the references [46,47], where singular value decomposition (SVD) was employed for signal pre-

processing, and the filtered data was then used for training the classical LS-SVM. The proposed method is 

trained by the singular value decomposition (SVD) of the kernel matrix. So, it can avoid the costly matrix 

inversion operation in classical LS-SVM. Meanwhile, the robust estimation can be achieved by ignoring the 

smaller singular values, because of their negligible contribution to the solutions. The optimal constant is 

estimated using L-curve, which plays the trade-off between the size of a regularized solution and its fit to 

the given data. In order to demonstrate the performance of the optimal truncated LS-SVM, classical LS-

SVM was firstly used to estimate the parameters and then the validation process was carried out based on 

the obtained numerical model. The second contribution is to compare the performance of the generic and 

vectorial nonlinear manoeuvring models. The parameter uncertainty for both nonlinear manoeuvring models 

is discussed, and the generalization performance of the resulted numerical models was further tested against 

the validation set, which was completely left untouched in the training.
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The rest paper is organized as follows. Section 2 describes both generic and vectorial nonlinear manoeuvring 

models for the marine surface vessel. In section 3, the classical LS-SVM and optimal truncated LS-SVM are 

introduced. Planar motion mechanism (PMM) Tests is briefly described in Section 4. In section 5, the 

parameter estimates for the generic and vectorial model is carried out using the optimal truncated LS-SVM. 

The parameter uncertainty is also discussed in this section. The final section is the conclusion.

2. Nonlinear Manoeuvring models for marine surface vessel

2.1 Generic Nonlinear Manoeuvring Model

Usually, the motions of a marine surface can be described in 6 Degree of Freedoms (DOFs), as illustrated in 

Fig.1. They are surge, sway, heave, roll, pitch and yaw. The manoeuvring motion of a traditional merchant 

ship typically occurs with a much lower frequency than the wave encounter frequencies [48]. So, it is 

reasonable to neglect the fluid-memory effects [11]. The coordinate frames of a surface ship moving in a 

horizontal plane are presented in Fig.2. In order to describe the dynamics of the ship, a manoeuvring 

mathematical model need to be derived. Without loss of generality, any marine ships can be treated as the 

free rigid body moving under the action of the external forces and moments. The Euler equations of arbitrary 

motion in the horizontal plane are given:

         (1)

 
   
   
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    

    



 

 

where, and are the mass and the moment of inertia, respectively.  is the centre-of-mass’ m zzI Gx

coordinates. ,  and are the add-masses and moments, respectively. X, Y and N are the 11 22 26

hydrodynamic forces and moments. 
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Fig. 1. Marin surface ships motions in 6 DOFs

Figure 2: Coordinate frames for marine surface vehicle

In order to simplify the problem, it is assumed that the origin of the central body axes is at the centre of mass. 

The quasi-polynomials regression models for the surge, sway forces and yaw moment expressed in the 

nondimensionalized forms [49] are here taken in the forms [15]:

         (2)11 0( , ) vv vr rrX v r u X X v v X v r X r r                   

         (3)22 26 0( , ) v r v v v rY v r v r Y Y v Y r Y v v Y v r                          

         (4)26 66 0( , ) v r r v v r r rN v r v r N N v N r Y r v N v r N r r                            
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Here, the forces and moments due to the water around the ship are also included in the equations. As presented 

in  [13], the quasi-polynomials regression models can be slightly more economical considering the number 

of terms and computation speed. 

In order to compare the coefficients of different ships and to estimate the dynamics of a full-size ship, the 

hydrodynamic parameters need to be converted to dimensionless ones. The prime system recommended by 

SNAME [49] will be used to normalize the hydrodynamic coefficients. The water density, ρ, the ship length 

L and the ship speed U are employed as the characteristic dimensional parameter. The forces are normalized 

with  and the moment with . The nondimensionalized velocities and yaw rate 2 20.5 L U 3 20.5 L U

are: . The list of the nondimensionalization factors and corresponding / , / , /u u U v v U r rL U    

coefficients in Eqs. (2-4) is shown in Table 1.

Table 1. Dimensional factors for nondimensionalized the hydrodynamic coefficients.

Coef. Dimensional Factor Coef. Dimensional Factor Coef. Dimensional Factor
11  30.5 L 22  30.5 L 26  40.5 L

0X  2 20.5 L U 26  40.5 L 66  50.5 L

vvX  20.5 L 0Y  2 20.5 L U 0N  3 20.5 L U

vrX  30.5 L vY  20.5 L U vN  30.5 L U

rrX  40.5 L rY  30.5 L U rN  40.5 L U

v vY  20.5 L r vN  40.5 L

v rY  30.5 L v rN  40.5 L

r rN  50.5 L

2.2 Vectorial Nonlinear Manoeuvring Model

Vectorial nonlinear manoeuvring model is widely for marine control design and stability analysis. It was 

proposed in Fosen [11], and now received attention of others [43,50,51]. The manoeuvring model is written 

in a vectorial setting with emphasis placed on matrix properties like positiveness, symmetry and skew-

symmetry [52]. Those properties benefit the marine control system design (controller and observer) [11]. A 

nonlinear manoeuvring model in vectorial setting for a marine surface vessel in 3-DOF (surge, sway and 

yaw) can be expressed as [11,53]:
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             (5)
 

    prop rudder .( )RB RB A A wind wave ext



        

η R v

M v C v v M v C v v D v v τ τ τ τ τ



 

where, are the generalized position defined in the North-East-Down (NED). is [ , , ]TN E η [ , , ]Tu v rv

the velocity and yaw rate in the body-fixed frame. and  are the mass matrix and added mass matrix. M AM

and are the Coriolis-centripetal matrix of the rigid-body and hydrodynamic Coriolis-( )RBC v  AC v

centripetal matrix, respectively.  is the hydrodynamic damping matrix.  is the rotation matrix  D v  R

achieving the transformation of linear velocity from BODY to NED. 

  

 (6) 
   
   

cos sin 0
sin cos 0

0 0 1

 
  

 
   
  

R

The mass matrix and Coriolis-centripetal matrix of the rigid-body, , is given: ( )RBC v

  (7)

0 0
0 0
0 0

RB

z

m
m

I

 
   
  

M

 (8)

0 0
0 0

0
RB

mv
mu

mv mu

 
   
  

C

Added-mass matrix and hydrodynamic Coriolis-centripetal matrix,  , is given as in [11]: AC v

   (9)
0 0

0
0

u

A v r

v r

X
Y Y
N N

 
   
  

M


 

 

  (10)
0 0

( ) 0 0
0

v r

A u

v r u

Y v Y r
X u

Y v Y r X u

 
   
   

C v
 



  

The nonlinear damping matrix is given:
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  (11)

2

2 2

2 2

( ) 0

0

uuu uvr uvv urr

uuv uurv v v r

uuv uurr v v r r r

X u X vr X uv X ur
D Y u Y v Y u Y v

N u N r N u N v N r

     
     
 

      

v

Here, The viscous damping matrix is usually over-modelled, as presented in [45,54]. This viscous damping 

matrix is trying to combine the similar terms of two types, quasi-polynomials and cubic-polynomial, such as 

 and , as commented in [13]. This operation will results in overfitting as presented in our previous r r 3r

paper. The nonlinear damping matrix in Eq. (11) can usefully reproduce the PMM test and diminished the 

overfitting. During the captive model tests, the measured forces in the 3DOF nonlinear manoeuvring model 

described in Eq. (5) can be written as:

                (12)   RB A A  τ M v C v v D v v

The equations of the hydrodynamic forces and moment can be expressed as follow:

 (13)u v r uuu uvv rvu urrX X u Y vr Y rr X uuu X uvv X rvu X urr               

 (14)u v uuv r uurv v r vY X ur Y v Y uuv Y v v Y r Y uur Y r v                

  (15)( )r v u r uur v uuvr r v r r vN Y ur Y X vu N r N uur N r r N v N uuv N v r N r v                        

As presented in Eq.(15), the term  is the Munk moment, which causes a destabilizing moment ( )v uY X vu  

on a ship with steady oblique translator motion [48]. It arises for a simple reason, the asymmetric location 

of the stagnation points where the pressure is highest on the front of the body and lowest on the back. It tends 

to rotate the ship perpendicular to the flow. That is the principal reason for the necessity of stabilizing fins 

on submarine and torpedo hulls.
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3. Optimal Truncated least square support vector machine and parameter uncertainty analysis

Support Vector Machine (SVM) is a classical machine learning algorithm. It was proposed by Vapnik 

(1995). It can also be considered a special case of Tikhonov regularization [30]. It solves the optimization 

problem by searching the maximum-margin hyperplane, which separates the data points. So, it was used for 

classification at the beginning and then extended for regression purpose [55,56]. Least square support vector 

machine (LS-SVM) is a modified version of SVM proposed by Suykens and Vandewalle (1999). By including 

the regularized square error term in the SVM, the solutions can be obtained by solving a set of linear equations 

instead of a convex quadratic programming (QP) problem for classical SVMs. However, the LS-SVM lost 

the sparseness feature [57]. 

In this section, the standard LS-SVM will be introduced briefly. Then a modified version, truncated LS-

SVM, is proposed by including singular value decomposition technology. Truncated LS-SVM is training 

through the singular value decomposition (SVD) of the kernel matrix. So, it can avoid the matrix inversion 

operation, which is usually computationally expensive. Meanwhile, the truncated LS-SVM also neglect the 

effect of the small singular values and can provide a robust estimation.

3.1 Classical Least square support vector machine

Given the training set, which contains N pairs of data, , where is 1{ | ( , ), , }n N
i i i i i i is s x y x y    S ix

the input and is the output. As presented in [55], the general approximation function of SVM is given:iy

   (16)( ) ( )Ty x x b w φ

where x is the training samples; y(x) are the target values; b is the bias term; w is a weight matrix;  is ( )xφ

mapping function that map the training data, xi, to a higher dimensional feature space [55]. For function 

estimation or regression purpose, the following optimization problem is formulated:

   (17)2

, , 1

1 1      ( , )min 2 2i

N
T

i
b e i

J w e C e


  
w

w w
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subject to the equality constraints:

  (18). .           ( ) ,   1, ,T
i i is t y x b e i N   w φ 

where , is the error, and C is the regularization factor. It balances the model accuracy and the , 1ie i N 

model complexity, which also known as structural risk [55]. In order to solve this optimization problem, the 

Lagrange function needs to be constructed and given as:

   (19)2

1 1

1 1( , , , ) [ ( ) ]
2 2

N N
T T

i i i i i i i
i i

b e C e x b e y 
 

      w w w w φL

where  are the Lagrange multipliers. The optimality condition, Karush-Kuhn-Tucker conditions (KKT) i

[55], are given by:

   (20)

1

1

0      ( )

0      0

0        1, ,

0      ( ) 0  1, ,

N

i i
i

N

i
i

i i
i

T
i i i

i

x

b

Ce i N
e

x b e y i N














  




  



   



      






w φ
w

w φ





L

L

L

L

Eliminate the variable and , one gets the following solution:w ie

   (21)
 

1

00 1

1 ( )

b

YK C 

     
     

       
θ YA

I


 



where is an  identity matrix. , . , I N N 1[ , ]T
N  

  1[ , , ]T
NY y y


 ( ) ( ) ( )T

k i k iK x x x x  

 is the kernel function, which represents an inner product between its operands. It is positive 1, ,i N 
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definite and satisfies the Mercer condition [36,37]. In this paper, for parameter estimation, the linear kernel 

function is chosen. So, the resulting LS-SVM model for the regression is given:

   (22)
1

( ) ( )
N

i i
i

y x K x x b


  

As presented in Eq. (21), the dimension of the matrix, A, is . It is proportion to the length of    1 1N N  

the training set. So, if there is large data in the training set, the classical LS-SVM fails to inverse the matrix 

due to the heavy computation. In the following phase, an optimal truncated LS-SVM is proposed to solve 

the parameter estimation for a large-scale problem. 

3.2 Optimal Truncated LS-SVM and uncertainty analysis

As described in [7,44], the hydrodynamic coefficients usually drift from the true values using the system 

identification method. The obtained parameters are usually dominated by the noise, and with a large 

uncertainty. In [7,44], the multicollinearity happens during the parameter estimation, and several methods, 

such as additional excitation, parallel processing, exaggerated over-and underestimation et. al, were used to 

diminish the parameter uncertainty. The main purpose of these methods is to reconstruct the sample and 

lighten the multicollinearity of variables. In this phase, parameter uncertainty is discussed using singular 

value decomposition. Then, a truncated least square support vector machine is proposed to diminish the 

parameter drift. Firstly, using the singular value decomposition, the kernel matrix, A, can be rewritten as:

            (23) 
1

n
T T

i i i
i

u v


  A U V

Then, the Eq. (21) can be rewritten as:

            (24)   1 1

1

Tn
T T i i

i i

v u
Y Y Y


 



     θ U V V U

where the matrix and are orthonormal, and . Ʃ is the diagonal matrix of the U V T IU U T IV V

singular values of the matrix X. Assume that there is an additive perturbation, , it will propagate to a Y

perturbation in the solution,  

     (25) 1

1

Tn
T i i

i i

v u
y Y  






   V U
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As presented in Eq. (25), when the singular value, σi , is very small or close to the numerical precision of the 

computation, then the perturbation in the y is magnified and potentially dominate the solutions, θi. The 

corresponding columns of and contribute negligibly to the matrix A. Their contribution to the solution U V

can be easily dominated by the noise and round-off error in y. So, the obtained parameters are dominated by 

the noise. As discussed in the preceding section, the number of the singular, σi , equals to the length of the 

training data. The obtained parameters are inevitably dominated by the smaller singulars and are easily 

affected by the noise in the data and drift from the true values with a large probability. In order to diminish 

such uncertainty and obtain a robust estimation, it is necessary to neglect the effect caused by the smaller 

singular values. Truncated singular value decomposition (TSVD) can be used to obtain a relatively accurate 

representation of the matrix, A, by retaining the first r singular values of A and the corresponding columns 

of U and V. The TSVD can be presented as

                    (26) T
r r r r A U V

where the matrix is obtained by retaining the first r singular values of . Similarly, matrices and r  rU rV

are found using the corresponding singular vectors. The resulting represents the reduced data set where the rA

data related to the omitted singular values are filtered. The optimal value of r can be estimated using the L-

curve [31]. It is a log-log plot of the norm of a regularized solution versus the norm of the corresponding 

residual norm. it is a graphical tool for displaying the trade-off between the size of a regularized solution and 

its fit to the given data, as the r varies [30,58]. From the L-curve plot, it is convenient to get the optimal 

parameters. The whole program is give in Fig. 3. 
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Fig. 3. Flowchart of Optimal Truncated LS-SVM

4. Planar Motion Mechanism (PMM) Tests

This section summarizes the series of captive model tests carried out by SINTEF Ocean  during a research 

project [59] on the scaled ship model according to the recommended procedures by ITTC [60]. The main 

particulars of the research vessel are given in Table 1. Captive model test are nowadays commonly used for 

modelling the ship motions. They can provide a rich information for system identification method and get a 

reasonable estimation of the hydrodynamic coefficients, however, performing such tests is costly. Here, a 

brief summary of different PMM tests is presented, such as pure surge, pure drift, pure sway, pure yaw and 

mixed sway and yaw, which were carried out in SINTEF Ocean’s multi-purpose towing tank  using the 

scaled ship model, presented in Fig. 4. The motions in the surge, sway and yaw were controlled using a 6-

DOF hexapod motion platform, which is mounted on the carriage.

Pure surge test tows the model forward with oscillations around a fixed velocity. It is usually sinusoidal 

oscillations. During the tests, the sway speed and yaw rate are kept as zero (v=0 and r=0). So, the effect of 

sway and yaw can be eliminated from the surge motion model. This test aims to achieve the full response of 

surge motion. The pathline of pure surge is presented in the Fig. 5(a).
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Table 1. Main particulars of the Marine Research Vessel

Item Description
Length over all (Loa) 31.25 m
Length between pp (Lpp) 28.9 m
Length in waterline (Lwl) 29.90
Draught (D) 2.75 m
Beam (B) 9.6 m
Block coefficient (Cb) 0.569
Deadweight 107 t
Displacement (Δ) 45 t
Volume Displacement (∇) 436.672 m3
Bow tunnel thruster 1
Number of Rudder 2
Speed at 100% MCR 12,6 kn 
Cruising speed 9,4 kn

Fig. 4. Planar motion mechanism tests (PMM) in a towing tank [courtesy of SINTEF OCEAN]
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Fig. 5. PMM test of ship model travelling along the pathline: (a) straight line (pure suge or surge 

acceleration);  (b) pure drift; (c) pure sway; (d) pure yaw; (e) pure yaw +drift

Pure drift test tows the mode forward with a fixed drift angle β, as presented in Fig. 5(b). During the test, the 

surge and sway velocity is a non-zero constant, while the yaw rate is zero ( , cos( ), sin( ), 0u U v U r   

). So, the hydrodynamic coefficients related to the yaw motion can be neglected. max cos( )v v t

Pure sway test is used to isolate the sway dynamics from the yaw motion. The ship will move forward with 

a constant velocity and with a sinusoidal oscillation in Sway, where , and , cu u max cos( )v v t 0 

as presented in Fig. 5(c). The hydrodynamic coefficients related to the yaw motion can be neglected during 

the identification process. This test aims to achieve the full response of sway motion. 

Pure yaw test is used to isolate the sway dynamics from the yaw motion. During the test, the ship moves 

forward with a constant velocity and with a sinusoidal oscillation in sway motion where , and cu u 0v 

, as presented in Fig. 5(d). This test aims to achieve the full response of sway motion.max sin( )t  
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Pure Sway and drift were carried out using a ship model with a sinusoidal oscillation in sway motion and a 

constant drift angle. The pathline is presented in the Fig. 5(e). This test can provide the dynamic information 

of surge, sway and yaw motion. So, it can be used to estimate the coefficients related to the surge, sway and 

yaw motion. During the test, the ground speed and drift angle is kept as constant, and yaw rate are set as a 

sinusoidal oscillation, , and cU U c  max sin( )t  

5. Estimate the Nonlinear Hydrodynamic coefficients and validation  

In this section, the parameter estimation for the nonlinear manoeuvring model is presented. Firstly, as 

illustrated in Fig. 3, whole PMM test data are divided into the training set and validation set. The training set 

is used to train the LS-SVM model and identify the hydrodynamic coefficients. The validation or test set is 

completely left untouched within the training process and is used to check the performance of the trained 

model on fresh data. With the training set, the classical LS-SVM is firstly employed to estimate the 

hydrodynamic coefficients. The uncertainty of obtained parameters is also provided. Then, the proposed 

method, optimal truncated LS-SVM, is used to estimate the hydrodynamic coefficients. The obtained 

numerical model is going to reproduce the validation set. 

Before the identification process, the above equations (2) to (4) need to be reordered in a vector format given 

by:

                       (27)y X

where the matrix contains the measured data. In this study, a small portion data is used for the training X

set, for surge and sway motions, the 7000 pairs of data are chosen as the training set, and 6000 pairs of data 

for yaw motion. It includes the pure drift, harmonic sway, harmonic yaw and mixed yaw and drift. The whole 

tests, (around 70000 pairs), are chosen as the validation set. The test set includes the training set and the 

fresh data, which is completely left untouched within the training process. represents the uncertain 

parameters described in equation (28), and y is the matrix of the recorded forces and moments during the 

tests. Obviously, the linear equation is over-determined, because the length of the training data, (n), is bigger 

than the number of the parameters (n>m). The vectors of parameters are given:
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         (28)

 0

22 26 0

26 66 0

, , , ,

, , , , , ,

, , , , , , ,

surge vv vr rr

sway v r v v v r

yaw v r r v v r r r

u X X X X

Y Y Y Y Y

N N N Y N N



  

  

    

         
          



The condition number is usually used to indicate how sensitive a function is to changes or errors in the input, 

and how much error in the output results from an error in the input. So, If the condition number is large, then 

it is ill-conditioned. The condition number for the Eq. (2)-(4) is given in Table 2.

Table 2: The condition number of the surge, sway and yaw motion

Surge Sway Yaw

Condition number 2.39E+23 9.49E+22 7.14E+21

The uncertainty of parameters is affected by noise and quantified by the error propagation matrix. The error 

propagation matrix or covariance matrix can be used to indicate how the random errors in y, as described by 

, propagate to the optimal parameter . The error propagation matrix is given byyV ̂

      (29) ˆ

ˆ ˆ T

yy y

     
    

    
V V

where the standard error of the parameters, , can get by calculation of the square-root of the diagonal of ̂


the error propagation matrix. Then the absolute error can be calculated easily. 

5.1 Parameter estimation using classical LS-SVM

In this phase, the classical LS-SVM will be employed to estimate the parameter of yaw motion. The linear 

kernel function is chosen, and the regularization factor, C, is chosen as 3500 considering the optimal 

parameter in Ref [41]. The obtained numerical model is used to reproduce the yaw moment of the validation 

set. The yaw model, as illustrated in Eq. 4, was chosen. The training process was carried out and the numerical 

prediction was compared with the experimental data, as presented in Fig. 6. The obtained model approximates 

the yaw moment in the training set successfully. However, the obtained hydrodynamic coefficients for yaw 

motion, as presented in Table 3, are obviously wrong. They do not have any physical meaning and drift from 

the true value largely. The validation process was carried out and the result was presented in Fig. 7. From the 
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figure, the obtained numerical yaw model failed to reproduce the yaw moment in the validation set. 

Obviously, the obtained numerical model overestimates the yaw moments. As discussed in the preceding 

section, the number of singular values of the kernel matrix equals to the length of the training set. so, they 

are 7000 singular values, and solutions are dominated by the smaller singular values seriously. The resulted 

parameters do not have any physical meaning and the generalization performance of the obtained model is 

poor. Therefore, in order to diminish the parameter drift, the optimal truncated LS-SVM proposed in the 

preceding section are used to estimate the hydrodynamic coefficients of nonlinear manoeuvring model.

Table 3. Values of the hydrodynamic coefficent of yaw motion

Coef. 26  66  0N 
vN 

Value -2.66E+06 -2.66E+06 -2.66E+06 -2.66E+06
Coef. rN 

r vN  v rN  r rN 

Value -4.83E+07 -4.83E+07 -4.83E+07 -4.83E+07
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Fig. 6. The experimental data compares with the prediction of the numerical model obtained using classical 

LS-SVM during the training process.
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Fig. 7. The yaw moment reproduced using the obtained numerical model compared with the experimental 

results in the validation set. 

5.2 Parameter estimation using optimal Truncated LS-SVM and validation

In this part, the optimal truncated LS-SVM was used to estimate the nondimensionalized hydrodynamic 

coefficients as defined in Eq. (2)-(4). As presented in the flowchart, the truncated LS-SVM can get a robust 

estimation by neglecting the smaller singular values, which usually contribute negligibly to the solutions and 

increase the parameter uncertainty. The optimal value, r, were estimated using L-curve. The results are 

presented in Table 4. Only a small number singular value was kept, for example, the optimal r equals to 437 

for yaw motion. It means that around 5500 singular value can be neglected. For sway motion, the optimal r 

equals 1239, and r=4751 for surge motion.

Table 4: The optimal values of r using L-Curve for surge , sway , and yaw motion.

Surge Sway Yaw

The optimal constant (r) 1751 1239 437
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Table 5.  The values of the parameters and its absolute error of the generic nonlinear manoeuvring model

Coef. Values Deviation
(%)

Coef. Values Deviation
(%)

Coef. Values Deviation
(%)

11  7.33E-03 2.38 22  3.94E-02 0.55 66  1.12E-03 0.46

0X  -2.58E-04 3.91 0Y  -5.03E-04 6.71 26  -1.87E-03 1.45

vvX  -4.83E-03 5.17 vY  -7.31E-02 0.77 0N  -3.50E-05 12.01

vrX  1.66E-02 2.85 rY  2.30E-02 0.50
vN  -6.53E-03 0.70

rrX  -8.08E-04 9.25
v vY  -3.37E-02 8.36 rN  -8.73E-03 0.44

v rY  -1.47E-02 9.78
r vN  -1.43E-02 1.08

v rN  9.75E-03 1.92

r rN  -1.87E-03 6.01

Fig. 8 presents the training results of surge (Fig. 8a), sway (Fig. 8b) and yaw motion (Fig. 8c). The resulted 

LS-SVM numerical model have a good agreement with the data in the training set. The obtained 

nondimensionalize hydrodynamic coefficients are presented in Table 5. The deviation is very smaller, which 

indicate that the parameter uncertainty is diminished successfully. The obtained parameters are very robust 

and less sensitive to noise in the measured data. The obtained values are near the true values.

Table 6. The values of the parameters and its absolute error of the Vectorial nonlinear manoeuvring model
Coef. Value Deviation

(%)
Coef. Value Deviation

(%)
Coef. Value Deviation

(%)
uX  -1.04E-02 0.61 vY  -3.82E-02 0.14 rN  -1.20E-03 0.19

uuuX  -2.67E-04 1.29 rY  -2.66E-04 3.85 vN  1.87E-03 0.65

uvvX  -9.29E-03 1.76 uuvY  -6.16E-02 0.18 uurN  -8.41E-03 0.20

rvuX  5.84E-02 0.25
v vY  -1.22E-01 0.28

r rN  -1.00E-03 2.50

urrX  -1.22E-03 2.33 uurY  3.13E-02 0.09 uuvN  2.14E-02 0.10

r vY  1.12E-03 0.91
v rN  -1.69E-02 0.40

r vN  1.11E-02 0.73
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Fig. 8: The training process: the experiment data vs the prediction of the trained surge model (a), sway 
model (b), and yaw model(c).
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Table 6 presents the obtained nondimensionalized hydrodynamic coefficients of vectorial nonlinear 

manoeuvring model defined in Eq.(13)-(15). The training process was using the optimal truncated LS-SVM. 

As observed from the previous discussion, these two manoeuvering model is different and proposed for a 

different purpose, meanwhile, the dimensional factors are also different. More details information about 

vectorial nonlinear manoeuvring model can be found in [61]. The vectorial model was proposed with 

emphasis placed on matrix properties like positiveness, symmetry and skew-symmetry. Those properties 

benefit the marine controller and observer design. However, the structure of these two models are different, 

but some parameters have the same values, as marked with the same colours in Table 6.and Table 7. For 

example, for add-mass and moment ( ); ;11 22 66 26; ; ;u v r vX Y N N             0 uuuX X  ;v uuv r uurY Y Y Y    

; . So, the parameters of both models have the physical meaning, it ; ;r uur r r r r r v r vN N N N N N       

describes the dynamics of ship motion. On the other hand, this also indicated the effectiveness of the 

proposed system identification method, optimal truncated LS-SVM.

Table 7: The R2 values of the validation processes for the surge, sway and yaw motion

R2 Surge Sway Yaw
Generic model 0.6022 0.9723 0.9624

Vectorial model 0.5371 0.9811 0.9501

In order to test the generalization performance of the obtained numerical model, the data for validation, which 

was left completely untouched in the training, was used to validate the obtained numerical models.  The 

results are presented in Fig. 9. Fig. 9 shows the prediction of forces and moments using the generic model 

compared with training data. In order to show the details of the figure, the partial enlargement of the figures 

are also given in the figure. From this figure, the curves fit well with each other, especially for sway force 

and yaw moments. R2 values of the obtained generic models are 0.60, 0.97 and 0.96, respectively. A similar 

process are also carried out using the vectorial model, as presented in Fig. 10. The R2 values are used to 

measure the goodness-of-fit, as presented in Table 7. Both nonlinear manoeuvring models have a very good 

generalization performance.
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Fig. 9. The validation of the generic models: the experimenal data vs the prediciton (a: surge model; b: sway 
model; c: yaw model).
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Fig. 10. The validation of the vectorial models: the experimenal data vs the prediciton (a: surge model; b: 
sway model; c: yaw model).
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CONCLUSIONS

In this paper, an optimal truncated least square support vector machine was proposed to estimate the 

nondimensionalized coefficients of nonlinear manoeuvring models based on the captive model tests. Firstly, 

in order to describe the dynamics of the marine surface ship, two classical nonlinear manoeuvring models in 

3-DOFs (surge, sway and yaw) were introduced. The generic nonlinear manoeuvring model is widely used 

to describe the manoeuvres of ships. The vectorial model is derived using Lagrange’s method and widely 

employed for marine control application due to the matrix properties, such as positive, symmetry and skew-

symmetry et. al. the hydrodynamic coefficients have been converted to the dimensionless ones using the 

prime system of SNAME (1950). PMM tests, such as pure surge, pure drift, pure sway, pure yaw and mixed 

sway and yaw, were carried out in SINTEF Ocean’s multi-purpose towing tank using the scaled ship model.

Optimal Truncated LS-SVM was proposed in order to get a robust parameter estimation. It can avoid the 

costly matrix inversion operation in classical LS-SVM by using the singular values decomposition. 

Meanwhile, the smaller singular values are neglected considering their contribution to the solutions is 

negligible and, sometimes increase the uncertainty in the solutions. The parameter with a large uncertainty 

indicated the parameter is sensitive to the noise in the data and have a poor generalization performance. As 

discussed in the paper, when the training set is large, the obtained parameters using classical LS-SVM are 

meaningless and usually drift from the true values. The parameter uncertainty for both nonlinear manoeuvring 

models was discussed. Although these two models were proposed for the different applications, some 

estimated coefficients have similar value, especially the linear terms, which indicates the robustness of the 

optimal truncated LS-SVM. The generalization performance of the resulted numerical models was further 

tested against the validation set, which was completely left untouched in the training. The R2 goodness of fit 

criterion was used to demonstrate the accuracy of the obtained models. The results show that both nonlinear 

manoeuvring models have a very good generalization performance.
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