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Abstract

Studies have shown that both char particle diameter and apparent density
vary during char conversion at high temperatures. To account for such vari-
ations, power-law expressions have been used to correlate rp/rp,0 and ρp/ρp,0
with mp/mp,0. The parameters in these relations are constants, thus this ap-
proach fails to account for variations in the functional relationship between
mass, size, and apparent density as mass conversion proceeds. To overcome
this limitation, a model for the mode of particle conversion has been devel-
oped that permits the variation in size and apparent density with mass loss
to depend upon the Thiele modulus, which varies during char conversion.
The rate with which the particle radius decreases is shown to be given by the
ratio of the time derivative and the spatial derivative of the particle density
at the surface of the particle. The model presented can be used to describe
the mode of conversion of reactive porous particles in a range of different
applications such as entrained flow gasifiers, pulverized coal burners and cir-
culating fluidized bed combustors. There are no free tunable parameters in
the model.
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Nomenclature

Ak Pre-exponential factor of reaction k
Aint,eff Effective internal surface area (m2)
Aext External surface area (m2)
C(r, t) Reactant concentration at particle radius r and time t (mole/m3)
CR Reactant concentration at particle periphery (mole/m3)
Deff Effective diffusivity inside the particle (m2/s)
dV (r, t) Volume at time t of shell with radius r and thickness dr
Ek Activation energy of reaction k (MJ/kmol)
I Auxiliary variable as defined by Eq. (30) (s mole/m2)
k Rate constant (1/s)
Mc Molar weight of carbon (kg/mol)
mp Particle mass (kg)
m(r, t) Mass of shell inside particle at radius r, time t and with thickness dr (kg)
rp Particle radius (m)
R Mass consumption rate per unit volume (kg/s/m3)
Sgc Specific char surface area (m2/kg)
t Time (s)
t′ Dummy integration variable (s)
Vp Particle volume (m3)
x Char conversion (-)
xτ Char conversion when t = τ(-)

Greek symbols
α Exponent in ρp −mp relation (-)
β Exponent in rp −mp relation (-)
δt Infinitesimal time (s)
η Effectiveness factor (-)
η̄ Mean effectiveness factor (-)
ν Stoichiometric coefficient (-)
ρp Apparent particle density (kg/m3)
ρ(r, t) Apparent density at particle radius r and time t (kg/m3)
φ Thiele modulus (-)
σk Distribution width of activation energy for reaction k (MJ/kmol)
τ Time when the outer shell of the particle is completely consumed (s)
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1. Introduction

In environments typical of pulverized coal-fired boilers and furnaces, char
particles burn with variations in both size and apparent density. In order to
reflect this phenomenon in char conversion models, power law relations have
been used to correlate particle size and apparent density with char conversion
[1, 2]. In the approaches taken, the parameters in the relations are constants,
thus the manner in which apparent density and diameter vary with mass
loss during the initial stages of conversion is the same as that during the
later stages. As particle mass is consumed due to the chemical reactions,
pore diffusional resistances lessen as closed-off pores open and pores merge
and coalesce, while the particle radius and the ambient conditions may also
change. Thus, the functional relationships between extent of mass loss and
particle size and apparent density are expected to change as mass conversion
progresses.

In previous approaches to model the mode of conversion, the particle
mass, diameter, and apparent density are assumed to be related via the
following two relations (see for example references [1] to [5]):

ρp
ρp,0

=

(

mp

mp,0

)α

(1)

and
rp
rp,0

=

(

mp

mp,0

)β

. (2)

In our proposed approach these expressions are rewritten in a piecewise form
as:

ρp(t+ δt)

ρp(t)
=

(

mp(t+ δt)

mp(t)

)α

(3)

and
rp(t+ δt)

rp(t)
=

(

mp(t+ δt)

mp(t)

)β

(4)

where ρp, rp andmp are the apparent density, radius and mass of the particle,
respectively, t is the time and δt is a short time interval in which the power
law assumption holds for values of α and β effective over the time interval.
Furthermore, by assuming spherical particles, at any given time it follows
that

α(t) + 3β(t) = 1. (5)
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For α = 0, particle conversion proceeds at constant density. This correspond
to the zone III burning regime in which mass conversion occurs at high tem-
peratures, rendering mass loss rates limited by the rates of reactant diffusion
to the outer surface of the particle, and the particle reacts primarily at its pe-
riphery. Its apparent density is relatively unchanged and its diameter varies
to the one-third power with mass loss. The specific surface area of the parti-
cle is relatively unchanged in this conversion regime, due to reaction rates in
the interior being nearly negligible. For α = 1, particles conversion proceeds
at constant diameter, which corresponds to the zone I burning regime. Here
mass conversion occurs at low temperatures, rendering mass loss rates lim-
ited by chemical reaction rates, and the particle reacts more or less uniformly
throughout its volume. The particle size is relatively unchanged and the ap-
parent density varies proportionally with mass loss. The surface area per
unit volume initially increases, reaching a maximum before decreasing with
increasing extents of conversion. The surface area can be predicted using the
grain and pore models that have been developed for such uniform burning
(see for example, the random pore model of Bhatia and Perlmutter [6]). For
0 < α < 1, particles decrease in both size and apparent density, and this
correspond to the zone II conversion regime. In this regime particle mass
conversion rates are limited by the combined effects of chemical reaction and
pore diffusion. Due to the reactant concentration gradients established inside
particles and the associated distribution of rates of mass loss due to chemical
reaction, particle diameters, apparent densities, and specific surface areas
vary with mass loss when conversion is in this regime.

The aim of this work is to describe how α varies with conversion and in
effect, describe how the radius and apparent density of a char particle change
with conversion. Unlike other models, e.g. [1, 4, 5], the proposed model
contains no free parameters, making it more predictive. One should keep
in mind, however, that the model was derived assuming ash free particles,
high thermal conductivities (such that there are no temperature gradients
inside the particles), and Thiele’s approach to concentration gradients (which
assumed first order heterogeneous kinetics). Therefore, some conclusions may
not apply under certain scenarios.

Our model is concerned with the carbonaceous portion of porous char
particles but it also applies to an ash-containing particle. Here ash is as-
sumed to be uniformly distributed inside the particle, and is assumed to
have no effect on reaction rates or particle temperatures. At any time, the
particle apparent density is assumed to consist of the apparent density of the
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ash plus the apparent density of the carbonaceous portion. The apparent
density of the ash is assumed to be constant while the apparent density of
the carbonaceous portion of the particle is assumed to vary with mass loss,
as described in this paper. Thus, carrying out the calculations on an ash-free
basis (i.e., not considering the ash) and then adding in the consequences of
the ash at the end of the calculation should yield the correct results for the
ash-containing particle. Of course this assumes that the ash has no impact
on the reactivity of the carbonaceous particle material.

2. Initial stages of char conversion

In this section, consideration is given to the initial stages of mass conver-
sion when the particle radius, and consequently also the particle volume, is
constant. Here it is assumed that for the conditions of interest (temperature,
pressure, internal particle surface area, etc.), the mass consumption rate at
the external surface is small compared to the mass consumption rate on in-
ternal surfaces such that the mass conversion due to the external surface can
be neglected (see Appendix C for justification). Initially the particle radius
will therefore stay constant for a time τ until the apparent density of a thin
shell at the particle periphery has reached zero.

In the spirit of Thiele [8], the effectiveness factor is defined as

η =
Actual overall particle consumption rate

Maximum overall particle consumption rate
=

(

dmp

dt

)

(

dmp

dt

)

max

(6)

where mp is the mass of the particle. In the following, a mass consumption
rate per unit volume, R(r, t), will be used such that the change of mass in a
thin, spherical shell with radius r and volume dV (r, t)(= 4πr2dr) is

dm(r, t)

dt
= −R(r, t)dV (r, t). (7)

Since R(r, t) is assumed to be at its maximum at the particle surface where
the reactive gas concentration is the highest i.e., at r = rp, the maximum
possible mass conversion rate of the particle is given by

(

dmp

dt

)

max

= −VpR(rp, t), (8)
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where rp is the particle radius and Vp = 4/3πr3p is the particle volume.
Eqs. (6) and (8) can be combined to reveal that

dmp

dt
= η(t)

(

dmp

dt

)

max

= −η(t)VpR(rp, t), (9)

where η(t) is the value of the effectiveness factor at time t during the course
of char conversion. In terms of char conversion x (= 1−mp/mp,0), the above
equation can be written as

dx(t)

dt
= η(t)VpR(rp, t)/mp,0 = η(t)

R(rp, t)

ρp,0
. (10)

This equation gives the char conversion rate at any time in terms of the
reaction rate at the outer surface of the particle and the effectiveness factor
at the time of interest, and the initial apparent density of the particle, ρp,0.

A relationship for the change in apparent density within a concentric
spherical shell of radius r at any given time is obtained by dividing Eq. (7)
by dV (r, t): Thus,

dρ(r, t)

dt
= −R(r, t). (11)

Separating variables and integrating yields

ρ(r, t)− ρ(r, 0) = −

∫ t

0

R(r, t′)dt′, (12)

and for a spherical shell at the particle periphery,

ρ(rp, t)− ρ(rp, 0) = −

∫ t

0

R(rp, t
′)dt′. (13)

If τ is the time that it takes for the mass in this outermost shell to be
completely consumed, i.e. the time when ρ(rp, t) = 0, then

ρ(rp, 0) ≡ ρp,0 =

∫ τ

0

R(rp, t
′)dt′ (14)

For a typical CFD simulations with Lagrangian particle tracking, τ can be
easily found for each particle by integrating the mass consumption rate per
unit volume at the outer surface of the particle (R(rp, t)), which is readily
calculable given the particle size, intrinsic reactivity and temperature and

6



ambient conditions. In practice this is done by evaluating the integral Iτ =
∫ t

0
R(rp, t

′)dt′ at every time t of a CFD simulation. When Iτ is known it
is determined whether t is smaller or greater than τ by checking whether
Iτ is smaller or greater than ρp,0. This means that for a CFD simulation,
τ is not an input parameter to the simulation. From Eq. (14) it is seen
that the time τ only depends on ρ(rp, 0) and R(rp, t), which means that τ
is independent of physical particle parameters such as porosity and internal
diffusion coefficients.

When R(rp, t) is not known, one can proceed by assuming R(rp, t) and
η(t) to be independent such that the integral of the product of the two
becomes the mean value of η times the integral of R(rp, t). In terms of the
mean effectiveness factor:

η(t) =
1

t

∫ t

t′=0

η(t′)dt′, (15)

Eq. (10) can now be integrated together with Eq. (14) from t = 0 to τ to
yield

xτ = x(τ) =
1

ρp,0

∫ τ

t=0

η(t)R(rp, t)dt =
η(τ)

ρp,0

∫ τ

t=0

R(rp, t)dt = η(τ). (16)

This relation indicates that char conversion at the time when the mass in
the outermost shell of the particle is completely consumed (i.e., at t = τ)
equals the mean value of the effectiveness factor. Or, in other words, τ is
considered to be the time when x = η.

For x < xτ the radius of the particle is constant at rp,0, the initial particle
radius, while the apparent density of the particle varies with conversion:
ρp = ρp,0mp/mp,0 = ρp,0(1 − x). This means that for a particle having a
conversion rate that falls in the zone I conversion regime where η = 1, the
particle radius will be constant throughout the conversion process. On the
other hand, for a particle having a conversion rate that falls in the zone III
conversion regime where η is quite small, the particle radius will start to
decrease for very small values of conversion.

3. After the initial stages of char conversion

At times greater than τ , Eqs. (3) and (4) are assumed to govern the
change in particle size and apparent density with conversion. It is convenient
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to rewrite Eq. (3) as follows:

ρp +
dρp
dt
dt

ρp
=

(

mp +
dmp

dt
dt

mp

)α

. (17)

After a Taylor expansion of the right hand side for small dt and algebraic
rearrangement, Eq. (17) becomes

dρp
dt

= α
dmp

dt

ρp
mp

=
dmp

dt

α

Vp

(18)

when higher order terms are neglected. In the same way, Eq. (4) can be
rewritten as

drp
dt

= β
dmp

dt

rp
mp

=
dmp

dt

1− α

4πr2pρp
. (19)

Before Eq. (18) and Eq. (19) can be used to follow size and apparent density
with conversion, α must be determined.

By differentiating the relationship between mass, apparent density and
volume (mp = Vpρp), one obtains after rearrangement

dρp
dt

=
1

Vp

dmp

dt
−

ρp
Vp

dVp

dt
. (20)

Since Vp = 4πr3p/3, the rate of change in particle volume can be written as

dVp

dt
= 4πr2p

drp
dt

= −4πr2p

[(

∂r

∂ρ

)(

∂ρ

∂t

)]

r=rp

= −4πr2p

(

∂ρ(rp, t)

∂r

)

−1(

∂ρ(rp, t)

∂t

)

(21)

where the chain rule was used for drp/dt and the minus sign reflects the fact
that particle volume decreases in time. An expression for ∂ρ(rp, t)/∂t can be
determined by combining Eq. (11), Eq. (8) and Eq. (6) to yield

dρ(rp, t)

dt
=

1

ηVp

dmp

dt
. (22)

Employing this expression in Eq. (21) results in

dVp

dt
= −4πr2p

1

η(t)Vp

(

dmp

dt

)(

∂ρ(rp, t)

∂r

)

−1

. (23)
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An expression for the last partial derivative on the right hand side of this
equation is derived by considering the reactive gas concentration gradient
inside the particle. For a single, first-order irreversible reaction consuming
the carbonaceous particle material, Thiele[8] showed that at steady state,
the reactant concentration within the particle is given by

C(r) =
CRrp
r

sinh(φr/rp)

sinh(φ)
, (24)

where φ is the Thiele modulus, a dimensionless group that gives a relative
measure of chemical reaction rates to molecular diffusion rates:

φ = rp

√

R(rp)ν

CRDeffMc

. (25)

Here ν is the stoichiometric coefficient that relates the moles of gas consumed
for each mole of carbon gasified, Deff is the effective diffusivity inside the
particle and R(rp) is the steady state reaction rate at the particle surface:
R(rp) = kCRMc/ν, where k is the first order rate constant and Mc is the
molar weight of carbon. For φ < 1, the effectiveness factor is near unity
and for φ > 15 the effectiveness factor is less than 0.2, indicative of char
conversion with changes in both size and apparent density.

Since both the diffusive and reactive time scales, (r2p/Deff) and (CRMc/νR(rp)),
respectively, are much shorter than the time scale related to the particle mass
conversion (ρp/R(rp)), it is reasonable to approximate the char conversion
process as being in quasi steady-state. Assuming quasi steady-state, Eqs. (24)
and (25) become

C(r, t) =
CR(t)rp(t)

r

sinh(φ(t)r/rp(t))

sinh(φ(t))
(26)

and

φ(t) = rp(t)

√

k

Deff

. (27)

For a first-order consumption rate, Eq. (11) can be written as

∂ρ(r, t)

∂t
= −

kC(r, t)Mc.

ν
(28)

Separating variables and integrating from t = 0 to t results in

ρ(r, t) = ρ(r, 0)−

∫ t

0

kC(r, t)Mc

ν
dt = ρp,0 −

kMc

νr
I(r, t) (29)
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where

I(r, t) =

∫ t

0

CR(t
′)rp(t

′)
sinh (φ(t′)r/rp(t

′))

sinh(φ(t′))
dt′. (30)

Differentiating Eq. (29) with respect to r gives

∂ρ(r, t)

∂r
=

Mck

νr

[

I(r, t)

r
−

∂I(r, t)

∂r

]

. (31)

For the apparent density in a thin spherical shell at the particle periphery
this equation becomes

∂ρ(rp, t)

∂r
=

Mck

νrp

[

I(rp, t)

rp
−

∂I(rp, t)

∂r

]

. (32)

For φ > 4, it can be shown that (see Appendix A)

∂I(rp, t)

∂r
=

φ(t)

rp(t)
I(rp, t) (33)

and therefore
∂ρ(rp, t)

∂r
=

kMc

νr2p
I(r, t) [1− φ(t)] . (34)

From Eq. (29), the apparent density in the shell at the periphery of the
particle is

ρ(rp, t) = ρp,0 −
kMc

νrp(t)
I(rp, t) (35)

or upon rearranging, solving for I(rp, t)

I(rp, t) =
νrp(t)

kMc

[−ρ(rp, t) + ρp,0] . (36)

At the time when the mass in the outermost shell is consumed, ρ(rp, t) = 0
and

I(rp, t) =
ρp,0νrp(t)

kMc

. (37)

Employing this result in Eq. (34) yields the following expression for the ap-
parent density gradient at the particle periphery:

∂ρ(rp, t)

∂r
=

ρp,0
rp(t)

(1− φ(t)) (38)
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For a first-order reaction consuming the reactant gas, Thiele showed that the
relationship between the Thiele modulus and the effectiveness factor is given
by

η =
3

φ2

[

φ

tanh(φ)
− 1

]

. (39)

Since tanh(φ) ≈ 1 for φ > 4 the above equation reduces to

η =
3

φ2
[φ− 1] . (40)

for φ > 4. With this, Eq. (38) can be written as

dρ(rp, t)

dr
= −

ρp,0
rp(t)

η(t)φ(t)2

3
. (41)

Using this in Eq. (23) yields the following expression for the temporal varia-
tion in the volume of the char particle during conversion:

dVp

dt
=

1

ρp,0

dmp

dt

9

η2φ2
. (42)

Combining the above expression with Eq. (20) yields

dρp
dt

=
1

Vp

dmp

dt

(

1−
9

η2(t)φ2(t)

ρp
ρp,0

)

(43)

which gives the temporal variation in the apparent density of the particle in
terms of the mass conversion rate.

The apparent density of the particle at any time can be determined using
the following expression

ρp =
mp

Vp

=
1

Vp

∫ rp

r=0

4πr2ρ(r, t)dr, (44)

where the mass of the particle is described by an integration over the mass in
all concentric spherical shells within the particle. As shown in Appendix B,
the integral on the right hand side of Eq. (44) equals ρp,0Vp(1 − η) for a
first-order char consumption rate. Consequently,

ρp = ρp,0(1− η). (45)
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Using this expression on the right hand side of Eq. (43) results in

dρp
dt

=
1

Vp

dmp

dt

[

1−
9(1− η)

η2φ2

]

. (46)

By comparing Eqs. (46) and (18), the mode of conversion parameter α is
identified:

α = 1−
9(1− η)

η2φ2
. (47)

This equation permits the evolution of α from evaluation of the Thiele mod-
ulus and effectiveness factor. For cases with large φ, one can make the
approximation that

η =
3

φ2

[

φ

tanh(φ)
− 1

]

≈
3

φ
. (48)

Combining this with Eq. (47) reveals that

α = η, (49)

which shows that after the initial stages of conversion, i.e. when the diameter
is decreasing with mass loss, the mode of conversion is governed by the
effectiveness factor. Although Eq. (49) strictly applies for large φ, as shown
below, it yields reasonable accurate results also for smaller values of φ. Thus,
during the course of conversion, our model for the mode of conversion of a
porous particle is given by

for t ≤ τ

drp
dt

= 0 and
dρp
dt

=
dmp

dt

1

Vp

and for t > τ (50)

drp
dt

=
dmp

dt

1− η

4πr2pρp
and

dρp
dt

=
dmp

dt

η

Vp

.

Employing Eq. (9) to determine the mass consumption rate, these equations
are used to follow the variations in char particle size and apparent density
during mass conversion in the calculations presented below.
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4. Comparing with simulations

Simulations of heterogeneous combustion do involve a large number of
uncertainties such as the homogeneous and heterogeneous chemical mecha-
nism, the particle pore structure, treatment of particle-fluid boundary layer
together with the thermodynamical parameters of both the gas and the solid.
Discussing these uncertainties is, however, beyond the scope of this work.
The aim of this paper is to describe the evolution of particle radius and ap-
parent density as a function of time by utilizing models for the gradients of
gas reactants and apparent density inside the particle. In the current sec-
tion the predictions of the model described in the first part of this paper
are compared with results from a fully resolved simulation tool in order to
assess the predictability of the model. The resolved simulation tool that is
used to obtain the benchmark results is previously described in Mitchell et
al. (2007) [7]. In this direct numerical simulation (DNS) code, the gradients
inside the particle are resolved by discretizing the particle into a large num-
ber of thin spherical shells for which the evolution equations of gas phase
concentration and apparent char density are solved. In the DNS code, a
multi-step adsorption/desorption reaction mechanism was used to describe
the char conversion process. The reaction mechanism, as listed in Table 1,
is the same as used in Mitchell et al. (2007) [7] but the rate parameters (de-
termined from mass loss data obtained in thermogravimetric experiments)
are for the char of Wyodak coal, a sub bituminous coal from Wyoming [9].
The reaction scheme is based on the turnover concept of Haynes (2001) [10],
in which the carbon atoms that desorb from the carbonaceous matrix as
CO or CO2 expose an underlying carbon atom that becomes a free carbon
site, a carbon site available for adsorption of gas phase species. Hurt and
Haynes (2005) [11] have shown that a distribution of desorption (or adsorp-
tion) activation energies in turnover models gives rise to reacting systems
that exhibit a range of reaction orders, from fractional to unity, depending
on how broad the distribution is. Our mechanism and associated parame-
ters (with a relatively large sigma on the desorption reactions) yields near
first-order behavior.

In our simulation, the mass consumption rate per unit volume (R(r, t))
is calculated via the reaction mechanism presented in Table 1. This is done
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Nr. Reaction Ak Ek σk

R1a 2Cf +O2 → C(O) + CO 6.50× 1013 102 0
R1b 2Cf +O2 → C2(O2) 8.95× 109 55 0
R2 Cb + Cf + C(O) +O2 → C(O) + CO2 + Cf 1.18× 1015 120 0
R3 Cb + Cf + C(O) +O2 → 2C(O) + CO 3.74× 1022 227 0
R4 C(O) + Cb → CO + Cf 1.00× 1013 353 36
R5 Cb + C2(O2) → 2Cf + CO2. 1.00× 1013 304 33

Table 1: Arrhenius parameters for the surface reactions for the char of Wyodak coal. The
unit of both the activation energy Ek and the distribution width σk is MJ/kmol.

via the following equation:

R(r, t) =
MCSgcmp

Vp

(

R̂RR1a(r) + R̂RR2(r) + R̂RR3(r) + R̂RR4(r) + R̂RR5(r)
)

,

(51)
where Mc is the molecular weight of carbon, Sgc is the specific surface area of
the char, which varies with conversion according to Bhatia and Perlmutter’s
Random Pore Model [6], and R̂Ri are the reaction rates, expressed in units
of moles per m2 per second and calculated assuming an Arrhenius form for
the reaction rate coefficient, as follows:

R̂Ri(r) = Ai exp

(

−Ei

RT

)

∏

[Cj(r)]
νj . (52)

In Eq. (52), Ai and Ei are the Arrhenius pre-factor and activation energy,
respectively, and Cj(r) is the concentration at that radial location r for each
reactant j present in reaction i (moles per m3 for gaseous reactants, and
moles per m2 for surface reactants) and νj is the stoichiometric coefficient
for species j in reaction i.

Using resolved numerical simulations to check the model results instead
of comparing with experimental results has the advantage that it screens out
issues related to the uncertainties mentioned in the beginning of this section.
Any differences between the model and the benchmark results would be due
to shortcomings of the presented model in predicting particle radius and
apparent density evolution. It is important to realize that for the current
model there are no free parameters such that a similarity between the model
and the benchmark simulations is not due to parameter tuning but rather
shows the predictive capabilities of the model.
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Figure 1: Time evolution of overall conversion (black line), mean effectiveness factor (blue
line) and normalized particle radius (r̂p = rp/rp,0) (red line) from fully resolved simula-
tions. Also shown is the normalized particle radius obtained by using Eq. (50) when τ
has been found from Eq. (14) (black dashed line) and from Eq. (16) (green dashed-dotted
line). The three different panels show results from simulation with temperatures of 1000 K,
1100 K and 1200 K for 100 µm char particles exposed to 6% O2.

Three cases at different temperatures, but which all represent combustion
of a 100 µm diameter char particles in an atmosphere of 6 % O2, have been
simulated. The results are presented in Fig. 1 and Fig. 2. The benchmark
results for the particle radius and apparent density as a function of time,
obtained by the DNS code described in Mitchell et al. (2007) [7], are shown as
the red lines in the two figures. The results obtained using Eq. (14) or Eq. (16)
for τ are shown as the dashed black and green lines, respectively. Note that
the mean effectiveness factor varies with conversion at each temperature,
indicative of conversion in the zone II regime. At 1000 K, ηmin is about 0.4,
and for a first-order reaction φ ≈ 0.6. At 1100 K, ηmin ≈ 0.1 and φ = 30.
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Figure 2: Time evolution of overall conversion (black line), mean effectiveness factor (blue
line) and normalized apparent density (ρ̂p = ρp/ρp,0) (red line) from fully resolved simu-
lations. Also shown is the normalized apparent density obtained by using Eq. (50) when τ
has been found from Eq. (14) (black dashed line) and from Eq. (16) (green dashed-dotted
line). The three different panels show results from simulation with temperatures of 1000 K,
1100 K and 1200 K for 100 µm char particles exposed to 6% O2.

The Thiele modulus is even greater at 1200 K.
By inspecting Fig. 1, it is noted that the time τ when the particle radius

start to decrease is accurately described by Eq. (14) (black dashed line) for
all three temperatures. When Eq. (16) is used to determine τ (green dashed-
dotted line), the predictions are good at the two highest temperatures but not
as good at the lower temperature. This is due to the fact that in obtaining
Eq. (16) we made the assumption that the reactivity at the outer shell of the
particle and the effectiveness factor were independent. Equation 25 indicates
that the Thiele modulus is related to the reactivity at the outer surface such
that if η and φ are independent then also η and R(rp, t) are independent. In
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Figure 3: Effectiveness as a function of Thiele modulus as found from Eq. (39).

Fig. 3 the effectiveness factor is plotted as a function of the Thiele modulus,
employing Eq. (39). As can be seen for small values of the Thiele modulus, η
is strongly dependent on φ and hence also on R(rp, t). For larger values of the
Thiele modulus, the dependence is rather weak. This explains why Eq. (16)
yields good predictions for high temperatures, where the Thiele modulus is
large, while the predictions are poor for the lowest temperatures where the
Thiele modulus is small.

For t > τ , it is seen from Figures 1 and 2 that in particular for the
two highest temperatures the model results are quiet good. For the lowest
temperature the model yields results that deviate from the DNS calculations
at late times. This discrepancy is a consequence of an inadequate assumption.
In deriving Eq. (50), the Thiele modulus is assumed to be large (at least
greater than 4), whereas at 1000 K φ ≈ 0.6. Despite this deviation the
predictability of the model is overall found to be remarkably good.
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5. Summary

A mode of conversion model relating the evolution of particle radius,
apparent density and mass is presented. The model yields a time when
the particle radius starts to decrease and the rates at which the radius and
apparent density decrease after this time. The model itself does not include
any tunable parameters. It should be kept in mind that the model presented
is for an ash-free particle with uniform temperature. The apparent density of
the ash-containing particle is readily calculable from the apparent density of
the ash (assumed to be constant), the apparent density of the carbonaceous
portion of the particle (as described by the burning mode relations) and the
mass fraction of ash in the particle (as determined from mp/mp,0 and the
mass fraction of ash in the initial char).

The time when the particle radius starts to decrease can be identified
when the reactivity at the particle surface is known. If the surface reactivity
is not known, however, the assumption that the surface reactivity is constant
during the initial stages is made. From this it is shown that when the con-
version equals the mean effectiveness factor, the particle radius will start to
decrease.

After the initial stages, i.e. when the particle radius is decreasing, the
model takes the approach of Thiele when describing the effects of non-uniform
concentration gradients inside the particle. Here it is shown that the temporal
evolution of the particle radius and the apparent density are functions of the
particle mass conversion rate, the particle radius and the effectiveness factor.
In addition the particle radius evolution also depends on the apparent density.

When comparing the model results with results from a fully resolved
particle simulation, the model is shown to perform very well. Although it
can only be shown that α = η theoretically for an irreversible first-order
reaction consuming the carbonaceous particle material, we believe that the
use of α = η (for use in the power-law mode of conversion expressions given
by Eq. (3)) will yield calculated size and apparent density variation with
mass loss that adequately agree with measurements for any choice of reaction
mechanism used to describe experimental data. Based on this we claim that
the current model is ideal as a sub-model for the mode of conversion of
reactive porous char particles in numerical simulations.
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Appendix A The density gradient at the particle surface

To find the density gradient at the particle surface one must first find an
expression for the dI(r, t)/dr term in Eq. (31). From Eq. (30) we know that

I(r, t) =

∫ t

0

CR(t
′)rp(t

′)
sinh (φ(t′)r/rp(t

′))

sinh(φ(t′))
dt′ (53)

which can be differentiated with respect to the radius to find

∂I(r, t)

∂r
=

∫ t

0

φ(t′)

rp(t′)

1

tanh (φ(t′)r/rp(t′))
CR(t

′)rp(t
′)
sinh (φ(t′)r/rp(t

′))

sinh(φ(t′))
dt′.

(54)
From Eq. (27) one can see that φ(t′)/rp(t

′) is independent of time as long as
the ratio k/Deff is constant. Furthermore, since tanh(y) ≈ 1 for y ≥ 4 it is
true that tanh (φ(t′)r/rp(t

′)) ≈ 1 if φ(t′) > 4 since r/rp(t) ≤ 1. From this
Eq. (54) can be simplified to

∂I(r, t)

∂r
=

φ(t)

rp(t)
I(r, t). (55)
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Appendix B Derivation of the particle mass

The mass of the particle at time t is found by integrating Eq. (29) over
all r;

mp(t) =

∫ rp

0

4πr2ρ(r, t)dr

=

∫ rp

0

4πr2
(

ρp,0 −
kMc

rν
I(r, t)

)

dr

= Vp(t)ρp,0 −
4πkMc

ν

∫ rp

0

rI(r, t)dr. (56)

In order to evaluate the integral on the right hand side, consider the following.
For φ > 4, Eq. (55) can be used to show that

d

dr

(

rp(t)

φ(t)
I(r, t)

)

= I(r, t). (57)

Integrating by parts yields

∫ rp

0

rI(r, t)dr =
r2p(t)

φ2(t)
I(rp, t)(φ(t)− 1). (58)

Now, employing Eq. (58) in Eq. (56) yields the following for the mass of the
particle in light of Eq. (37)

mp(t) = Vp(t)ρp,0 −
4πρp,0r

3

p(t)

φ2(t)
(φ(t)− 1) . (59)

Using Eq. (40) now yields

mp(t) = Vpρp,0(1− η(t)). (60)

Appendix C External surface area

In a char particle there will typically by mass conversion due to both
the internal surfaces, revealed through the internal pores, and due to the
external surface. The external surface has an area Aext = 4πr2p where rp is
the radius of the char particle while the total internal surface area of the
particle is given by Sgcmp where mp is the mass of the char particle and
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Sgc is the specific surface area of the char. The transport of species inside
the particle is diffusion controlled, and for typical char particles it is even
controlled by the rather slow Knudsen diffusion. For particles with higher
reactivities the entire internal surface area of the particle will therefore not
be reacting. It is convenient to define the effective internal surface area based
on the effectiveness factor such that

Aint,eff = Sgcmη. (61)

When using typical values for a char of Sgc = 3×105 m2/kg, ρp = 103 kg/m3

and rp = 10−4 m this yields

Aext

Aint,eff

=
4πr2p

Sgcη
4

3
πr3pρp

=
3

rpρpSgcη
=

10−4

η
(62)

where 4πr3p/3 was used for the mass of the particle. The above shows that
for a typical char particle the external surface area is much smaller than the
effective internal surface area, unless the effectiveness factor is very small. In
our approach, we therefore neglect mass conversion at the external surface
of the particle.

References

[1] I. W. Smith, Proc. Combust. Inst., 19, 1045-1065 (1982)

[2] R. H. Hurt and R. E. Mitchell, Proc. Combust. Inst., 24, 1233-1241
(1992)

[3] N. M. Laurendeal, Prog. Energy Combust. Sci., 4, 221 (1978)

[4] R. H. Essenhigh, Proc. Combust. Inst., 22, 89-96 (1988)

[5] R. H. Essenhigh, Combustion Flame, 99, 269-279 (1994)

[6] S. K. Bhatia and D. D. Perlmutter, AIChE J., 26, 379 (1980)

[7] R. E. Mitchell, L. Ma and B-J. Kim, Combustion and Flame, 151, 426
(2007)

[8] E. W. Thiele, Ind. Eng. Chem., 31, 916 (1939)

21



[9] R. E. Mitchell, “Gasification characteristics of coal/biomass mixed fu-
els”, DOE/NETL Quarterly Technical Progress Report No. 6, Award
No. DE-FC26-10FE0005372, May 2012

[10] B. Haynes, Combustion & Flame, 126, 1421-1432 (2001)

[11] R. Hurt and B. Haynes, Proc. Combust. Inst., 30, 2161-2168 (2005)

22


