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Abstract In this paper, we show how progressive hedging may be used to
solve stochastic programming problems that involve cross-scenario inequality
constraints. In contrast, standard stochastic programs involve cross-scenario
equality constraints that describe the non-anticipative nature of the optimal
solution. The standard progressive hedging algorithm (PHA) iteratively ma-
nipulates the objective function coefficients of the scenario subproblems to
reflect the costs of non-anticipativity and penalize deviations from a non-
anticipative, aggregated solution. Our proposed algorithm follows the same
principle, but works with cross-scenario inequality constraints. Specifically, we
focus on the problem of determining optimal bids for hydropower producers
that participate in wholesale electricity auctions. The cross-scenario inequality
constraints arise from the fact that bids are required to be non-decreasing. We
show that PHA for inequality constraints have the same convergence proper-
ties as standard PHA, and illustrate our algorithm with results for an instance
of the hydropower bidding problem.

Keywords Progressive hedging · Stochastic programming · Hydropower ·
Unit commitment · Electricity auctions

1 Introduction

We start with similar situation as described by [1] and [2]: we are confronted
with a very large or difficult (possibly mixed integer) stochastic program for
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which there already exists effective techniques for solving individual scenario
subproblems, i.e. for the deterministic version of the program. However, as op-
posed traditional stochastic programming problems where scenarios are linked
by equality constraints that represent non-anticipativity, we consider a class of
stochastic programming problems where scenarios are linked by inequalities.
This paper adapts the well-known progressive hedging algorithm of Rockafellar
and Wets, which has traditionally been applied to problems wherein a subset
of decisions must be identical in all scenarios, to a problem wherein inequality
constraints link decisions made in different scenarios.

Specifically, we work with the problem faced by power producers that sells
their output to wholesale electricity auctions. The producer must submit a
supply curve as a set of price-volume points that describe a non-decreasing bid
curve. Determining these bids may be formulated as a stochastic program, as
described in [3] for hydropower producers participating in the Nordic market.
In the rest of this paper, we will use the hydropower bidding and scheduling
problems as described by [3] as the basis of our modelling, but empahasize that
the algorithm is general and may be applied to other problems where there is
logical relationship between variables in different scenarios. The hydropower
bidding problem will be large due to the physical dimensions of the production
system and the number of scenarios necessary to build a good bid curve. The
problem may also involve integer variables due to unit commitment. Currently,
operators in the Nordic hydropower industry do not determine bids by solving
the true stochastic program, but rather multiple runs of a well-established
deterministic model that determines optimal production schedules. From the
starting point of having a good deterministic model, we develop a solution
method that utilizes the benefits of stochastic optimization, but still keep
calculation time low.

An important concern in stochastic programming is non-anticipativity or
implementability, which means that the final solution cannot depend on any
particular scenario realization. In [1], implementability is defined as the fact
that if two scenarios s and s′ are indistinguishable at time t on the basis of
information available about them at time t, then their solutions should be
equal. Non-anticipativity thus leads to equality constraints between scenar-
ios in stochastic programs. As PHA requires independent subproblems, these
cross-scenario constraints are removed from the formulation and instead the
objective function coefficients of the subproblems are iteratively changed to
reflect the costs of non-anticipativity and penalize deviations from a non-
anticipative, aggregated solution.

Our problem involves inequality constraints between scenarios rather than
equality constraints. The inequalities arise from the requirement of a non-
decreasing bid curve in the hydropower bidding problem. Producers are ex-
pected to be willing to supply more power as the prices increase. However, due
to time-dependencies and other characteristics of power production and river
chains, the increasing nature of bid curves must be explicitly included in the
optimization model.
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The dynamics of PHA is to solve perturbations of scenario subproblems in
iterations, where the objective function coefficients of the scenario problems
are updated based on the distance between the current scenario solution and
an aggregated solution. For standard PHA, the aggregation operator is to cal-
culate the average solution over all scenario solutions. We show that a version
of PHA also may be applied to problems with inequality constraints, as long
as an appropriate aggregation operator and definition of implementability is
used. For the case of hydropower bidding, implementability is defined as a non-
decreasing bid curve, i.e. that larger or equal volumes are offered for higher
prices. The aggregation operator thus calculates a non-decreasing bid curve
based on the scenario solutions.

This paper shows how standard PHA and PHA for inequality constraints
may be applied to the hydropower scheduling and bidding problems, respec-
tively. For the scheduling problem or unit commitment problem, which involves
equality constraints, standard PHA is a well suited method and has been ap-
plied successfully by other researchers, for instance [4–8]. Adaptations and
improvements for standard PHA are reported by, among others, [2], who pro-
pose improvements for efficient selection of parameter values and acceleration
of convergence, and [9] who describe how PHA may be solved more efficiently
by considering bundles of scenarios. [10] show how lower bounds may be calcu-
lated during PHA iterations. For the bidding problem, which involve inequality
constraints, we do not find many applications of PHA. However, [11], states
that PHA is “not the only (method) that could be viewed as an implemen-
tation of the principle of scenario aggregation”. We present such a method
for stochastic programs with inequality constraints. The method is presented
side-by-side with standard PHA, and we show that the convergence properties
of PHA for inequality constraints is similar to that of standard PHA.

The rest of this paper is organized as follows: In Section 2, we discuss the
scheduling and bidding problem for hydropower producers, before the mathe-
matical models for both problems are presented in Section 3. In Section 4, the
algorithms for standard PHA and PHA for inequality constraints are presented
and compared. The convergence properties of both algorithms are discussed
in Section 5. Results for standard PHA and PHA with inequality constraints
applied to an instance of the hydropower scheduling and bidding problems are
presented in Section 6. Conclusions are drawn in Section 7.

2 The hydropower scheduling and bidding problem

Over the last 20 years, wholesale electricity auctions have become a corner-
stone in modern, deregulated power systems. Producers and consumers are
required to submit price-volume bids indicating their willingness to sell and
buy power for the next trading period. We only consider supply-side bids in
this work, and focus on producers of hydropower in particular. The algorithm
we present is however applicable to any type of power producer. In fact, with
small adaptations, the algorithm may be used for any market agent that is
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required to submit a non-decreasing or non-increasing bid curve that is based
on schedules of future production.

Determining market bids is an important aspect of day-to-day operations
for power companies. We define the bidding problem as the task of determin-
ing bids for the next trading period, based on the current system state and
forecasts for future prices and inflows. In the case of a day-ahead market, the
next trading period will be the next day, while for shorter-term markets the
next operating period will be a few hours ahead depending on the rules of
the market. In the rest of this paper we will use the context of a day-ahead
market.

The bidding problem is intimately linked to the scheduling problem, which
we define as determining a production schedule, given an initial system state
and forecasts for future prices and inflows. The reason why the scheduling and
bidding problems are so tightly linked, is because the bids sent to the market
should result in feasible operating schedules. For hydro, there are environmen-
tal, hydraulic and technical constraints that must be fulfilled to ensure safe
and legal operation of multi-reservoir, cascaded river chains. Some of these con-
straints involve time-dependencies, such as river flow time delays and start-up
or shut-down costs. Start-ups and shut-downs are also important for thermal
producers, and is considered in the unit-commitment problem, which is defined
as the problem of determining which generating units are on and producing
in any given time step. The unit-commitment problem is an integral part of
both the scheduling and bidding problem, and necessitates binary variables in
the formulation for correct modelling of the on/off state of generating units.
The difference between the scheduling and bidding problems lies mostly in the
result we are after; a production schedule in the scheduling problem and a set
of bids in the bidding problem, see the right part of Figs. 1 and 2, respectively.
In the scheduling problem, the production schedule of the first day cannot
depend on any particular scenario realization tomorrow, so we require that
the production yts is equal across scenarios. In the bidding problem, the bids
must have non-decreasing volumes for increasing prices, so we require that the
production volume yts is less than or equal to the next element in a list where
the scenarios are sorted by increasing prices.

From the view of a single power producer, both the scheduling and bid-
ding problems involve uncertainty regarding the future market price, i.e. the
outcome of the market, as well as inflows, i.e. future resource availability.
Uncertainty makes stochastic programming a promising method for optimal
scheduling and bidding, and has been applied by several researchers [3,12–16].
The benefits of stochastic optimization is, among others, more robust sched-
ules, which are important in the case of inflow uncertainty, and being able
to exploit price peaks and therefore increase profits. Comparisons between
stochastic and deterministic models for hydropower scheduling and bidding
are reported in [3, 14, 17, 18], which all show that stochastic programming
yields improvements. For bidding, price uncertainty or a range of prices is
a prerequisite to be able to formulate a model that results in optimal bids.
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Fig. 1 Upper left: We define a two-stage scenario tree that have the decisions for today in
the first stage and decisions for tomorrow and rest of the period in the second stage. Lower
left: Problem structure of the deterministic equivalent used in PHA. The grey boxes indicate
where cross-scenario constraints are added. Right: An illustration of the result from solving
the scheduling problem; production schedules for each generating unit in the system.

This is why bidding is based on multi-scenario runs of the deterministic model
today.

However, for industrial operations and large data sets, models based on
stochastic programming are notoriously hard to solve, especially if they also
involve binary variables, which indeed are present in both the scheduling and
bidding problem. To provide decision support for industry operations, mod-
els for optimal scheduling and bidding must be solved fast in order to give
operators the answers they need, when they need it.

Currently, the Nordic hydropower industry use a deterministic model in
their daily scheduling. The scheduling model considers state-dependencies and
nonlinear effects typical and important for hydropower by successive linear
programming, where mixed-integer or linear problems are solved in iterations
[19,20]. The bidding problem is solved by heuristics based on multiple runs of
the deterministic scheduling problem, as explained in [18]. The deterministic
model has been extended to a stochastic programming model in [15] and to
formal optimization of bids in [16]. The aim of the current work is to determine
algorithms that makes it possible to solve the stochastic scheduling and bidding
problem in parallel by dividing the problem into subproblems that may be
solved separately. A successful parallel implementation may reduce the run-
time of the stochastic models, making them applicable in industry operations.
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Fig. 2 Upper left: We define a two-stage scenario tree that have the decisions for today in
the first stage and decisions for tomorrow and rest of the period in the second stage. Bids
for tomorrow are determined before tomorrow’s operations, but are calculated from possi-
ble production schedules for tomorrow. Lower left: Problem structure of the deterministic
equivalent used in PHA. The grey boxes indicate where cross-scenario constraints are added.
Right: An illustration of the results from solving the bidding problem; bid curves for each
hour of tomorrow.

3 Mathematical formulation

Our mathematical formulation is based on [16], but is repeated here for com-
pleteness and to point out the differences between the scheduling and bidding
problem. Focus is on the aspects of the model that are necessary to understand
the differences between standard PHA and PHA for inequality constraints. Dif-
ficult topologies, optimization of pressure height and other aspects typical and
important for hydropower scheduling are therefore not considered.

We define T to be the set of time steps within the model horizon. For con-
sistent linking to longer-term scheduling models and to avoid end-of-horizon
effects, both the scheduling and bidding problems have a horizon of about one
week even though only the decisions for the first day are implemented. We
define S to be the set of scenarios. Each scenario occurs with a known proba-
bility πs and contain possible values for future prices and inflow. We consider
a river chain with R reservoirs, and assume for simplicity that all reservoirs
have an associated generating unit. The objective is to maximize the revenues
from selling power within the model horizon and the value of water left in
the reservoirs at the end of the horizon, less any costs related to start-ups.
Revenues are calculated as the price of electricity (ρts) times the sold volume
(yts). Price is considered to be a stochastic variable. Vr describes the marginal
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value of storage (stsr), and may be interpreted as the marginal cost of pro-
duction. In this work, the value of storage is a known input to the scheduling
and bidding models, assumed to be calculated from longer-term hydropower
scheduling models. Each time a generating unit is started, the variable dtsr
will take on a value of 1 and a cost of CStart

r is incurred. The objective may
thus be expressed by

max
∑
S

πs(
∑
T

ρtsyts +
∑
R

VrsTsr −
∑
TR

CStart
r dtsr) (1)

Storage in reservoirs must adhere to a mass balance equation between time
steps, as expressed by

stsr = st−1sr − qPtsr − qBtsr − qStsr +
∑

j∈RUp

(qPtsj + qBtsj + qStsj) + Γtsr. (2)

Eq. (2) states that the storage level at the end of this hour, stsr , must equal
the storage level at the end of the previous hour less any discharge used for
production (qPtsr), bypass (qBtsr ), or spillage (qStsr ) within this hour. The system
consists of a series of connected reservoirs, and any discharge from connected
upstream reservoirs, j ∈ RUp, must be added to the storage level of this
reservoir. Inflow, Γtsr , which may be stochastic, is also included in the mass
balance equation. Reservoir levels also have to be within known maximum and
minimum bounds.

The release of water is linked to power production by a piecewise linear
concave production function for each generating unit. This production function
has M line segments, each represented with a discharge volume qtsrm limited
by an upper bound QMax

rm and a power output rate Erm . The sum of power
produced from all segments must equal the power produced and requirements
for minimum generation level, PMin

r , if the unit is on. This is expressed by∑
M

Ermqtsrm = ytsr + PMin
r utsr. (3)

Here, utsr is a binary variable that describes the on/off decision of each gen-
erating unit. The sum of discharge through the segments is equal to the pro-
duction discharge from this reservoir,∑

M

qtsrm = qPtsr. (4)

The binary variable utsr is also used to determine if a start-up has occurred
between two consecutive time steps. If so, the auxiliary variable dtsr takes on
a value of 1 according to

dtsr ≥ utsr − ut−1r (5)

and a cost is incurred in the objective function. Finally, the total volume pro-
duced from the system is the sum of production from the individual reservoirs,

yts =
∑
R

ytsr (6)
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Eqs. (1)-(6) describe the basic production scheduling aspects of the hydropower
scheduling and bidding problems. Given a set of price or combined price-inflow
scenarios with known probability, these equations determines an optimal vol-
ume to produce in each hour of each scenario. However, as explained in Section
1, we must require that the production schedule does not anticipate and adapt
to a certain scenario. Therefore, we must chose a production schedule that is
best for all scenarios, which is already indicated by averaging the objective
function over scenarios in Eq. (1). However, the production schedule should
not only be best on average, it should be equal for all scenarios. In Eq. (6), it
is evident that both the total production yts and the production per reservoir
ytsr is dependent on scenario. To obtain a solution that is truly nonanticipa-
tive, we must require that all scenario solutions are equal. There are several
ways to formulate this, and we have chosen to use the first scenario as refer-
ence and require the production in all other scenarios to be equal production
in the first scenario, as in

yt1r = yt2r , . . . , yt1r = ytsr , . . . , yt1r = ytSr. (7)

Note that the non-anticipativity constraints are imposed on unit level and
not for the total production, that is, on ytsr instead of yts. If the restrictions
in Eq. (7) had been applied to the total production, the optimization would
still be free to allocate the total volume differently among generation units
depending on scenario. For large, multi-reservoir river chains this might lead
to very different production schedules.

To summarize, Eqs. (1)-(7) describe a stochastic programming model for
hydropower scheduling. The left part of Fig. 1 shows the scenario tree structure
for the scheduling problem, both when formulated as a tree formulation, or
as the deterministic equivalent used in PHA. The only constraints that link
scenario problems is the non-anticipativity constraints on ytsr as expressed in
Eq. (7). Non-anticipativity is only imposed on for the first-stage production
variables, i.e. for the hours where we require an implementable schedule.

The formulation for the bidding problem builds on the formulation of the
scheduling problem in Eqs. (1)-(6). However, we will now show that the bidding
problem also involves inequality constraints that link otherwise independent
scenario subproblems.

In [3], a stochastic optimization model that determines optimal bids for hy-
dropower is formulated. Their model use a scenario tree to describe stochastic
prices and inflow, and consider how market commitments are determined for an
individual producer. They consider the Nordic market setting where bid curves
are piecewise linear and described by a set of price-volume pairs, (Pi, xi, ). The
commitment volume yts is found by interpolation between neighbouring points
on the producer’s bid curve and the market price. This is expressed as

yts =
ρts − Pi−1)

(Pi − Pi−1)
xti +

(Pi − ρts)
(Pi − Pi−1)

xti−1 if Pi−1 ≤ ρts ≤ Pi, (8)

where yts is the commitment volume and ρts is the market clearing price.
ρts is only known after market clearing, so in the bid optimization problem
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the producer use a set of scenarios to describe possible prices for tomorrow.
To avoid the nonlinear formulation that would result if both xti and Pi were
variables, a set i ∈ I of fixed price points Pi for which to bid is determined prior
to the optimization. The optimization then determines optimal bid volumes,
xti, for each price point. A constraint to make sure that the bids are non-
decreasing must also be added,

xti−1 ≤ xti. (9)

where the index i correspond to price scenarios sorted in increasing order for
each hour. As stated in Section 1, it is natural for a producer to be willing to
supply a larger volume at higher prices. However, due to time-dependencies
and other characteristics of power production and river-chains, ensuring a non-
decreasing bid curve must be explicitly formulated in the optimization model.

The model in [3] further includes production scheduling aspects to deter-
mine how the commitment volume yts should be produced from the generating
units in the system. This is similar to Eqs. (1)-(6) in the scheduling problem
above.

The model in [3] has been implemented, with slight modifications, in the
framework of models that is used by most hydropower producers in the Nordic
region [20]. In terms of bid optimization, the difference from [3] is that the set
of fixed price points Pi are chosen from the scenario prices ρts. This leads to a
formulation that involves inequalities between scenarios. To see this, consider
the case when the price ρts = Pi . Eq. (8) is then reduced to its first term

yts =
ρts − Pi−1

Pi − Pi−1
xti =

Pi − Pi−1

Pi − Pi−1
xti = xti. (10)

So we are left with yts = xti. Recognizing that the index s for scenarios and
i for price points and are interchangeable when we use the scenario prices as
bid price points, we see that, according to Eq. (10), the commitment volume
yts and the bid volume xti are equal. In this way, the bidding problem may
be solved as a set of nearly independent scenario problems that determines
production schedules and therefore the production/bid volumes yts. The only
constraint that connects the different scenarios is the fact that we need a non-
decreasing bid curve, as expressed in Eq. (9) for the model in [3]. Writing the
equivalent constraints for our current formulation problem yields

yts−1 ≤ yts, (11)

where scenarios are sorted in increasing order for each hour. As the price
scenarios may cross each other, it is not certain that the ordering of scenarios
is equal from hour to hour, see Fig 4.

To be able to correctly impose the restrictions in Eq. (11), we include in
our formulation restrictions of the form

yts ≤ y+ts if ρts ≤ ρ+ts. (12)
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Fig. 3 Left: An illustration of the time profile of three price scenarios over three hours.
In the first hour, Scenario 3 (red) has the lowest price and thus should have the lowest
production volume. So, for the first hour, we require that production in Scenario 3 must be
lower than in Scenario 2 (blue), and production in Scenario 2 must be lower than in Scenario
1 (green). In the next hour, the order is changed, and the production in Scenario 2 should
be lower than in Scenario 3, which again should be lower than in Scenario 1. In the final
hour, production in Scenario 3 should be lower than in Scenario 1, which should be lower
than in Scenario 2. Right: An illustration of the results from bid optimization, comparable
to Fig 2. Bid curves are piecewise linear and given by a set of price-volume points. The price
and optimized volume in each scenario gives a point on the bid curve, as seen here for the
scenarios to the left.

Scenario s+ is defined as the scenario with the lowest price that is still greater
or equal to ρts in that hour. In the case where ρts = ρ+ts, the production is
required to be equal in the two scenarios. Further details about the implemen-
tation of the bidding model may be found in [16].

To summarize, the bidding model is defined by Eqs. (1)-(6), refnonanti
and (12), where the constraints in Eq. (7) are imposed for the first stage
production variables, and Eq. (12) is imposed for the hours for which we want
to determine bids. Notice that the bid constraints link scenarios by inequality
constraints, as opposed to equalities in the non-anticipatively constraints. The
constraints in Eq. (12) are the only constraints that are added in order to go
from scheduling to bidding. The reason for using this formulation instead of
the formulation by [3] that uses Eqs. (8) and (9), is to have a closer fit with
the scheduling model. With our formulation, there is no need for additional
variables for bidding (i.e. the xti in Eq. (8)), we simply add a set of constraints
to the scheduling model. The result is that, for each hour, the total production
volume, yts, in each scenario, will give a point on the bid curve. Each bid point
will be specified by the scenario price, ρts and the corresponding optimized
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volume yts, see the right side of Fig. 3. The points need to specify a non-
decreasing curve, which is ensured by Eq. (12).

Also notice that while the non-anticipativity constraints in Eq. (7) are
defined per unit, i.e. on ytsr, the inequality constraints for bidding is defined on
system level, i.e. on yts. The reason is that when determining bids, the producer
still have flexibility regarding how to allocate market commitments among
units after commitments and price becomes known in the market clearing.
Our modelling of the bidding problem maintains this flexibility.

4 Algorithm descriptions

PHA works with the deterministic equivalent formulation of stochastic pro-
grams, in which there is one copy of each variable belonging to every scenario.
For the scheduling problem, this formulation is illustrated in Fig. 1, where the
grey box indicate the non-anticipativity constraints.

The bidding problem, which involves inequality constraints, does not fit di-
rectly in to standard PHA. However, seeing the similarities with the scheduling
problem, we propose a PHA-inspired method to tackle the bidding problem.
Fig. 2 illustrates the deterministic equivalent formulation of the bidding prob-
lem. The grey boxes illustrate that there exists two types of cross-scenario con-
straints in the model; in the first stage, we impose non-anticipativity through
equality constraints. In the second stage, we impose the non-decreasing bid
curve constraints as defined in Eq. (12) for the hours we want to determine
bids.

The algorithms for standard PHA and PHA with inequalities are presented
in Algorithm 1 and 2, respectively. Both algorithms take a penalty factor α
and a termination threshold ε as the sole input parameters. The presentation
of the algorithms follow the notation in [2], except that we use y for the
first stage variables (production) and x for second stage variables (everything
else) to better comply with the presentation of the mathematical models in
Section 3. Thus, csys is the objective function for the first stage, while fsxs is
objective for the second stage. Fs is the feasible region for scenario s. In the
implementation of both algorithms, we follow the suggestion of [2] and use a
variable-dependent penalty parameter instead of a fixed value.

The algorithms in Algorithm 1 and 2 look quite similar and both decom-
pose the problem by scenarios. PHA aggregates the solutions from scenario
subproblems into an overall solution that is implementable for the underlying
stochastic program. For standard PHA, given in Algorithm 1, the aggregation
operator in Steps 3 and 7 is taking the average over all scenario solutions. This
results in an aggregated solution y(k) that does not depend on scenario. The

dual variables, w
(k)
s are calculated for each scenario based on the difference be-

tween the scenario solution y
(k)
s and the average solution y(k), see steps 4 and

8. If the scenario value is larger than the average, the dual variable will take
on a positive value (since α ≥ 0), which in the next iteration will contribute

to a lower solution value y
(k)
s (given a minimization problem). If the scenario
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value is lower than the average, the dual will take on a negative value, con-

tributing to a higher solution value for y
(k)
s in the next iteration. In addition

to the duals, deviations from the current aggregated solution are penalized by
the quadratic term in the PHA objective function in step 6 of the algorithm.

A variant of PHA may be used also for problems with inequality con-
straints, as long as an appropriate aggregation operator and definition of
implementability is used. In our case, implementability is defined as a non-
decreasing bid curve. For PHA with inequality constraints, given in Algorithm

2, this means that the implementable solution ŷ
(k)
s may depend on scenario

as long as the non-decreasing bid constraints are overheld. The aggregation
operator in Steps 3 and 7 calculates a non-decreasing bid curve by reordering
the scenario solutions. The rest of the algorithm is equal to standard PHA.

Algorithm 1 Standard PHA
1: k ← 0
2: For all s ∈ S, y

(k)
s = argmin(csys + fsxs) : (ys, xs) ∈ Fs

3: For all s ∈ S, y(k) =
∑

S πsy
(k)
s

4: For all s ∈ S, w
(k)
s = α(y

(k)
s − y(k))

5: k ← k + 1
6: For all s ∈ S,
y
(k)
s = argmin(csys + w

(k−1)
s ys + α||ys − y(k−1)||2 + fsxs) : (ys, xs) ∈ Fs

7: For all s ∈ S, y(k) =
∑

S πsy
(k)
s

8: For all s ∈ S, w
(k)
s = w

(k−1)
s + α(y

(k)
s − y(k))

9: g(k) =
∑

S πs||ys − y(k)||
10: If g(k) ≥ ε, go to Step 5. Otherwise terminate.

Algorithm 2 PHA for inequality constraints
1: k ← 0
2: For all s ∈ S, y

(k)
s = argmin(csys + fsxs) : (ys, xs) ∈ Fs

3: For all s ∈ S sorted by increasing prices, and s′ ∈ S′ sorted by increasing volume,

ŷ
(k)
s = y

(k)
s′

4: For all s ∈ S, w
(k)
s = α(y

(k)
s − ŷ(k)s )

5: k ← k + 1
6: For all s ∈ S,
y
(k)
s = argmin(csys + w

(k−1)
s ys + α||ys − ŷ(k−1)

s ||2 + fsxs) : (ys, xs) ∈ Fs

7: For all s ∈ S sorted by increasing prices, and s′ ∈ S′ sorted by increasing volume,

ŷ
(k)
s = y

(k)
s′

8: For all s ∈ S, w
(k)
s = w

(k−1)
s + α(y

(k)
s − ŷ(k)s )

9: g(k) =
∑

S πs||ys − ŷ(k)||
10: If g(k) ≥ ε, go to Step 5. Otherwise terminate.

A closer look at the differences in the aggregation operator for standard
PHA and PHA for inequality constraints is in order. For standard PHA, the
aggregation operator is to take the average over all scenario solutions. This
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results in an aggregated, implementable solution y(k) that is scenario indepen-
dent. The individual scenario solutions will converge to the average solution
over the PHA iterations, so we will be left with one solution to implement.

Notice that we might as well have used the notation y
(k)
s to denote the aggre-

gate solution, indicating that each scenario gets its own copy of the average
solution. The individual scenario solutions would be compared to its own copy,
but as all scenario copies have the same value, the value of the final solution
would still be scenario independent and thus implementable.

For PHA with inequality constraints, each scenario also have its own im-

plementable solution ŷ
(k)
s . The scenario solutions will converge to this solu-

tion over the PHA iterations. Note, however, that in the case of inequality

constraints, we do not require the ŷ
(k)
s to be equal for all scenarios. An im-

plementable solution in the case of inequality constraints does not mean that
all scenarios have the same solution; it rather means that the inequalities be-
tween scenarios are adhered to. In our case it means that the bid curve is
non-decreasing, i.e. that the constraints in Eq. (12) are fulfilled. Therefore,
in each aggregation step, we calculate an implementable solution, i.e. a non-
decreasing bid curve, from the available scenario solutions by switching the
order of scenario solutions. For each time step, we start with an ordered set
S where scenarios are arranged by increasing prices. We define another or-
dered set S’ where the scenarios are sorted according to increasing production

volumes, i.e. according to the scenario solutions y
(k)
s . The sets S and S’ have

the same size as they both contain all scenarios in the problem, but the order
may be rearranged depending on the values of the scenario solution, see Fig. 4
for an illustration. Using the two ordered sets of scenarios, the implementable
solution for each scenario (indexed by price) is set equal to the solution value
of the corresponding volume-sorted scenario.

The presentation so far has assumed that each PHA subproblem consists
of a single scenario. In the implementation, however, it is possible to bundle
any number of scenarios into the subproblems. A large problem might thus
be solved as a set of independent subproblems each consisting of a set of
scenarios of the original problem, with any cross-scenario constraints between
the scenarios in each bundle present. This makes PHA a viable alternative
when the original problem is too large to be solved as one problem. If the
maximum number of scenarios that can be solved as one problem is 100, a
problem with 1000 scenarios may still be solved as 10 subproblems with 100
scenarios each.

Current industry applications of the model is however likely to involve a
smaller set of scenarios (≤50), as the typical problem instance is already large
due to the size of the physical production system. Large hydropower companies
operate several interconnected river systems, and bid for their total portfolio
of plants in a market area. The resulting stochastic problem could poten-
tially be solved, but as operators are pressed for time in the bidding process,
short calculation times are crucial. Hydropower companies are thus willing to
invest in additional computing resources even for modest speed-ups. The re-
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Fig. 4 An illustration of how an implementable bid curve is calculated in each iteration of
PHA for inequality constraints. We consider a single hour and three scenarios. Scenarios are
indexed by prices on the price axis and by bid volumes on the volume axis. To the left, where
scenarios are sorted by increasing prices, the results do not represent a non-decreasing bid
curve. The right plot shows the scenarios sorted by bid volume and this the non-decreasing,

implementable solution. The resulting equations that determines ŷ
(k)
s are seen to the right.

sults in the next section indicate that PHA achieves significant speed-ups for
the scheduling problem but only moderate speed-ups for the bidding problem.
The speed-ups increase as the model size increase. Industry applications of the
scheuling and bidding problem are likely to involve larger production systems
than the case in Section 6, and thus also larger problem instances. Feedback
from users of the SHOP model is that the speed-ups observed so far may be
useful in practice, especially for the scheduling problem.

5 Convergence

In [11], it is shown that PHA will converge to the optimal solution of the
original stochastic program if ∑

S

πsw
(k)
s = 0. (13)

This is indeed true for standard PHA as we have∑
S

πs(w
(k)
s − w(k−1)

s ) = απs
∑
S

(y(k)s − y(k)) and w(0)
s = 0. (14)

The trick lies in recognizing that

πs
∑
S

(y(k)s − y(k)) =
∑
S

πsy
(k)
s −

∑
S

πsy
(k) = y(k) − y(k) = 0, (15)

as the average operator is idempotent. Further, as each scenario solution

y(k)s = argmin(csys + w(k)
s ys + α||ys − y(k−1)s ||2 + fsxs) : (ys, xs) ∈ Fs, (16)
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the average solution

y(k) = argmin
∑
S

πs(csys+w
(k)
s ys+α||ys−y(k−1)s ||2+fsxs) : (ys, xs) ∈

⋃
S

Fs

= argmin
∑
S

πs(csys + α||ys − y(k−1)s ||2 + fsxs) : (ys, xs) ∈
⋃
S

Fs, (17)

where the previous result on w
(k)
s is used in the last step. Assuming that the

objective function is “nice” in the neighbourhood of y(k), this in turn implies
that

y(k) = argmin
∑
S

πs(csys + fsxs) : (ys, xs) ∈
⋃
S

Fs (18)

and therefore solves the original stochastic program in the convex case. The
above proof is taken from [11]. A note should be made here about the feasible
region for each scenario subproblem, Fs, in contrast to the feasible region for
the total stochastic problem

⋃
S Fs . A scenario solution is only guaranteed

to be feasible for that particular scenario, while the final solution needs to
be feasible for all scenarios. In the case of the hydropower scheduling and
bidding problems, the feasible region is only affected by inflow uncertainty.
Inflow occurs in the right-hand side of the reservoir balance constraints (Eq.
(2)), and therefore affects the feasible regions of scenarios. However, the model
always have the opportunity to spill excess water or obtain extra water at a
high cost, so the feasible regions for all scenarios are in principle the same.
Price is only present in the objective function, and therefore does not affect
the feasible region.

The above paragraphs prove that standard PHA will converge to the op-
timal solution of the underlying stochastic program. If the equivalent of Eq.
(13) is valid for PHA for inequality constraints, the rest of the convergence
proof will follow. Similarly to standard PHA,∑

S

πs(w
(k)
s − w(k−1)

s ) = απs
∑
S

(y(k)s − ŷ(k)s ) and w(0)
s = 0. (19)

so we need to show that

πs
∑
S

(y(k)s − ŷ(k)s ) = 0. (20)

Considering that the implementable solutions ŷ
(k)
s is a rearrangement of the

scenario solutions y
(k)
s , each individual scenario solution will appear one time

with a positive sign and one time with a negative sign in the summation over
all scenarios in Eq. (20). If all scenarios have equal probability, the scenario
and implementable solutions will cancel each other out and the sum over all
scenarios will be zero as needed. The convergence properties of PHA for in-
equality constraints are therefore the same as for standard PHA, as long as
all scenarios have equal probability.
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Table 1 Results for the scheduling problem

No Scenarios 5 20 35 50 64

No Variables 320,080 1,280,320 2,240,560 3,200,800 4,097,024
No Constraints 249,689 1,026,059 1,802,429 2,578,799 3,303,411
Objective stochastic 100.000 100.000 100.000 100.000 100.000
Objective PHA 99.998 99.999 99.998 99.997 99.998
Time stochastic 7.08 56.92 147.50 336.29 732.44
Time PHA 68.36 90.52 148.91 201.22 252.73

Equal probability for all scenarios is a limitation when considering that
the scenarios in principle should approximate a distribution for the stochastic
parameters. In practical applications, however, the number of scenarios used
is often too small to in any way approximate a distribution, so the additional
error of having equal probabilities is considered to be negligible. If the number
of scenarios is larger, it is possible to solve PHA using bundles of scenarios
as subproblems. It is then possible to choose these bundles such that each
bundle has equal probability while still maintaining the true probabilities of
the individual scenarios.

The convergence of standard PHA is proven only for linear programs, but
promising results also for mixed-integer problems are reported by [2]. Both
the scheduling and bidding problem involve binary variables due to unit com-
mitment.

6 Case study and results

Results for PHA and PHA for inequality constraints is shown for a reser-
voir system with 17 reservoirs and 13 generating units. The total generation
capacity is about 1000 MW. The time horizon is set to 168 hours and two-
stage scenario trees as depicted in Figs 1 and 2 are used. We only consider
price uncertainty in this work. In the scheduling problem, the main result is a
production schedule for all units for the 24 hours of today. In the bidding prob-
lem, the main result is bid curves for the 24 hours of tomorrow. For both the
scheduling and bidding problem, we solve the deterministic equivalent model
as a full stochastic program and by the PHA algorithms presented in Section
4. PHA is meant to be used when the stochastic program is too large or com-
plex to be solved within certain time constraints. Here, however, we want to
ascertain that our new algorithm actually converges to the optimal solution of
the stochastic program, so we limit our self to cases with a modest number of
scenarios in order to be able to solve the full stochastic program.

Tables 1 and 2 show results for the scheduling and bidding problem, respec-
tively. The objective function values are given as a percentage of the objective
function value obtained by the full stochastic program. The objective function
values obtained by PHA is very close to the true objective function value.
Calculation time is given in seconds.
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Table 2 Results for the bidding problem

No Scenarios 5 20 35 50 64

No Variables 290,976 1,163,976 2,036,976 2,909,976 3,724,776
No Constraints 213,004 867,919 1,522,834 2,177,749 2,789,003
Objective stochastic 100.000 100.000 100.000 100.000 100.000
Objective PHA 100.005 99.227 99.144 99.039 99.017
Time stochastic 9.30 71.56 231.98 348.31 958.20
Time PHA 39.39 107.34 295.81 388.73 734.69
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Fig. 5 The 24-hour production schedule for unit 4, as obtained from the full stochastic
program (black) and standard PHA (blue).

We take a closer look at the results obtained from the 35-scenario case. For
the scheduling problem, Fig. 4 shows the production schedule obtained from
the full stochastic program and standard PHA for one of the generating units
in the system. The solutions are quite similar, and follow the same general
pattern with a morning and afternoon production peak. The solutions are
however not identical, even though the objective function values are very close
as seen from Table 1. This is because the objective function is relatively flat
due to the flexibility of the production system. Results for the remaining units
are comparable.

For the bidding problem, Fig. 5 shows the bid curves for all 24 hours of
tomorrow, while Fig. 6 shows a single hour to better discern the differences.
Again, the results are similar, but not identical even though the objective
function values are close as seen in Table 2.

Regarding convergence, Figs. 8 and 9 shows plots of the distance calculated
in Step 9 of the algorithms given in Section 4. This distance is used to decide
whether to terminate the algorithms or continue with another iteration, and
should approach zero. From the plots, it is evident that the scheduling problem
has a smaller initial distance, which is driven to zero very fast, whereas the
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Fig. 6 Bid curves for all 24 hours of tomorrow, as obtained from the full stochastic program
(black) and PHA for inequality constraints (blue). Values along the price-axis are removed
for confidentiality.
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Fig. 7 Bid curves for Hour 9 of tomorrow, as obtained from the full stochastic program
(black) and PHA for inequality constraints (blue). As seen from Fig. 6, the results for the
other hours have similar differences. Values along the price-axis are removed for confiden-
tiality.

bidding problem has a larger initial distance and uses several iterations to
reduce it to zero. These results are however case dependent and we find other
patterns of convergence for other problem instances or other values for the
penalty parameter α. Our experience, however, is that the convergence of PHA
for inequality constraints in the bidding problem is slower than for standard
PHA in the scheduling problem.

The results presented so far indicate that standard PHA and PHA for
inequality constrains give good results for the hydropower scheduling and bid-
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Fig. 8 The distance
∑

S πs||ys − y(k)|| as calculated in Step 9 of standard PHA. .
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Fig. 9 The distance
∑

S πs||ys − ŷ
(k)
s || as calculated in Step 9 of PHA for inequality con-

straints.

ding problem, in that we are able to obtain solutions that are comparable
to solving the full stochastic program. However, the reason for implementing
PHA is to be able to solve subproblems in parallel in order to solve problems
that are too large to be solved as a single problem or to speed up calculation
time. For the cases considered here, we are able to solve the full stochastic
program, so we consider the potential for speed-ups. Table 1 and 2 show the
calculation time for the full stochastic program and PHA. For small problem
instances, it is faster to solve the full stochastic programs than the parallell
PHA algorithms due to overheads of decomposition. As the problem size in-
crease, the calculation times of PHA is shorter than for the full stochastic
program. The reduction in calculation time is substantial for standard PHA
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in the scheduling problem, whereas only a moderate reduction is observed for
the largest case of PHA for inequality constraints in the bidding problem.

7 Conclusions

In this paper, we have shown that a variant of progressive hegding may be
used to solve stochastic programming problems that involve cross-scenario
inequality constraints. Standard progressive hedging solves large stochastic
problems by iteratively manipulating the objective function coefficients of in-
dividual scenario subproblems to reflect the costs of non-anticipativity. Our
algorithm follows the same principle, but works with cross-scenario inequal-
ity constraints. Specifically, we focus on the problem of determining optimal
bids for hydropower producers that participate in wholesale electricity auc-
tions. The cross-scenario inequality constraints arise from the fact that bids
are required to be non-decreasing. We formulate a progressive hedging inspired
algorithm for stochastic programs with inequality constraints and show that
the algorithm has the same convergence properties as standard progressive
hedging. Results for the new algorithm are demonstrated on a typical instance
of the hydropower scheduling and bidding problem, and illustrate that we are
able to obtain convergence to the optimal solution in a small number of iter-
ations (≤ 15) of the PHA algorithm. In terms of calculation time, our results
indicate that the parallell implementation standard progressive heding in the
scheduling problem achives substantial reductions in calculation time, whereas
reductions are moderate for progressive hedging for inequality constraints in
the bidding problem.
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