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Abstract—This paper introduces an approach for frequency-
dependent pi-section (FD-π) modelling of ac cables which enables
a time-invariant state-space representation that accounts for
the frequency-dependent cable characteristics. The proposed
approach relies on vector fitting to obtain parametric values
for parallel RL-branches representing the frequency-dependency
of the series impedance of the cable in the stationary frame.
The number of cascaded FD-π sections with their corresponding
shunt capacitance is then selected in order to represent the
internal resonance frequencies of the cable up to the required
modelling bandwidth. The resulting stationary frame model is
transformed to a synchronously rotating dq reference frame
to obtain a state-space formulation compatible with the time-
invariant representation of other system components. The pre-
sented model allows for accurate time-invariant state-space mod-
elling of power systems with long ac-cables where electromagnetic
transients cannot be neglected in small-signal stability studies.
The characteristics of the time-invariant cable model is evaluated
in the frequency domain, illustrating the impact of the number
of π sections and parallel RL branches on the accuracy and the
associated oscillation modes of the state-space model.

Index Terms—Eigenvalue analysis, HVAC cable modelling,
vector fitting, small-signal dynamics, state-space modelling

I. INTRODUCTION

The utilization of power electronic technology is currently

increasing throughout the power system [1]–[3]. Thus, power

electronic converters are becoming widely utilized as grid

interfaces of loads and distributed generation, as well as for

reactive power compensation and HVDC transmission [4]–

[6]. The fast control actions and the harmonic filters of grid

connected power electronic converters are introducing new and

faster dynamics in the power system. Consequently, emerging

modern power systems with significant power electronic con-

version capacity leads to new requirements for the models and

tools needed in power system stability analysis [7], [8].
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In traditional methods for analysis of large scale power sys-

tems, the impedances of lines and cables are usually modelled

by algebraic phasor representation [9]. However, such phasor-

based models, cannot represent the electromagnetic transients

in the network and the response to fast control actions of power

electronic converters. Thus, hybrid modelling approaches have

been proposed, where algebraic models are utilized for parts of

the network while electromagnetic transient models are utilize

to represent the network close to dominant power electronic

converters [10].

For eigenvalue-based small-signal stability analysis of

power systems, a time invariant model is necessary, implying

that all variables should converge to an equilibrium point

during stable steady-state operation [9]. Thus, modelling of

the electromagnetic dynamics in transmission systems requires

that the state equations representing the system dynamics

account for the periodicity in the ac signals. This is typi-

cally achieved by expressing the model by dq variables in

a synchronously rotating reference frame (SRRF). Several

recent studies have evaluated the need for representing the

electromagnetic dynamics of transmission systems in small-

signal stability studies [11]–[14]. However, these studies usu-

ally assume a lumped parameter representation of transmission

lines or cables. Thus, the dq frame state equations of a lumped

series impedance are usually introduced for representing the

network dynamics [7], [8]. Alternatively, a traditional π-

section model, [15], [16] or a series of T -section models

with fixed parameters [17], [18] can be represented by state

equations in the dq reference frame.

For studies of HVDC systems, it has recently been demon-

strated that the use of classical cascaded π-sections for repre-

senting dc cables can give rise to a significant underestimation

of the internal damping effects caused by the frequency-

dependent characteristics of the cable [19]. Therefore, uti-

lization of classical π section models in small-signal state-

space analysis of HVDC transmission schemes can result in

identification of poorly damped modes or even false prediction

of instabilities that do not represent the actual dynamics

of the system. To address this issue, a modelling approach

based on frequency dependent π (FD-π) sections with mul-978-1-5386-8218-0/19/$31.00 c©2019 IEEE
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Fig. 1. Cable modelling by a) π representation with frequency dependent impedances; b) circuital representation of the FD-π model.

tiple parallel RL branches for accurately representing the

frequency-dependent damping effects has been proposed [19]–

[21]. However, this modelling approach has until now been

applied only to HVDC cables.

In this paper an approach for FD-π modelling of high

voltage ac (HVAC) cables is introduced. For simplicity, HVAC

transmission by three single-core cables is assumed, allowing

for direct application of an FD-π model for each phase.

Thus, the stationary three-phase FD-π model representation

can be transformed to a SRRF for obtaining a time-invariant

model that accounts for the frequency-dependent damping

characteristics of the cable. The validity and accuracy of the

proposed modelling approach is demonstrated in the frequency

domain. Examples of eigenvalue analysis of a single cable are

also presented to demonstrate how the configuration of the FD-

π model in terms of number of sections and number of parallel

RL branches in each section influences the representation of

the cable dynamics.

II. FD-π MODEL FOR A SINGLE-CORE CABLE

General considerations on modelling of a single-core cable

is presented in this section, as a background for the proposed

representation of three-phase ac cables by dynamic dq-models.

A. Distributed parameter model of a single-core cable

The behavior of a single-core cable can be represented by

the equivalent circuit in Fig. 1a. The frequency-dependency

of the parameters and the influence of the cable length on the

impedance due to the distributed parameter characteristics are

represented in the series and shunt elements, Zπ(s) and Yπ(s).
In the Laplace domain, these circuit elements are expressed by

[22], [23]:

Zπ(s) = z(s) �
sinh γ(s)�

γ(s)�
, Yπ(s) = y(s) �

tanh γ(s)�
2

γ(s)�
2

(1)

γ(s) =
√

z(s)y(s) (2)

where z(s) and y(s) are the cable impedance and admittance

per unit length. These characteristics also define the propaga-

tion constant γ(s), while � denotes the cable length. The series

impedance z(s) is assumed to be represented on the form of:

z(s) = r(s) + s · l(s) (3)

where the resistance r(s) and inductance l(s) per unit length

are frequency-dependent. Since z(s) is a smooth function

in the frequency domain, it is easier to fit with a rational

approximation than the function Zπ(s). The admittance y(s)
can be expressed as:

y(s) = g + s · c (4)

In the frequency range of interest for small-signal eigenvalue-

based analysis of power systems, the conductance g and the

capacitance c per unit length can be assumed constant [24].

The admittance of the cable terminated on a load impedance

Zl(s) can be derived from Fig. 1a and (1), which leads to:

Yc(s) =
γ(s) coth(γ(s)l) + y(s)Zl(s)

γ(s)Zl(s) coth(γ(s)l) + z(s)
(5)

Thus, the behavior of the cable in the Laplace domain can

be represented by a frequency-dependent admittance. The

representation of the cable with Yc(s) can be utilized as a

reference model for the cable in the frequency domain.

B. FD-π model for a single-core cable

The cable model from Fig. 1a and (5) cannot be expressed

in state-space form. Although the impact of the hyperbolic

functions are commonly represented by multiple π-sections

for obtaining a rational approximation, such conventional

models do not represent the frequency-dependency of the

series impedance. For the purpose of state-space modelling

and eigenvalue analysis of HVDC transmission systems, a

Frequency Dependent π (FD-π) model of an HVDC cable

was introduced in [19], [20]. As shown in Fig. 1b this model

utilizes multiple parallel RL branches to account for the

frequency-dependency of z. The parameters of the parallel RL
branches are obtained to approximate z as:

1

z(s)
≈

m∑
i=1

1

ri + sli
(6)

by applying vector fitting [20], [23], [25]. As long as the

shunt conductance can be assumed constant for the considered

frequency range, the parameters for each section of the FD-π
model can be determined directly from the length of the cable,

the selected number of π sections, n, and the selected number

of parallel branches, m, for each section.
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III. FD-π MODEL OF AC CABLES

For simplicity, three phase high voltage ac transmission by

three identical and decoupled single-core cables is assumed in

the following. Thus, each single-core cables can be modelled

according to the approaches presented in section II. For

balanced three phase conditions, the abc phase representation

can be reduced to a an orthogonal stationary frame αβ model.

By applying the Park Transformation, the representation of the

cable can be further expressed by SRRF dq variables.

With reference to the first section in the model represented

in Fig. 1b, the relation between the voltage across the π section

and the current flowing in the first parallel branch can be

expressed in the Laplace domain as:

uin − u1 = (R1 + sL1)i1,1 (7)

Thus, the state equation for the current is given by:

si1,1 = −R1

L1
i1,1 − 1

L1
(uin − u1) (8)

Assuming identical impedance characteristics and no cou-

pling between the phases, the three-phase system can be

modelled in a two-phase stationary αβ reference frame as:

−→u in,αβ −−→u 1,αβ = (R1 + sL1)
−→
i 1,1,αβ (9)

where −→x αβ = xα + jxβ .

The stationary frame equation in (9) can be transformed

to the SRRF defined by the fundamental frequency ω. This

transformation is equivalent to replacing the Laplace operator

s by s+ jω, leading to:

−→u in,dq −−→u 1,dq = (R1 + (s+ jω)L1)
−→
i 1,1,dq (10)

where −→x dq = xd + jxq .

The state-equations for the d− and q-axis current compo-

nents, can then be obtained from the real and imaginary parts

of ((10)), yielding:

si1,1,d = −R1

L1
i1,1,d − 1

L1
(uin,d − u1,d) + ωi1,1,q (11)

si1,1,q = −R1

L1
i1,1,q − 1

L1
(uin,q − u1,q)− ωi1,1,d (12)

The d- and q-axis state equations in (11) and (12) highlight

how the states of the currents in a stationary reference frame

FD-π model can be transformed into the SRRF. Similar trans-

formations apply also to the states of the voltages associated

with the capacitances of the FD-π model.

A. State space formulation

In [19], a state space formulation for the FD-π model of a

single-core cable is derived on the general form of:

ẋ = Ax+Bu (13)

y = Cx (14)

with the states and inputs defined by:

x = [i1,1...i1,n...u1...um−1...im,1...im,n] (15)

y =
[
iin iout

]T
(16)

The expression of the A and B matrices are not reported here

for brevity.

From the general FD-π model of a single-core cable on the

form given by (13)-(16), a balanced three-phase system can

be represented on state-space form in αβ coordinates as:

ẋαβ = Aαβxαβ +Bαβuαβ (17)

Aαβ =

[
A 0
0 A

]
(18)

Bαβ =

[
B 0
0 B

]
(19)

Cαβ =

[
C 0
0 C

]
(20)

where: xαβ =
[
xα xβ

]T
. This model is applicable under

the assumption that the impedance parameters, the currents

and voltages of two axes are balanced and can be expressed

without coupling between the phases.

Finally, the stationary fram αβ model can be transformed

into the dq frame. Expanding the resulting equations in the

same way as shown in (11) and (12) the time-invariant state-

space model can be expressed as:

ẋdq = Adqxdq + Bdqudq (21)

Adq =

[
A ωI

−ωI A

]
(22)

Bdq = Bαβ (23)

Cdq = Cαβ (24)

(25)

where: xdq =
[
xd xq

]T
.

IV. ANALYSIS AND VERIFICATION OF THE PROPOSED

MODEL

For validating the time-invariant state-space model from

(21) and its ability to capture the frequency-dependent charac-

teristics of an HVAC cables, numerical examples of frequency

domain analysis are presented for a generic 100 km ac cable

section. Moreover, the effect of the configuration of the pro-

posed FD-π on the transfer functions and on the eigenvalues

is presented to highlight the differences from a conventional

π model.

A. Validation of the FD-π model in frequency domain

Under the assumptions applied in section III, the admittance

of a three phase cable in the dq frame can be represented in

the frequency domain as:

[
id(s)
iq(s)

]
=

[
Yc,dd(s) Yc,qd(s)
−Yc,qd(s) Yc,dd(s)

] [
vd(s)
vq(s)

]
(26)
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(a)

(b)

Fig. 2. Frequency characteristics of admittance components for different
number of sections n, (with m = 4).

The two transfer functions Yc,dd(s) = Yc,qq(s) and

Yc,qd(s) = −Yc,dq(s) can be obtained analytically from the

admittance Yc(s) of the single-core cable by a frequency

transformation according to the procedure described in [26]:

Yc,dd(s) = 1
2 (Yc(s + jω0) + Yc(s − jω0)) (27)

Yc,qd(s) = 1
2j(Yc(s+ jω0)− Yc(s− jω0)) (28)

The two expressions in (27) and (28) can be assumed as

a reference for the cable behavior in the frequency domain.

Thus, the accuracy of FD-π models are assessed in the

frequency domain by comparison to (27) and (28).

The frequency characteristics of FD-π models in terms

of ydd and ydq for m = 4 and different values of n are

shown in Fig. 2. The reference models from (27) and (28)

are labelled as ”ideal” in the figure. By contrast, the frequency

characteristics for n = 20 and different values of m are shown

in Fig. 3 and again compared with the reference model. These

results clearly indicate that the accuracy of the frequency

characteristics increases by considering a model with higher

order. In particular, Fig. 2 shows that the effect of increasing

the number of π sections n is increasing the frequency range

where the accuracy can be maintained. Indeed, all the models

present a roll-off at high frequencies, but higher values of n
are extending the frequency range where the model is valid.

Even more obvious is the influence of the number of parallel

branches m on the frequency characteristics. Indeed, for the

lowest values of m (i.e. m = 1 and m =2) the model tends

to exhibit wrong resonances both in terms of frequency and

(a)

(b)

Fig. 3. Frequency characteristics of admittance components for different
number of parallel branches m, (with n = 20).

Fig. 4. Comparison of eigenvalues for FD-pi models with different number
of sections n, (for m = 4).

damping. However, already with m = 3 this effect tends

to disappear. This further confirms that the conventional π
model corresponding to m = 1 could be quite inaccurate for

eigenvalue-based stability analysis and could be misleading

by introducing modes with significant lower damping than a

real cable will exhibit. However, it should be noted that the

presented results are obtained by enforcing the dc-resistance of

the cable for the vector fitting. Thus, a different distribution

of the deviations from the reference model would occur if

the impedance at the grid frequency would be imposed in the

fitting process while relaxing the fitting of the dc-resistance.

B. Eigenvalue analysis of dq-frame FD-π models

The impact of n and m on the cable model behavior can also

be observed in eigenvalue analysis. The slowest eigenvalues

of FD-π models with different values of n are shown in Fig. 4

(i.e. eigenvalues with real part below -1500 are not displayed).

The eigenvalues tend to align on an almost vertical line, but
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Fig. 5. Comparison of eigenvalues for FD-pi models with different number
of parallel branches m, (for n = 10).

higher order models extend the range of resonance frequencies

captured by the model (i.e. by poles with higher imaginary

parts). This corresponds to the observations in the frequency

domain, where higher values of n will extend the frequency

range captured by the model but do not have a major role in

defining the damping. The impact on the eigenvalues of FD-π
models with different values of m is shown in Fig. 5. In this

second case, the eigenvalues clearly present a very different

behavior in terms of damping since they tend to align with

different slopes in the complex plane. It should be noted that

the damping can have a very critical effect on stability and

that the value of m should be sufficiently high to avoid false

poorly damped modes that could potentially interact with the

controls.

V. CONCLUSION

This paper introduces a frequency-dependent π (FD-π)

model of ac cables, intended for eigenvalue-based analysis of

small-signal dynamics in power systems. The model extends

the concept of the FD-π models previously introduced for dc

cables and allows a representation of ac cable dynamics in a

rotating dq frame, which is necessary to obtain a time-invariant

state-space model for eigenvalue assessment of three-phase ac

systems. Analysis in the frequency domain demonstrate how

increasing the number π-sections and parallel RL-branches of

the FD-π-model can provide higher accuracy and effectively

extend the frequency range where the model can be applied.

Moreover, the paper demonstrates that the conventional π
model with a single parallel branch can lead to significant

errors in the damping of internal oscillation modes.
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