
A Perception of the Practice of Software Security and
Performance Verification

Victor Vidigal Ribeiro
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
vidigal@cos.ufrj.br

Daniela Soares Cruzes
SINTEF DIGITAL
Trondheim, Norway
danielac@sintef.no

Guilherme Horta Travassos
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
ght@cos.ufrj.br

Abstract— Security and performance are critical non-
functional requirements for software systems. Thus, it is crucial
to include verification activities during software development to
identify defects related to such requirements, avoiding their
occurrence after release. Software verification, including testing
and reviews, encompasses a set of activities that have a purpose
of analyzing the software searching for defects. Security and
performance verification are activities that look at defects related
to these specific quality attributes. Few empirical studies have
been focused on how is the state of the practice in security and
performance verification. This paper presents the results of a
case study performed in the context of Brazilian organizations
aiming to characterize security and performance verification
practices. Additionally, it provides a set of conjectures indicating
recommendations to improve security and performance
verification activities.

Keywords—security verification, performance verification,
security testing, performance testing, case study research
(keywords)

I. INTRODUCTION

The popularization and massive use of software systems
bring benefits to the modern life. However, their broad
availability increases the concerns regarding some critical
software quality dimensions that were not in focus for many
years. Security [1] and performance [2] are examples of such
dimensions. Security is relevant due to the presence of critical
and sensitive information manipulated and stored by the
software systems while performing their tasks. The information
usually requires high confidence and different levels of
classification, having entailed a growing interest in accessing it
to get improper benefits [3][4]. Performance is relevant due to
the never-ending limitation of computational resources [5].

Software development organizations usually include
quality assurance activities throughout the software life-cycle
to evaluate the software quality, preventing failures after the
software releases. Software verification [6], including testing
and reviews, encompasses a set of activities aiming to analyze
the software looking for defects. Security and performance
verification are activities that look for defects regarding these
specific quality perspectives. Different verification practices
and techniques can be used individually or combined,
promoting specific benefits and challenges to the verification
of security and performance [7][8][9][10].

Despite the existence of some security and performance
verification techniques, the software systems still present many
defects related to these quality properties. For instance,
performance issues account for a significant fault category in

specific domains (e.g., telecommunications) [11] and news
reporting systems attacks are increasingly frequent [12]. Some
explanations regarding this situation could be (1) the
inefficiency of used verification techniques, (2) the software
organizations are not adopting adequate verification
techniques, or (3) there is a lack of evidence-based verification
techniques because of the apparent disconnection between
academy and industry into this context [13]. Furthermore,
automated attack scripts, the abundance of attack information,
and global interconnection make it easier attack systems than it
was before [14].

Some works available in the technical literature aim to
characterize the software verification state of the practice. Most
of them generically characterize software verification
[15][16][17], including a family of surveys
[18][19][20][20][21] and studies regarding verification in the
context of specific software categories, such as distributed and
heterogeneous systems [22], android applications [23], and
safety-critical systems [24]. However, as far as we could
investigate, few studies specifically discuss the state of the
practice of security verification and no study relates to
performance verification.

Therefore, this work aims to provide and evidence on how
organizations are performing security and performance
verification activities and practices in their software projects.
We present the results of three cases carried out in different
Brazilian organizations. Additionally, it was possible to
identify a set of conjectures related to security and performance
verification based on the analysis of collected information. The
conjectures serve as the basis for recommendations in security
and performance verification, confirming findings presented in
[25][26]. The results from this study will, also, allow to
identify possible technology gaps and challenges and provide
feedback to software researchers regarding the alignment of
their research with real problems [27].

Cruzes et al. [25] report the results of a case study
performed in four software development organizations in
Austria and Norway. They were concerned about how security
testing practices have been performed in agile context. Similar
to our results, they concluded that static code analysis and
penetration tests (pen tests) are the most activities usually
performed to evaluate software security. Additionally, they
provide some recommendations for practitioners and
researchers towards software testing: the need for more
precision on the definition of security needs, the improvement
of developers' security knowledge, and the need for lightweight
techniques suitable for practical use. From the same research
group, Oyetoyan et al. [26] present the findings of an action

research highlighting the developers' perceptions on using
security static analysis tools, also in Norway. Some of the
findings are also similar to our results: the high effort to
configure the tools, the high number of false positives, and
unknown real tools' capability. There are coherence and
complementarity between these published recommendations
and ours, strengthen the confidence in the findings and final set
of recommendations.

The next section presents some definitions; Section III
describes the case study methodology. Section IV presents the
results grouped by research questions, and the discussions are
presented as a set of conjectures in Section V. The threats to
validity are presented in section VI. Finally, Section VII
presents the conclusions, highlighting essential findings.

II. BACKGROUND

Overall, this work follows the concepts defined by ISO-
29119 [28]. However, it is important to contextualize some of
these concepts due to the lack of consensus about their
definitions in Software Engineering. Therefore, we highlight
the most important concepts discussed in this work, intending
to be concise and with no intention of conceptualizing all
software verification area (Table I).

TABLE I. MAIN USED CONCEPTS

Concept Interpretation
Verification practice What is performed for supporting

verification, e.g., unit testing.
Verification technique How the verification is performed. E.g.,

boundary value to generate test cases
Definition of done,
acceptance criteria, or
stop criteria

Overlapping concepts. The definition of
done is used as a criterion to conclude a
verification activity.

Automation level When looking at the automation level, we
need to know if a practice is manually or
automated performed.

Asset

The part of the system covered by the
verification practice, e.g., the source code is
an asset regarding static code analysis. It is
not defined as an artifact because the
verification may target the running system,
which is not an artifact.

Vulnerability Generally used to designate security-related
issues. In this work, the term defect is used
since it is more generic and can also be used
to represent both security and performance
issues.

III. METHODOLOGY

Table II shows the characterization of three different
Brazilian organizations in which the study was performed. We
believe that such different organizations profiles strengthen the
possibility of generalizability of the results. The last column
represents the type of method used for data collection.
Observation means that the researcher gathers information
through face-to-face monitoring of verification team activities.
On Interview method, the researcher followed a set of pre-
defined questions to gather information and, in the

questionnaire, a set of printed questions were delivered to the
respondents.

TABLE II. ORGANIZATIONS DESCRIPTION

ID Nature # Employees
(# Developers)

Subjects

Data Collection
Method

Org1 Governmental ~10599
(unknown)

5 Observation,
Interview,

Questionnaire
Org2 University

laboratory
~154

(~132)
2 Interview,

Questionnaire
Org3 Private ~250

(~150)
2 Interview,

Questionnaire

Org1 is a large governmental organization that provides
information technology services to the Brazilian government
with 10599 employees (most of them are developers). We
performed observations, interviews, and questionnaires with a
verification team composed of five employees. The university
laboratory, identified as Org2, with about 154 employees (132
are developers), develops technical solutions to the Brazilian
government, including the development of software. We
performed interviews and questionnaires with two employees
that are responsible for security and performance verification.
The Org3 is a private company with about 250 employees and
150 developers. The company develops credit card payment
systems, and we gathered data from two employees through
interviews and questionnaires.

A set of artifacts were used to support the study, including
the case study protocol and a presentation letter aiming to ease
the contact with the organizations’ representatives (Table III).

TABLE III. CASE STUDY INSTRUMENTS DESCRIPTION

ID Description Objectives

P1
Case study
protocol

The protocol followed by the case study.

C1
Presentation
letter

A letter used to make the first contact with
the organizations, characterizing the
researchers involved and the objectives of
the study.

I1
Organization
agreement term

After the organization agrees with the
research, its representative signs the
agreement term. It marks the beginning of
the case study.

I2
Participant
agreement term

In the first contact with each participant,
they must sign the consent term to allow us
to collect and use data.

I3
Organization
characterization

Data can be gathered from different sources
as the participants and organization website.
It was filled in during different moments of
the case study execution.

I4
Project
characterization

It supports data collection during
participants interview and questionnaire.

I5
Participant
characterization

It supports data collection after participants
interview through a questionnaire.

I6
Verification
practices
identification

Data collected in different stages of case
study execution. It was gathered from
observation, interview, and questionnaire.

I7
Verification of
decision-
making factors

Data collected in different stages of case
study execution. It was gathered from
observation, interview, and questionnaire.

ID Description Objectives

I8
Participant
opinion

It supports data collection after participants
interview trhough questionnaire.

IDENTIFICATION OF SECURITY AND PERFORMANCE PRACTICES

Project ID _____

1. What are the practices used to perform security and performance
verification?

A. Practice___

B. Responsible ___

C. Technique __

D. Asset __

E. Tools __

F. Description
__

Fig. 1. Verification Practices Extraction Form (I6)

Additionally, a set of instruments was used to support the
data collection. The most important instrument (Fig. 1 - I6)
aims to answer the research questions directly; the other
instruments aim to formalize the research agreement and
characterization of organizations and participants. The first
author of this paper filled the instruments when collecting data
during observations and interviews. The participants filled out
the questionnaire when it was used to collect data.

After collecting data from the three organizations, about 38
artifacts were filled out (instruments, interviews transcriptions,
and observation notes). Then, the first author qualitatively
analyzed them by following a coding process done by the first
author of this paper. Additionally, the second and third authors
iteratively revised the generated codes in several meetings
sections throughout the process. The MAXQDA1 tool was used
to support the coding process into which all completed
instruments were imported. 892 excerpts from artifacts were
grouped in 775 codes.

Furthermore, during the coding process, it was possible to
identify categories that do not directly support answering the
research questions, but it could provide essential findings of
security and performance verification, complementing the
study results. Thus, such information was organized into a code
category classified as Conjectures (Inference formed
statements without proof or sufficient evidence [29]),
representing recommendations aiming to improve the benefits
of security and performance verification activities.

IV. RESULTS

This section describes the results of cases carried out in
three different Brazilian organizations. We followed the
research questions and the sub-research questions as follows:

RQ1: Which are the practices used by the organizations to
support the verification of security and performance?

 RQ 1.1. What are the standard techniques?

 RQ 1.2. Which definition of done do they adopt?

1 https://www.maxqda.com/

 RQ 1.3. How is the level of automation?

 RQ 1.4. What are the assets covered?

The practices (RQ1) used in security and performance
verification are presented in Fig. 2. The Fig. 3 and Fig. 4
present the identified techniques (RQ1.1), the definition of the
done criteria (RQ1.2), automation level (RQ1.3), and assets
(RQ1.4) related to each verification practices. The practices
details are also described as follow, grouped by research
questions.

A. RQ1: Software Security and Performance Verification
Practices

As shown in Fig. 2, static code analysis is performed in two
ways regarding security, either triggered by a tester analyst or
embedded in a continuous integration tool (e.g., Jenkins). In
the first case, the code inspection depends on human action,
and it is the verification team’s responsibility to perform this
practice. In the second, the code inspections mandatorily
happen when the programmer commit the code to the
repository.

The penetration testing is performed at the end of the
software development lifecycle. It is usually performed only
for critical systems (or a part of them), and the product owner
defines delivery as critical because an attack could harm the
organization reputation. Security specialists or the verification
team are who usually perform the penetration tests.

Regarding log inspection, we classify it as a verification
practice when it is used to identify software failures and as a
debugging practice when it is used to identify software faults
(failures cause). Further, this classification became comfortable
because specialists participating in the case study mentioned
such activity as a verification practice. For instance, one
interviewee said: “In a project, I participated in, there was one
IP accessing the system, trying to identify if it was built in PHP
and Wordpress. So, it was a well-known vulnerability they
were searching for”. Therefore, the log inspection allows the
identification of what could be considered a security failure:
the application was configured to show the technologies used.

The verification team performs response time test, resource
consumption, and log inspection. Response time test, which is
the execution of the software aiming to evaluate the amount of
time from a request to a response, is performed at the end of a
development iteration (e.g., a sprint). These practices are not
used to assess all system scenarios, but the analysts (e.g.,
architecture, business) or the verification team selects some
system scenarios to be assessed.

The resource consumption test is also performed at the end
of a development iteration and uses the same test cases
regarding response time tests. However, the system scenarios
evaluated by this practice is a subset of scenarios evaluated by
the response time test. Log inspection is also used as a practice
to performance verification, and it is performed aiming to
identify significant delays from a request to a response.

B. RQ1.1: Software Security and Performance Techniques

The security and performance verification practices are
executed through the use of verification techniques, providing
a systematic way to build test cases or review procedures, and
support for the definition of coverage and stop criterion. There
were different categories of techniques used to evaluate
security (Fig. 3): tool-based, failure-based, experience-base,
and ad-hoc.

On the tool-based practices, the technique is embedded in
the tool. Failure-based techniques make use of known failures
(e.g., common vulnerabilities databases), generating test cases
addressed to identify these faults. In experienced-based
techniques, the verification team makes use of their own
experience to generate test cases or perform inspections. When
ad-hoc, the practice is performed in an aleatory and non-
systematic way.

The Static Code Analysis is usually performed through a
tool, meaning that a tool is executed, and the verification
results are analyzed. An observed issue with the usage of this
technique is that in many cases, the verification team is usually

not aware of what the tool is verifying and what are the
limitations of the tools regarding their fault detection
capability.

The Penetration Test is usually performed through a
failure-based technique, and the test cases are built aiming to
explore known defects available on common security
vulnerabilities repositories. Another technique used for the
penetration test is experience-based in which a security
specialist knowledge plays the role of a malicious user trying
to access the system.

The Log Inspection can be considered an ad-hoc practice
because the inspection is based on unknown criteria. A security
specialist performs it.

Regarding performance practices (Fig. 4), both the
Response Time Test and Resource Consumption Test use
techniques based on the tester experience or based on similar
systems. In the second case, the verification team verifies
whether the current system can reuse test cases from previous
systems of the same company. As for security, the performance
Log Inspection is ad-hoc, and the verification team performs it.

Fig. 2. Identified security and performance verification practices

Fig. 3. Software Security Verification Practice Details

C. RQ1.2: Software Security and Performance Definition of
Done Criteria

The definition of done is the criterion used to define the
conclusion of verification activities, signalizing that the
software development can move to the next phase, usually
delivery. We identified four categories to the definition of
done, based on fault criticality, team-experience, similar
system, and ad-hoc. On the definition of done based on fault
criticality, the faults identified by verification are classified
regarding their criticality level (e.g., low, medium, and high).
Verification activities are defined as completed when no more
defects of a defined criticality level is identified. The static
code analysis makes use of this criterion. However, the
minimum criticality level to define code analysis should re-run
is not correctly defined. One of the participants said: “The
defects (vulnerabilities) reported by Fortify are classified, by
the tool, according to the criticality level. So, in some
situations, we used such criticality level to define what faults
would be fixed. Thus, the most critical faults were fixed.
However, there is no a constraint defining what criticality level
define that faults must be fixed. Such a decision was a cross-
team agreement”.

When based on team experience, the verification team meet
and decide whether verification activities should be continued.
Besides, the verification team may decide to look into a similar
system to decide when the verification activities should end.
For instance, in the last similar system, the tests were set as
concluded after each test ran three times successfully. Thus, the
current system tests stop after three tests battery. The response
time makes use of these two kinds of definition of done.

If the definition of done is ad-hoc, there is no systematic
way to set the verification as concluded and it is performed
randomly. The penetration test, log inspection, and resource
consumption use the ad-hoc definition of done.

D. RQ1.3: Software Security and Performance Automation
Level

The evaluation of automation level classifies the
verification practice between manually and automated2.

Static Code Analysis is always automated, the most
common tools in our case studies were Brakeman and HP
Fortify SCA. Additionally, Jenkins, Sonar, and Threadfix are
used as auxiliary tools to orchestrate the execution or to
visualize results. When using static code analysis tools,
participants reported that a problem is a large number of false
positives.

The Penetration Test practice is performed manually
(supported by scripts) or by using a support tool; the most
common tools are Arachni, OWASP Zed Attack Proxy (ZAP),
XSS ME, SQL Injection ME, Burp Suite, Meta Exploit,
NMAP, and Whatweb.

The Response Time and Resource Consumption Tests are
always automated and make use of similar tools, such as
JMeter, Postman, BlazeMeter, Goldeneye, HTTPerf, SoapUI,
CA APM, and tools developed by the own organization. There
are also auxiliary tools such as Jenkins, spreadsheets.

The Log Inspection for both security and performance is
manual. Probably, it indicates a lack of log inspection tools.
One of the participants informed the performance failures
identified by performing log inspection might have many false
positives, because it is not easy to conclude if a detected
anomaly is a regular user behavior or a system bottleneck:
“...when looking at logs, if I identify a 10 minutes delay from a
request to another request, the problem is that I do not know if
the request took 10 minutes to complete or if the user clicked
on one option and then clicked on another only 10 minutes
later”.

E. RQ1.4: Software Security and Performance Assets

The assets covered by security verification practices are
source code, application server log, the system in execution,

2 Links to website tools are available at
http://lens.cos.ufrj.br/nfrwiki/index.php/Verification_tools

Fig. 4. Software Performance Verification Practices Details

and the environment. Performance verification practices cover
REST services, the system in execution, database, and
application server log. It is important to notice that verification
practices in the case studies do not cover early development
phases artifacts.

V. DISCUSSION

We have produced a set of conjectures that can be seen as
recommendations that must be considered during security and
performance verification as a complementary of the results.
Thus, we discuss the results grouped by these conjectures. The
next sections present the nine conjectures.

A. Security and Performance Verification Requires a Suitable
Environment.

A suitable environment is essential for verification. The
execution of verification activities in a non-isolated
environment is sometimes affected by external influences.
Besides, inappropriate hardware/server configurations can
generate a false perception of system behavior.

In the context of this study, the first conjecture arose from
the observation that sometimes the security and performance
verification share the same environment used by other
activities. For example, in one organization the performance
tests were executed on the same server used for system user
acceptance test. In this case, there was a bidirectional
influence. Thus, the performance tests may jeopardize the user
acceptance activities, because the simulation of a large number
of users operating the system causes hardware overloaded. On
the other hand, when users were using the system for
acceptance testing, the performance tests presented random
results (e.g., aleatory response time), because it was not
possible to know how the users were using the system.

The local network (or virtual private network) also
influences the performance testing results. For instance, if the
machine used to trigger performance tests make use of default
organization network, the requests and responses may be
delayed due overload of the network nodes (e.g., routers and
sweets) that route them to the server the system is running.

Another issue regarding the verification environment is
about the difference between the hardware configuration used
for verification and used in production time. In some cases, the
hardware used in the production environment is more powerful
than the hardware used in verification activities, and this may
result in a false result on system performance.

When facing unsuitable verification environment, the
verification team tries to mitigate such issues by, for example,
executing each test case more than once and at different
moments, trying to mitigate external influences in the test
results. One of the participants said: “It is not possible to rely
on the response time of only one scenario execution, because
there may be interference that impairs the operation of the
system. Thus, response time analysis only occurs after the
scenario has been successfully executed three times”.

Neto et al. [30] mention the financial unfeasibility of using
physical machines to compose the verification environment,
while others works point to virtualization as the most

appropriate technology for verification environments.
However, some issues still need to be addressed for the
practical use of virtualization technology: the number of
supported virtual machines estimation, limit of the amount of
virtual machine, test trigger response time is not stable,
physical machine overload [31][32][33].

B. Security and Performance Verification Requires Suitable
Techniques.

Performing the verification in an ad-hoc way hinders the
definition of a criterion to select test cases and to have a
definition of done. A proper verification technique naturally
provides these criteria.

Such conjecture was coined due to a large number of
practices conducted ad-hoc. For instance, the use of tools
without precisely knowing what technique is implemented
generates uncertainties about tool detection capability.
Additionally, the number of false-positives defects identified
by security tools can be a problem, if all the defects reported
should be analyzed, it requires a substantial extra effort.

In our study, we could not find mitigation actions to these
problems, but we noticed that the teams are aware that they can
improve verification activities.

 Martin and Xie [34] present the results of an experiment
showing the use of a technique increase the defect detection
capability and the essential coverage of security verification.
Furthermore, the use of suitable techniques in different phases
of the software development (e.g., abuse case in requirements
and model, misuse cases, threat trees in design) promotes the
identification of defects in early stages of software
development [35][36][37][38]. Some researchers also suggest a
combination of techniques to increase the ability to detect
different types of defects, such as complementing the
automated tests with manual reviews [38][39][40].

C. The lack of security and performance requirements
prevents the verification from playing its original purpose.

The lack of security and performance requirements
prevents the verification from playing its original purpose (i.e.,
assessing whether the software meets its requirements) because
in the absence of an oracle it is impossible to know if the
verification results are correct. Also, inaccurate requirements
overload other teams (e.g., analysts, architects, developers)
because the verification team must continuously contact them.

In the organizations used in this study, sometimes there
were no written performance requirements that could be used
as an oracle. In such cases, the verification activities were not
performed to assess whether the software meets its
requirements but are to evaluate the capacity of the system.
Some other times, the verification activities were performed
based on subjective or imprecise requirements. For example, a
participant reported a case where the tests were performed
based on a brief description about users’ behavior: "In this
system, everyone comes in at 8 in the morning and stays until
10 o'clock. Then they leave the system and come back at
lunch".

In the literature, researchers have identified a set of issues
and challenges regarding security and performance
requirements: lack of support tools and techniques, techniques
are unsuitable to target users, requirements not provided, and
wrong requirements descriptions. Such issues make
verification impossible, ambiguous or generic
[41][42][43][44]. It is also possible to identify a set of
proposed techniques and recommendations to handle security
and performance requirements: misuse cases, SETAM
UMLsec, abuse cases, description of attack patterns
[35][41][44][45][46][47][48][49][50], indicating a gap between
practice and academy because despite the existence of
techniques they are not in use.

D. Training in Security and Performance Verification
Improves Verification Activities.

Some participants reported the challenges in performing
security and performance verification due to the lack of
training. One of the participants said: "...security and
performance tests were performed by a specific specialized
team. However, the responsibility for testing now belongs to
the department. In this way, we still feel a bit of difficulty in
performing security and performance verification".

The lack of training also results in a misunderstanding of
security and performance verification concepts, generating
risks to the verification activities, because team members may
understand and perform their activities in a contradictory way.
One way to mitigate the lack of consensus about verification
concepts was to define a document precisely describing each
verification activity and its purpose. A participant said:
"...usually to perform these tests I have to create a document of
concepts definitions because there were several
misunderstandings before. There are people who think that
load testing means to verify the limit of the application and
there are people who think that it is the stress testing".

Røstad et al. [51] alert that few universities teach how to
build secure software, resulting in students graduating without
seeing safe development. They raise some critical issues
regarding security training, such as ethics needs to be
considered and is an educator's responsibility to teach the
importance of dealing with security in the early phases of
software development; they also mention the limited capability
of open sources tools and a high cost of suitable tools. Bondi
and Ros [52] highlight some issues regarding remote training
of performance verification, such as the need to be systematic,
problems with different time zone, and inculcate good
performance testing practices.

E. Verification Activities Only do Not Guarantee Software
Security and Performance Effectiveness.

Security and performance verification should be
corroborated with other techniques because they alone do not
create enough evidence to provide security confidence and
adequate performance to software systems. In our study,
participants of different organizations emphasized that
verification activities not be entirely effective regarding defect
detection capability. Therefore, it is vital to make use of
complementary activities to improve software security and
performance, such as system monitoring and actions to prevent

the use of social engineering. A participant said: "...there is a
security monitoring team looking at the production servers.
When an attack is identified, this team identify the exploited
vulnerability and notify the development team who provides the
fix".

This finding is consistent with the software testing theory
that states that testing aims to shows presence of defects, but it
is not able to prove their absence [53]. Additionally, there is
evidence in the literature that verification security methods do
not identify all defects [54][55] and some performance tools
has limitations such as on temporal synchronization, GUI
elements identification and incomplete implementations [56].

F. Security and Performance Verification Requires Cross-
Functional Teams.

Verification activities are not performed in isolation by
only one team. It requires interaction between different teams,
including different skills. In the case studies, there was a need
for infrastructure, database, and technical teams to work
together due to the need to configure servers (e.g., allow a
specific IP to access the server or restart it after catastrophic
failure), restore database backups and deal with specific low-
level technologies. A participant reported a need to interact
with an operating systems specialist: "...we have to ask to
change the (operating system) kernel because it has a limit in
the size (of requests) that can be sent...".

A cross-team interaction is also essential to identify the
technologies used to build the software and how such
technologies may influence verification results. For example,
the verification team observes that performance tests of the
same scenario were resulting in a shortened response time.
Thus, talking to the development team, they discover the
system was making use of a CDN (Content Delivery Network)
cache technology.

Some papers identify the need for teams with different
skills in security and performance verification activities and
propose strategies to encourage the information exchange
between teams [40][57][58]. A card game named protection
poker provides security knowledge sharing, involves the entire
development team, and increase the awareness of software
security needs. Another recommendation is to take
programmers as allies, not as enemies. Regarding performance,
Johnson et al. [58] show how weekly meetings involving
performance architect, domain experts, marketing stakeholders
and developers can improve team interactions.

G. Planning and Environment Configuration of Security and
Performance Verification Demands Extra Effort.

In the studied organizations, many of the verification
activities are automated. Thus, the execution phase does not
require as much effort as the planning and environment
configuration. The planning phase demands high effort because
the team should prioritize the test cases to be executed and
identify dependencies between scenarios being tested. It
requires an information exchange between verification and
development teams.

The configuration of the environment also requires extra
effort. A participant reported that the activity requiring the

most effort is to config the environment so that the system runs
in a suitable state for testing: “The major problem with
performance testing is to organize the database with a suitable
dataset, aiming to run the system under the desired load.”. In
our study, we cannot find ways to reduce the effort of planning
verification and environment configuration.

Chen et al. [59] present the challenges to configure an
environment: be able to simulate workloads similar to the real
world, to consider high insertion speed, and to meet BD and
business logic constraints.

H. Organizational Support Influences Positively Security and
Performance Activity.

This conjecture is about how the organizational perception
of the importance of security and performance software
systems properties affects the verification activities.
Participants reported that organizations generally do not give
proper attention to system security and performance,
considering security and performance verification a waste of
resources. Usually, organizations are inclined to worry about
the security and performance of their systems only after they
have a problem. Another situation where organizations invest
more in security and performance is before a major release in
which a security or performance failure could negatively affect
organization image. One of the participants said: "By my own
experience working in different places, what I see is that
people only care about testing when a problem happens.".

Horký et al. [60] report an experiment showing that
keeping programmers well-informed about performance can
decrease the number of bad decisions, influencing the system
performance. Besides, Ferrell et al. [61] emphasize the
challenge of security awareness: programmers are not concern
about security because they have a false impression that new
development technologies are immune to security problems.

I. Security and Performance Verification Activities are
Ignored When There Are Limited Resources of Time and
Budget.

Security and performance verification activities are ignored
when there is a reduction in the deadline or budget of the
development project. It can impact the system quality because
the product owner may decide to stop the verification before all
activities are executed, decreasing verification coverage.

A participant informed the planned tests are reported in the
final testing report, including the non-performed tests to
mitigate it. Thus, the customers are aware that the executed
tests did not the planned coverage, transferring the
responsibility of the risk to the customer.

We were not able to find support for this conjecture in the
technical literature.

VI. THREATS TO VALIDITY

We describe the threats to validity following the
recommendations of Cruzes and Othmane [62] and making use
of quality criteria (Q1-4) and proposed methods (M1-6) to
improve them [63][64].

The credibility (Q1), representing the quality of being
convincing or believable, was addressed using rich
data/persistent observations (M1) and through data collection
using three methods (observation, interviews, and
questionnaires), making notes about what happened, and
verbatim transcripts of what participants said. Furthermore,
while reporting the results, we provide quotes of the
participants.

The transferability (Q2) quality refers to the degree to
which the results can be generalized to other contexts or
settings. Such quality is problematic in the case of studies
because it is not viable to achieve a significant number of
subjects as it was not in our case. However, to improve the
transferability, we used the intensive long-term involvement
(M2) method, performing the research in place, making it
possible to have a more precise context perception the study is
characterizing. Thus, it was possible to provide an in-depth
description of the organizations' characteristics and context in
which data were collected.

Regarding dependability (Q3), the data stability and
reliability over time and conditions, we performed the study in
different organizations with participants from a variety of
profiles. Furthermore, one more case was planned, and it is
already scheduled to be performed. In this way, we can
triangulate (M3) the results, improving the dependability.
Additionally, the research protocol is available, making it
possible the study replication in different contexts.

To avoid researcher’s bias and improve the confirmability
(Q4), we use peer debriefing (M4), exposing our main findings
to a research group and discussing the coherence of them. We
also promoted iterative meetings among the authors to discuss
the codes according to creation progress. Additionally, we
performed a search on the literature to support the coined
conjectures.

It is important to mention what mitigated regarding threats
to validity: due to participants availability restrictions we could
not use respondent validation (M5) and member checking (M6)
to confirm what they said and the validity of our conclusions.

Besides, it is important to mention that the case study was
carried out in the context of Brazilian organizations, where
Portuguese is the mother language. Thus, the participants’
quotes reproduced here are translations of what was said by
them. Besides, the artifacts and codes were built in Portuguese
and translated into English, for the sake of readers’
understanding. We believe that the translation does not affect
the results reported since we did not perform a
sentiment/feelings analysis of the participants’ answers.

Finally, investigating two non-functional requirements
together can be risky. There were situations in which it was not
possible to determine whether a respondent was reporting
issues related to security or performance.

VII. CONCLUSION

This paper presents the results of a case study performed in
the context of three Brazilian software organizations. The study
provides a characterization of the state of the practice of
security and performance verification activities. Additionally,

the findings are discussed in the form of conjectures,
representing recommendations applicable to such activities. In
general, there is an increasing awareness of the importance of
security and performance of software systems, and
consequently, the importance of verification activities.
However, there is a lack of knowledge about how verification
should be accomplished.

The security and performance verification was performed
on an unsuitable environment. Besides, the use of verification
techniques is low. For instance, techniques aiming to
systematize the test case generation or inspection procedure. It
may result in inefficient test cases (low chance to reveal a
failure). Such warning is emphasized by the profile of the
professionals who perform the verification. Usually, they do
not have suitable experience and training regarding security or
performance. In addition, we conjecture that the lack of
requirements or their imprecise specification contributes to the
ad-hoc definition of done.

Finally, it was not possible to identify verification activities
addressed to artifacts related to early stages of the software
development cycle (e.g., requirements and design diagrams). It
contradicts the recommendations of established guidelines
[65][66].

As future work, we intend to perform a set of rapid reviews
[66] to increase the confidence regarding the presented
conjectures. Additionally, we started the replication of the case
study in another organization, aiming to provide cross-
validation of the current results.

We believe that the recommendations presented in this
paper can help practitioners to avoid known problems
conducting security and performance verification. Besides, it
can be useful for researchers as they may target their
investigations to address the raised issues. As future work, we
intend to propose an approach to help practitioners perform the
security and performance verification considering the
conjectures as recommendations.

Acknowledgment

We much appreciate the support of participating
organizations, and CAPES. Prof. Travassos is a CNPq
Researcher. This work was partially supported by the SoS-
Agile project: Science of Security in Agile Software
Development, funded by the Research Council of Norway
(grant number 247678).

REFERENCES
[1] D. Ameller, M. Galster, P. Avgeriou, and X. Franch, “A survey on

quality attributes in service-based systems,” Software Quality Journal,
2015.

[2] A. Caracciolo, M. F. Lungu, and O. Nierstrasz, “How Do Software
Architects Specify and Validate Quality Requirements?” European
Conference on Software Arqchitecture, 2014

[3] M. Labs, “McAfee Threat Predictions,” 2016.

[4] I. B. M. X. Threat and I. Index, “IBM X-Force Threat Intelligence
Index,” 2017.

[5] H. S. Zhu, C. Lin, and Y. D. Liu, “A Programming Model for
Sustainable Software,” 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, pp. 767–777, 2015.

[6] IEEE-610.12, “IEEE Standard Glossary of Software Engineering
Terminology (IEEE Std 610.12-1990). Los Alamitos,” CA: IEEE
Computer Society, vol. 121990, 1990.

[7] M. Atifi, A. Mamouni, and A. Marzak, “A Comparative Study of
Software Testing Techniques,” International Conference on Networked
Systems, 2017, pp. 373–390.

[8] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A.
Pretschner, “Security Testing: A Survey,” Advances in Computers, vol.
101, pp. 1–51, 2016. https://doi.org/10.1016/bs.adcom.2015.11.003

[9] J. A. Meira, E. C. de Almeida, D. Kim, E. R. L. Filho, and Y. Le Traon,
“‘Overloaded!’ — A Model-Based Approach to Database Stress
Testing,” International Conference on Database and Expert Systems
Applications, 2016, pp. 207–222.

[10] Microsoft, “Performance Testing Guidance for Web Applications.”
[Online]. Available: https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/bb924375%28v%3Dpandp.10%29. [Accessed: 19-Jul-
2018].

[11] A. Bertolino, “Software Testing Research : Achievements , Challenges ,
Dreams Software Testing Research : Achievements , Challenges ,
Dreams,” IEEE Transactions on Software Engineering, no. September,
pp. 85–103, 2007.

[12] Symantec, “Symantec Internet Security Threat Report,” 2017.

[13] V. Garousi and M. Felderer, “Living in two different worlds: A
comparison of industry and academic focus areas in software testing,”
IEEE Software, 2017.

[14] R. B. Vaughn, R. Henning and K. Fox, "An Empirical Study Of
Industrial Security-Engineering Practices" Journal of Systems and
Software, 21002, pp. 225–232. https://doi.org/10.1016/S0164-
1212(01)00150-9.

[15] A. Causevic, D. Sundmark, and S. Punnekkat, “An Industrial Survey on
Contemporary Aspects of Software Testing,” Third International Conference
on Software Testing, Verification and Validation, 2010, pp. 393–401.

[16] V. Blondeau, A. Etien, N. Anquetil, S. Cresson, P. Croisy, and S.
Ducasse, “What are the Testing Habits of Developers? A Case Study in
a Large IT Company,” IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 58–68.

[17] B. Maqbool, F. U. Rehman, M. Abbas, and S. Rehman, “Implementation
of Software Testing Practices in Pakistan’s Software Industry,”
International Conference on Management Engineering, Software
Engineering and Service Sciences, 2018, pp. 147–152.

[18] V. Garousi and J. Zhi, “A survey of software testing practices in
Canada,” Journal of Systems and Software, vol. 86, no. 5, pp. 1354–
1376, May 2013.

[19] V. Garousi, A. Coşkunçay, A. Betin-Can, and O. Demirörs, “A survey
of software engineering practices in Turkey,” Journal of Systems and
Software, vol. 108, 2015, pp. 148–177.

[20] A. C. Dias-Neto, S. Matalonga, M. Solari, G. Robiolo, and G. H.
Travassos, “Toward the characterization of software testing practices in
South America: looking at Brazil and Uruguay,” Software Quality
Journal, vol. 25, no. 4, 2017, pp. 1145–1183.

[21] S. M., M. Shamsur, A. Z., and M. Hasibul, “A Survey of Software
Quality Assurance and Testing Practices and Challenges in
Bangladesh,” International Journal of Computer Applications, vol. 180,
no. 39, 2018, pp. 1-8.

[22] B. Lima and J. P. Faria, “A Survey on Testing Distributed and
Heterogeneous Systems: The State of the Practice,” International
Conference on Software Technologies, 2017, pp. 88–107.

[23] M. Linares-Vasquez, C. Bernal-Cardenas, K. Moran, and D.
Poshyvanyk, “How do Developers Test Android Applications?,” IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 613–622.

[24] M. Kassab, “Testing Practices of Software in Safety Critical Systems:
Industrial Survey,” 20th International Conference on Enterprise
Information Systems, 2018, pp. 359–367.

[25] D. S. Cruzes, M. Felderer, T. D. Oyetoyan, M. Gander, and I. Pekaric,
“How is Security Testing Done in Agile Teams? A Cross-Case Analysis
of Four Software Teams,” International Conference on Agile Software
Development, 2017, pp. 201–216.

[26] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. Soares Cruzes, “Myths
and Facts About Static Application Security Testing Tools: An Action
Research at Telenor Digital,” International Conference on Agile
Software Development, 2018, pp. 86–103.

[27] V. Garousi, M. Felderer, M. Kuhrmann, and K. Herkiloğlu, “What
industry wants from academia in software testing?,” 21st International
Conference on Evaluation and Assessment in Software Engineering -
EASE, 2017, pp. 65–69.

[28] ISO 29119-1, “Software and systems engineering - Software testing -
Part 1: Concepts and definitions,” vol. 2013, 2013.

[29] “Conjecture,” “Merriam-Webster.com,” 2011. [Online]. Available:
https://www.merriam-webster.com. [Accessed: 16-Jul-2018].

[30] M. A. S. Netto, S. Menon, H. V. Vieira, L. T. Costa, F. M. de Oliveira,
R. Saad, and A. Zorzo, “Evaluating Load Generation in Virtualized
Environments for Software Performance Testing,” IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, 2011, pp. 993–1000.

[31] M. M. Arif, W. Shang, and E. Shihab, “Empirical study on the
discrepancy between performance testing results from virtual and
physical environments,” Empirical Software Engineering, vol. 23, no. 3,
pp. 1490–1518, Jun. 2018.

[32] G.-H. Kim, Y.-G. Kim, and K.-Y. Chung, “Towards virtualized and
automated software performance test architecture,” Multimedia Tools
and Applications, vol. 74, no. 20, pp. 8745–8759, Oct. 2015.

[33] S. Gaisbauer, J. Kirschnick, N. Edwards, and J. Rolia, “VATS:
Virtualized-Aware Automated Test Service,” Fifth International
Conference on Quantitative Evaluation of Systems, 2008, pp. 93–102.

[34] E. Martin and T. Xie, “Automated Test Generation for Access Control
Policies via Change-Impact Analysis,” Third International Workshop on
Software Engineering for Secure Systems, 2007, pp. 5-5.

[35] J. McDermott and C. Fox, “Using abuse case models for security
requirements analysis,” 15th Annual Computer Security Applications
Conference (ACSAC’99), 1999, pp. 55–64.

[36] I. Alexander, “Misuse cases: use cases with hostile intent,” IEEE
Software, 2003, pp. 58–66.

[37] A. Marback, H. Do, K. He, S. Kondamarri, and D. Xu, “Security test
generation using threat trees,” ICSE Workshop on Automation of
Software Test, 2009, pp. 62–69, 2009.

[38] H. Omotunde and R. Ibrahim, “A Review of Threat Modelling and Its
Hybrid Approaches to Software Security Testing,” ARPN Journal of
Engineering and Applied Sciences, 2015, pp. 17657–17664, 2015.

[39] D. Ghindici, G. Grimaud, I. Simplot-Ryl, Y. Liu, and I. Traore,
“Integrated Security Verification and Validation: Case Study,” IEEE
Conference on Local Computer Networks, 2006, pp. 1000–1007.

[40] A. D. Brucker and U. Sodan, “Deploying static application security
testing on a large scale,” GI Sicherheit, 2014, pp. 91–101.

[41] L. Harjumaa and I. Tervonen, “Introducing Mitigation Use Cases to
Enhance the Scope of Test Cases,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 6434 LNCS, 2010, pp. 337–353.

[42] I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security Requirements
for the Rest of Us: A Survey,” IEEE Software, vol. 25, no. 1, pp. 20–27,
Jan. 2008.

[43] P. Stephanow and K. Khajehmoogahi, “Towards Continuous Security
Certification of Software-as-a-Service Applications Using Web
Application Testing Techniques,” 31st International Conference on
Advanced Information Networking and Applications), 2017, pp. 931–
938.

[44] E. J. Weyuker and F. I. Vokolos, “Experience with performance testing
of software systems: issues, an approach, and case study,” IEEE
Transactions on Software Engineering, 2000, vol. 26, pp. 1147–1156.

[45] G. Sindre and A. Opdahl, “Capturing security requirements through
misuse cases,” NIK 2001, Norsk Informatikkonferanse 2001, p. 12,
2001.

[46] Z. Hui and S. Huang, “Comparison of SETAM with security use case
and security misuse case: A software security testing study,” Wuhan
University Journal of Natural Sciences, 2012, vol. 17, pp. 516–520.

[47] J. Jürjens, “Using UMLsec and goal trees for secure systems
development,” ACM symposium on Applied computing - SAC, 2002, p.
1026.

[48] J. Bozic and F. Wotawa, “Security Testing Based on Attack Patterns,”
IEEE Seventh International Conference on Software Testing,
Verification and Validation Workshops, 2014, pp. 4–11.

[49] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Security
Requirements Engineering: A Framework for Representation and
Analysis,” IEEE Transactions on Software Engineering, 2008, vol. 34,
no. 1, pp. 133–153.

[50] L. Bulej, T. Bureš, V. Horký, J. Kotrč, L. Marek, T. Trojánek, and P.
Tůma, “Unit testing performance with Stochastic Performance Logic,”
Automated Software Engineering, 2017, vol. 24, pp. 139–187.

[51] L. Røstad, I. A. Tøndel, P. H. Meland, and G. R. Øie, “Learning by
Failing (and Fixing),” IEEE Security & Privacy Magazine, 2008, vol. 6,
pp. 54–56.

[52] A. B. Bondi and J. P. Ros, “Experience with Training a Remotely
Located Performance Test Team in a Quasi-agile Global Environment,”
Fourth IEEE International Conference on Global Software Engineering,
2009, pp. 254–261.

[53] E. W. Dijkstra, “Notes on structured programming,” Structured
programming, 1972, pp. 1–82.

[54] D. Woodraska, M. Sanford, and D. Xu, “Security mutation testing of the
FileZilla FTP server,” ACM Symposium on Applied Computing, 2011, p.
1425.

[55] L. Thomas, W. Xu, and D. Xu, “Mutation Analysis of Magento for
Evaluating Threat Model-Based Security Testing,” IEEE Annual
Computer Software and Applications Conference Workshops, 2011, pp.
184–189.

[56] M. Jovic, A. Adamoli, D. Zaparanuks, and M. Hauswirth, “Automating
performance testing of interactive Java applications,” 5th Workshop on
Automation of Software Test, 2010, pp. 8–15.

[57] L. Williams, A. Meneely, and G. Shipley, “Protection Poker: The New
Software Security ‘Game’;,” IEEE Security & Privacy Magazine, 2010,
vol. 8, pp. 14–20.

[58] M. J. Johnson, E. M. Maximilien, C. W. Ho, and L. Williams,
“Incorporating performance testing in test-driven development,” IEEE
Software, 2007, vol. 24, pp. 67–73.

[59] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M.
Nasser, and P. Flora, “Analytics-Driven Load Testing: An Industrial
Experience Report on Load Testing of Large-Scale Systems,” 39th
International Conference on Software Engineering: Software
Engineering in Practice Track, 2017, pp. 243–252.

[60] V. Horký, P. Libič, L. Marek, A. Steinhauser, and P. Tůma, “Utilizing
Performance Unit Tests To Increase Performance Awareness,” 6th
International Conference on Performance Engineering, 2015, pp. 289–
300.

[61] B. Ferrell and R. Oostdyk, “Modeling and performance considerations
for automated fault isolation in complex systems,” IEEE Aerospace
Conference, 2010, vol. 9, pp. 1–8.

[62] L. ben Othmane, M. G. Jaatun, and E. Weippl, "Empirical Research for
Software Security Foundations and Experience". Boca Raton: CRC
Press, 2018.

[63] Y. Lincoln and E. Guba, “Naturalistic Inquiry,” Encyclopedia of
Research Design, SAGE Publications, 2010.

[64] J. A. Maxwell, "Qualitative Research Design: An Interactive Approach",
3rd Ed., vol. 41. Sage Publications, 2012.

[65] M. Howard and S. Lipner, "The Security Development Lifecycle: SDL:
A process for Developing Demonstrably More Secure Software".
Microsoft Press, 2006.

[66] OWASP, “4.0 Testing Guide,” OWASP foundation, no. Cc, p. 224,
2014.

[67] B. Cartaxo, G. Pinto, and S. Soares, “The Role of Rapid Reviews in
Supporting Decision-Making in Software Engineering Practice,” 22nd
International Conference on Evaluation and Assessment in Software
Engineering, 2018, pp. 24–34.

