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Abstract 
This study proposes a dynamic model that describes key characteristics of fermentative butanol 
production from glucose and xylose mixtures. The model has 12 parameters and incorporates 
noncompetitive inhibitory interaction between sugars as well as inhibitions due to high 
substrate and butanol concentrations. Different pre-growth strategies to achieve co-utilization 
of sugars were explored together with their effects on fermentation kinetics. Mixed sugar 
fermentation by the cultures pre-grown on a mixture of glucose and xylose showed a higher 
endurance to inhibition, a 2-fold increase in butanol production and a 1.5-fold increase in total 
sugar consumption compared to cultures pre-grown on xylose only. The average squared 
correlation coefficients (r2) between experimental observations and model predictions were 
0.917 and 0.926 for fermentations done by the cultures pre-grown on xylose only, and pre-
grown on a mixture of glucose and xylose, respectively. Sensitivity analysis on the model 
parameters revealed that the growth parameters were the most critical. The proposed model 
can serve as a basis for modeling of microbial butanol production from lignocellulosic biomass 
and be applied to other substrates and microorganisms. 
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1. Introduction 
Biofuels have gained global interest due to environmental concerns, volatility of oil price and 
supply, and legal restrictions limiting the use of nonrenewable energy sources [1]. n-Butanol 
(in the further run referred to as butanol) is a promising biofuel alternative based on several 
advantages compared to the more established biofuels ethanol and methanol: a longer carbon 
chain length, higher volatility, polarity, combustion value, octane rating and lower corrosive 
effects and lesser ignition problems due to lower heat of vaporization [2]. Furthermore, diesel 
engines can run on pure butanol or butanol and diesel blends without any modifications [3]. 

Sustainable and economical fermentative butanol production faces several challenges such as 
high substrate cost, solvent toxicity, low cell density and by-product formation. Fermentation 
substrate has the greatest share in the total costs, accounting for 66% of all [4]. To tackle this 
problem, many feedstock alternatives have been studied [5] and lignocellulosic biomass is 
among them because, it is the most abundant renewable biomass resource, and it circumvents 
the direct fuel-versus-food competition compared to e.g. corn and sugar cane in biofuel 
production. Hydrolysis of lignocelluosic biomass yields a mixture of pentoses and hexoses, 
which are fermented to butanol and by-products by the microorganisms. Full exploitation of 
all sugars bound in lignocellulosic biomass is necessary to decrease the substrate costs. 
However, the cells’ efficiency at using different sugars in mixed form tend to decrease due to 
the phenomenon Carbon Catabolite Repression (CCR). CCR can reduce or prevent the 
utilization of pentoses such as xylose when a preferred carbon source such as glucose is present 
[6].  

Developing strains capable of co-utilizing hexose and pentose for butanol production is an 
active research topic in metabolic engineering [6, 7]. Even though Lee et al. (2016) [5] stated 
metabolic engineering is required for simultaneous utilization of sugars, researchers have 
developed pre-growth strategies achieving co-utilization without any strain manipulation [8-
14]. The suggested pre-growth methods comprised of subjecting a culture to a less favorable 
carbon source, mostly sole xylose for early activation of its utilization pathway. When a 
mixture of a sugars, usually glucose and xylose, was then added to the fermentation medium, 
the culture pre-grown on xylose could simultaneously utilize them. This strategy has 
successfully been applied for lignocellulosic hydrolysate fermentations and significantly 
enhanced the fermentation performance in terms of product yield and substrate utilization. 
However, only two of the above mentioned studies have reported time course data of mixed 
sugar fermentations for cultures pre-grown on different sugars to illustrate the effect of pre-
growth in a systematic manner [8, 11]. Therefore, we investigated the improvement in mixed 
sugars fermentations with respect to the suggested pre-growth strategies as the literature is 
lacking analysis and thorough discussion on this topic. 

First attempts to model fermentative butanol production date back to 1984 employing carbon 
balance to determine product yields [15]. Even though a wide variety of model structures has 
been proposed since then [16, 17], there is still not a consensus about the most appropriate 
model to use for process design, control and optimization. Moreover, the majority of models is 
only valid under certain process conditions and regimes [18]. Dynamic models developed by 
Shinto et al. (2007, 2008) to describe fermentation of glucose and xylose for butanol production 
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have been central to the recent modeling attempts [19, 20]. For example, Raganati et al. (2015) 
applied their models for a wider range of pentose and hexose sugars [21]. In a more recent 
study, Diaz and Willis (2018) extended the model to include CCR for fermentation of glucose 
and xylose [22] and it was developed simultaneously with our initial model [23]. To our 
knowledge, these two are currently the only mixed sugar fermentation models developed for 
butanol production. Despite their rich information content, the complexity level in the models 
of Shinto et al. (2007, 2008) is high and they require larger experimental datasets for estimation 
of larger number of parameters necessary to construct the models. On the contrary, traditional 
unstructured models are simpler and easier to interpret, thus they are still actively being used 
for describing butanol production by fermentation [24]. 

The main objective of this study is therefore twofold: i) to establish a dynamic model for 
fermentative butanol production from mixtures of glucose and xylose, and ii) to investigate the 
effects of pre-growth strategies on the fermentation kinetics. 

2. Theory 
2.1. Modeling approach 

In this study, we propose a dynamic model based on unstructured mathematical models that 
have typically been used to estimate the state of fermentative butanol production [25]. The 
model describes the cell mass (X) growth, uptake of glucose (SG) and xylose (SX) and butanol 
(B) production. We choose the proper forms of the kinetic equations such that they can describe 
the key characteristics of the process while avoiding the overparameterization of the model. 
Following assumptions are made by employing the fermentation biochemistry knowledge to 
establish the proposed model: 

- Glucose and xylose are the only limiting substrates. 
- There is no nitrogen limitation. 
- Growth inhibition sources are i) high substrate concentration, ii) butanol accumulation 

and iii) interaction between sugars. 
- High substrate inhibition effects are combined for glucose and xylose, and it is in 

noncompetitive form [26]. 
- Butanol inhibition is noncompetitive described by parabolic function [26, 27]. 
- Inhibition effects of substrates on each other is significant and noncompetitive [28]. 
- Substrate assimilation is only for butanol and cell mass production. 
- Substrate consumption for maintenance is negligible. 
- Luedeking-Piret model with a growth-associated part describes the butanol production. 

We developed the model with the light of the assumptions above using the data of Fond et al. 
(1986) [11], and our experimental data separately for cultures pre-grown on xylose, and pre-
grown on xylose and glucose. We checked the validity and accuracy using two more datasets 
for each model. Then, we identified the critical parameters by sensitivity analysis. 
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2.2. Dynamic model for the microbial butanol production from mixtures of 
glucose and xylose 

In our previous study, the Monod equation was modified to describe the growth on mixtures 
of glucose and xylose together with noncompetitive inhibition between them [28]. Cell mass 
growth on glucose, µSG, and xylose, µSX, are shown in Equation 1 and Equation 2, respectively. 

μSG=
μmaxG*SG

(KsG+SG)* �1+ SX
KsX

�
                                                                                                   (1) 

μSX=
μmaxX*SX

(KsX+SX)* �1+ SG
KsG

�
                                                                                                   (2) 

where µmaxG and µmaxX are maximum specific growth rates on glucose and xylose, and KsG and 
KsX are substrate affinity constants for glucose and xylose, respectively. We extended the 
growth model with substrate and butanol inhibition terms in this study as shown in Equation 3. 

μg=(μSG+μSX)* �
KI

KI+SG+SX
� * �1-

B
Bmax

�
iB

                                                                         (3) 

where µg is the specific growth rate of cell mass, KI is the substrate inhibition constant, Bmax is 
the concentration of butanol at which cell mass growth stops, and iB is the butanol inhibition 
constant to cell mass growth. Net growth rate of cell mass, µnet, is the difference between the 
specific growth rate and specific death rate, kd, therefore, the cell mass change over time shown 
in Equation 4 and Equation 5, respectively. 

μnet=μg-kd                                                                                                                              (4) 

dX
dt

=μnet*X                                                                                                                           (5) 

Glucose and xylose uptakes are given in terms of the amounts utilized for cell mass growth and 
butanol formation, which can be seen in Equation 6 and Equation 7, respectively. 

dSG
dt

=-μSG* �
1

YX/SG
+

1
YB/SG

� *X                                                                                           (6) 

where YX/SG is the cell yield on glucose and YB/SG is the butanol yield on glucose. 

dSX
dt

=-μSX* �
1

YX/SX
+

1
YB/SX

� *X                                                                                           (7) 

where YX/SX is the cell yield on xylose and YX/SX is the butanol yield on xylose. Equation 8 
shows the butanol formation. 

dB
dt

=(μSG*YB/XG+μSX*YB/XX)*X                                                                                          (8) 

where YB/XG is the butanol yield on cell mass utilizing glucose and YB/XX is the yield on cell 
mass utilizing xylose. The relationships between the cell mass yields, butanol yields on the 
substrates and on the cell mass are shown in Equation 9 and Equation 10. 
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YB/XG=
YB/SG

YX/SG
                                                                                                                        (9) 

YB/XX=
YB/SX

YX/SX
                                                                                                                      (10) 

The empirical coefficients shown in Equations 1-10 are called as parameters in this study due 
to their dependency on the species, substrate and environmental conditions. 

2.3. Parameter estimation 
The proposed model includes 12 parameters listed in Section 2.2 are unknown a priori; 
therefore, they are estimated from experimental data. In this work, the observed concentrations 
of cell mass, glucose, xylose, and butanol are used: 

y=�[X][SG][SX][B]�
T
 

for estimation of parameters 

Θ=[YX/SG  YX/SX  YB/SG  YB/SX  kd  Bmax  iB  KI  µmaxG  KsG  KsX  µmaxX]T 

The parameter estimation poses a nonlinear least-squares optimization problem 

Θ�=argmin��(yobs
ij-ypred

ij)2
Nv

j=1

                                                                                         (11)
Nm

i=1

 

where Θ�  denotes the estimated values of the parameters Θ; and yobs and ypred denote the 
observed and predicted concentrations of the components. Number of components, Nm, is 4. 
Number of observations, Nv, is 14. The subscript ij denotes the jth value of the ith component. 

The objective of the parameter estimation problem in Equation 11 is to determine the 
parameters, Θ, by minimizing the squared difference between the observed and predicted 
concentrations of the components in y. The constrained nonlinear optimization problem is 
solved using fmincon in MATLAB 2017b Optimization Toolbox based on the interior point 
algorithm together with ode45 solver (Runge-Kutta 4th order method) for the mass balance 
equations. 

The parameter bounds considered in the optimization problem are given in Table 1. The bounds 
for yield coefficients were determined using stoichiometric relations between the components 
[16, 26]. The rest of the parameter bounds was taken from literature [24, 29]. The optimization 
problem was initialized with the initial points, which were the middle points between the upper 
and lower bounds of the parameters. 
Table 1 Model parameters, their bounds and initial points used for initialization. 

Parameter Unit Lower bound Upper bound Initial point Source 
YX/SG g/g 0 0.689 0.345 Stoichiometry 
YX/SX g/g 0 0.689 0.345 Stoichiometry 
YB/SG g/g 0 0.412 0.206 Stoichiometry 
YB/SX g/g 0 0.494 0.247 Stoichiometry 
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kd h-1 0 0.500 0.250 [24] 
Bmax g/l 10 20 15 [24] 
iB - 0 10 5 [24] 
KI g/l 125 250 187 [24] 
µmaxG h-1 0 2.000 1.000 [28] 
KsG g/l 0 10 5 [28] 
KsX g/l 0 10 5 [28] 
µmaxX h-1 0 2.000 1.000 [28] 

2.4. Index of model accuracy 
We obtained the model after parameter estimation, and performed model simulations to check 
its validity for other experimental data. We calculated sum of squared error (SSE) between the 
observed and predicted values of the components shown in Equation 12. 

SSE=�(yobs
i(t)-ypred

i(t))2, ∀ t=[0,tend],    i=X, SG, SX, B 
tend

t=0

                                             (12) 

where yobs
i(t) and ypred

i(t) denote the observed and predicted concentrations of the components 
at time t, the subscript i denotes value of the ith measured component. 

We calculated sum of squared total (SST), which is a quantification of the observations’, yobs
i(t) 

variation around their mean, y�obs
i shown in Equation 13. 

SST=�(yobs
i(t)-y�obs

i)2, ∀ t=[0,tend],    i=X, SG, SX, B 
tend

t=0

                                                  (13) 

By using SSE and SST, we calculated average squared correlation coefficients (r2) for each 
component with the formula given in Equation 14. 

r2=1-
SSE
SST

                                                                                                                                    (14) 

r2 values were used as the index of model accuracy. 

2.5. Sensitivity analysis of model parameters 
We conducted the sensitivity analysis by 10% perturbations in each of 12 parameters. The 
sensitivity can be measured by comparing the final concentrations of components with 
perturbed and unperturbed parameters. One parameter is perturbed at a time while keeping the 
rest of the model parameters the same as their original estimates, and model simulations are 
done with the new parameter set which involves one perturbed and 11 unperturbed parameters. 
As a result, end point deviations (ED) of cell mass, glucose, xylose and butanol are calculated 
with respect to their reference values obtained with the parameter set consisting only of the 
unperturbed parameters. ED values were calculated as in Equation 15. 

EDi
P(%)=

yi(Θ±ΔΘ,tend)-yi
ref(Θ,tend)

yi
ref(Θ,tend)

,    i=X, SG, SX, B                                                   (15) 
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where yi(Θ,tend) and yi(Θ±ΔΘ,tend) represent the predicted concentration of ith component at 
time tend associated with unperturbed parameter Θ and perturbed parameter Θ±ΔΘ, 
respectively. yi

ref(Θ,tend) is the end concentration of the ith component in the reference. 

3. Materials and methods 
3.1. Microorganism and culture conditions 

Wild type Clostridium beijerinckii NCIMB 8052 was used in this study, since it can utilize 
both glucose and xylose [30]. We applied a two-stage pre-growth strategy based on our 
previous work, which enables the culture to co-utilize glucose and xylose [8]. First step was 
the growth of a frozen work ampoule (1 ml) for 14 hours on 50 ml of reinforced clostridial 
medium (CM0149, Oxoid) under static conditions at 37 oC. In the second step, the culture was 
grown for 6 hours on a medium containing 2.5 g/l Na-acetate, 5 g/l yeast extract, 2 g/l 
(NH4)2SO4, 0.01 g/L NaCI, 0.75 g/l KH2PO4, 1.5 g/l K2HPO4, 0.2 g/l MgSO4.7H2O, 0.01 g/l 
MnSO4.H2O, 0.01 g/l FeSO4.7H2O, 0.01 g/l p-aminobenzoic acid, 0.01 g/l biotin, 0.1 g/l 
thiamine, and 5 g/l xylose as the sole sugar to obtain xylose pre-grown culture or 5 g/l glucose 
and xylose with a ratio of 1:1 for glucose and xylose pre-grown culture. In fed-batch 
fermentations, the same medium was used as in the second pre-growth step with different total 
sugar concentrations. As part of a literature review study, we collected data from 175 
lignocellulosic biomass fermentations documented in publications the past 30 years, and the 
results showed that the total amount of glucose and xylose used was in the range of 18 and 47 
g/l. Therefore, we selected minimum and maximum concentrations as 15 and 45 g/l and did 
parameter estimation with 30 g/l as their mean value. 

3.2. Fed-batch fermentations 
We conducted fed-batch growth experiments in 120 ml serum flasks with 50 ml working 
volume in an incubator with temperature controlled at 37oC under static and anaerobic 
conditions. We used an inoculum size of 4% v/v. There was no pH control applied. We took 1 
ml samples at sampling times of 0, 4, 8, 12, 16, 24, 26, 28, 30, 32, 36, 40 and 48 hours with 
respect to the start of the experiment. The feeding frequency was selected according to average 
sugar consumption rates that we obtained in our earlier experiments, adjusted with respect to 
the sugar concentrations (15, 30, 45 g/l). Sugar feeding was done with a concentrated, 232.5 
g/l sugar solution containing equal amounts of glucose and xylose. The feeding was done such 
that the volumes removed during sampling and the volumes added during feeding were equal 
and the same for all the experiments.  The cultures with 15 g/l total sugars (X15 and GX15, 
validation datasets) were fed with the sugar solution every 8 hours, the ones with 30 g/l (X30 
and GX30, parameter estimation datasets) were fed every 16 hours, and  the ones with 45 g/l 
(X45 and GX45, validation datasets) were fed every 24 hours. Experiments terminated after 48 
hours.  

3.3. Analytical methods 
Optical density (OD) was used as a measure for cell mass concentration, measured at 660 nm 
with a UV-vis spectrophotometer UV-1700 (Shimadzu) with water as the reference. Samples 
exceeding 0.4 OD were diluted with water so that the Beer-Lambert Law is applied. The OD 
readings were converted to cell mass concentrations according to the correlation obtained in 
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our previous study [8]. The samples for determining concentrations of glucose, xylose and 
butanol were filtrated (Millipore filter, 0.2 μm) before analysis using a HPLC system 
(Shimadzu Model 9) equipped with UV (210 nm) and RI detector and an Aminex HPX-87H 
column (Biorad). Samples were eluted with 5 mM H2SO4, flow rate 0.6 ml/min at 45°C. 
Quantification was performed using standards for each component. 

4. Results and discussion 
4.1. Effect of pre-growth strategy on fermentation kinetics 

We estimated the model parameters for 4 datasets: glucose and xylose fermentations by i) 
xylose pre-grown (FondX), and ii) glucose and xylose pre-grown cultures (FondGX) from the 
work of Fond et al. (1986) [11], and our experimental data of glucose and xylose fermentations 
by iii) xylose pre-grown (X30), and iv) glucose and xylose pre-grown cultures (GX30) with 30 
g/l total sugar containing equal amounts of glucose and xylose. Parameter estimates for all 4 
datasets given in Table 2 were interpreted to illustrate the effects of different pre-growth 
strategies on the fermentation kinetics. 

Table 2 Parameter estimation results. 

Parameter Xylose pre-grown Glucose and xylose pre-grown 
X30 (This study) FondX [11] GX30 (This study) FondGX [11] 

YX/SG 0.199 0.097 0.523 0.157 
YX/SX 0.292 0.260 0.058 0.223 
YB/SG 0.265 0.250 0.196 0.319 
YB/SX 0.057 0.389 0.232 0.399 
kd 0.055 0.033 0.076 0.026 
Bmax 15.632 15.796 15.658 17.243 
iB 1.125 2.138 0.616 1.695 
KI 143.629 186.199 171.492 187.667 
µmaxG 0.982 1.444 0.730 1.204 
KsG 1.842 5.634 1.293 4.637 
KsX 2.066 6.974 4.469 5.884 
µmaxX 0.487 1.292 0.615 1.025 

Cell mass yields on glucose (YX/SG) were 0.199 and 0.523 g/g, and cell mass yields on xylose 
(YX/SX) were 0.292 and 0.058 g/g for xylose pre-grown culture (X30), and glucose and xylose 
pre-grown culture (GX30), respectively. Therefore, a greater proportion of glucose was 
converted to cell mass in GX30 than in X30, and vice versa for xylose. This difference in GX30 
and X30 cultures may relate to different expression levels of sugar utilization enzymes. To 
elaborate, glucose utilization enzymes were likely to be relatively more prominent than xylose 
utilization enzymes in GX30 since it is the preferred carbon source [6]. Similarly, xylose 
assimilation enzymes were readily available in X30 when the glucose and xylose mixture was 
added and could utilize xylose at a higher efficiency for cell mass production. Analogously, 
FondGX had higher YX/SG and lower YX/SX than FondX showing the same trend. Maximum 
specific growth rate of cell mass on glucose, µmaxG and substrate affinity constant for glucose, 
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KsG was lower for FondGX and GX30 indicating that the cells pre-grown on glucose and xylose 
grew slower on glucose and were more attracted to glucose. However, changes in µmaxX and 
KsX exhibited opposite trends for our cultures, X30 and GX30, and the results of Fond et al. 
(1986) [31], FondX and FondGX. This difference in the parameters of xylose growth model 
can be the result of C. beijerinckii (used in our experiments) having more sets of xylose 
metabolic pathway genes than C. acetobutylicum (used in Fond et al. (1986)) [31]. Thus, 
different sugar utilization mechanisms may have caused variance in the xylose growth 
parameters. 

Both butanol yield on glucose, YB/SG and butanol yield on xylose, YB/SX were greater for 
glucose and xylose pre-grown culture, FondGX than xylose pre-grown culture, FondX. The 
same increase was observed for YB/SX in GX30 compared to X30. Therefore, glucose and 
xylose pre-grown cultures produced more butanol. The highest YB/SG was 0.319 g/g and the 
highest YB/SX was 0.399 g/g representing the 77.4% of the maximum theoretical butanol yield 
on glucose, 0.412 g/g, and 80.7% of the maximum theoretical butanol yield on xylose, 0.494 
g/g, respectively. The concentrations of butanol at which cell mass growth stops, Bmax were 
15.632, 15.658, 15.796 and 17.243 g/l for X30, GX30, FondX and FondGX, respectively. Even 
though Bmax values obtained for our datasets, X30 and GX30 were similar, this might indicate 
that glucose and xylose pre-grown cultures were more tolerant to butanol toxicity. Similarly, 
butanol inhibition constants to cell mass growth, iB were 1.125, 0.616, 2.138, 1.695 for X30, 
GX30, FondX and FondGX, respectively indicating the extent of butanol inhibition is greater 
for xylose pre-grown cultures. The toxic butanol concentration values and butanol inhibition 
constants are in good agreement with both previously reported experimental observations [27] 
and estimations in modeling studies [24]. Further experimental evidence confirms that the 
inhibitory effects of butanol on C. acetobutylicum were more pronounced in xylose-grown cells 
than in glucose-grown cells, and glucose and xylose permease were inhibited when butanol 
concentration reached 12 and 8 g/l, respectively [14].  

Substrate inhibition constant, KI values were 143.629, 171.492, 186.199, and 187.667 g/l for 
X30, GX30, FondX and FondGX, respectively. Thus, the substrate inhibition on the growth 
was greater for the xylose pre-grown cultures. KI estimates coincide with the literature 
information where it was stated that the cell growth was inhibited strongly when the total 
substrate concentration was 200 g/l and stopped entirely when it was 250 g/l for a mixture of 
sugars containing mostly glucose [32]. These results principally agree with the results of 
Raganati et al. (2015), in which they found that the cultures fed with glucose possessed the 
highest metabolic activity and lowest tendency to sporulate compared to the cultures with 
pentose sugars [21].  Even though this might be an indication of a shorter lifespan for xylose 
pre-grown cells, further investigation is necessary. 

4.2. Comparison of model predictions and experimental observations 
Simulations were performed by employing the model with the parameter estimates given in 
Table 2. The model predictions and the observed values for the FondX and FondGX datasets 
are shown in Figure 1. 
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Figure 1 Comparison of model predictions and experimental observations with the data from 
Fond et al. (1986) for a) xylose pre-grown culture, FondX, and b) glucose and xylose pre-
grown culture, FondGX [11]. 

Figure 1.a shows the predicted and observed values of cell mass, glucose, xylose and butanol 
concentrations for fermentation of a sugar mixture of 53 g/l xylose and 25 g/l glucose by xylose 
pre-grown culture, FondX. Exponential growth phase during which the cell mass increased 
rapidly was observed until 10 hours with respect to the start of the experiment, and followed 
by a steady cell mass growth until 40 hours. Glucose utilization started immediately and lasted 
for 25 hours. Only after complete depletion of glucose, xylose utilization became apparent and 
lasted until the end of the fermentation with a decreased rate from 64 hours when butanol 
concentration reached 14 g/l. Butanol production was slow initially, became faster between 16 
and 54 hours, and almost stopped around 64 hours. The residual xylose concentration was 11 
g/l, and butanol was 14.5 g/l in the end of the fermentation. Figure 1.b shows the predicted and 
observed values for fermentation of a sugar mixture of 36 g/l xylose and 39 g/l glucose by 
glucose and xylose pre-grown culture, FondGX. Exponential growth lasted longer in this 
fermentation, continued for 22 hours, and then steady growth occurred until 47 hours and cell 
mass concentration decreased until the end of the experiment. Initially, glucose was consumed 
rapidly, and xylose utilization was very slow. After 22 hours, both sugars were co-utilized 
almost at the same rate. Glucose was completely depleted at 47 hours, while xylose 
consumption continued. Xylose consumption rate decreased when butanol concentration was 
16 g/l. The residual xylose and butanol concentrations were 4.3 and 16.6 g/l, respectively. 
Higher butanol concentration and lower residual xylose in FondGX than in FondX are line with 
the estimated parameters as well as the butanol concentrations when the sugar utilization rates 
dropped. Therefore, the model can describe the fermentation kinetics for both pre-growth 
strategies. A more detailed overview of the model accuracy in terms of average squared 
correlation coefficients (r2) between the predicted and observed values is given in Table 3. 

The model predictions and our experimental observations for X30 and GX30, parameter 
estimation experiments, and X15, GX15, X45, and GX45, validation experiments are shown 
in Figure 2. 

Figure 2 Comparison of model predictions and our experimental observations for xylose pre-
grown cultures a) X15, b) X30, c) X45, and glucose and xylose pre-grown cultures d) GX15, 
e) GX30, f) GX45. 

Figures 2.a, 2.b and 2.c show the predicted and observed values of cell mass (volume 
corrected), accumulated consumption of glucose, xylose and accumulated butanol 
concentrations for fed-batch fermentations by xylose pre-grown cultures, X15, X30 and X45. 
All the cultures showed the same growth pattern; cell mass concentrations increased 
exponentially as soon as the experiments started followed by a steady growth phase, followed 
by a decay phase during which the apparent cell mass concentration decreased [26]. In all the 
experiments, xylose consumption rates were slightly higher and utilizations were simultaneous 
with glucose. Consumption rates of both glucose and xylose decreased as the fermentations 
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proceeded. Butanol concentrations showed the same trend as the cell mass confirming the 
growth-associated production as shown in Equation 8. 

Figures 2.d, 2.e and 2.f show the model predictions and experimental observations of cell mass 
(volume corrected), accumulated consumption of glucose, xylose and accumulated butanol 
concentrations for fed-batch fermentations by glucose and xylose pre-grown cultures, GX15, 
GX30 and GX45. Cell mass concentrations showed the same growth pattern as in the 
fermentations with xylose pre-grown cultures explained above. In all experiments, sugar 
utilizations were simultaneous and almost at the same rate unlike the xylose pre-grown culture 
experiments in which the xylose consumption rates were higher than those for glucose. Sugar 
consumption rates became slower as the fermentations continued. Similarly, butanol and cell 
mass productions were closely linked. 

In accordance with the results from Fond et al. (1986) [31], glucose and xylose pre-grown 
cultures in our experiments showed better tolerance to inhibitions as well as 2-fold increase in 
butanol production and 1.5-fold increase in sugar utilizations. For all our experiments, cell 
mass growth rate, total amounts of sugar utilizations and butanol production increased with 
decreasing total sugar concentration. The reason is the inhibition due to high substrate 
concentration and noncompetitive inhibition between sugars. Model predictions and 
observations were in good agreement as derivable from the r2 values shown in Table 3. 

Table 3 Average squared correlation coefficients (r2) between predicted and observed values.  

Dataset Cell mass Glucose Xylose Butanol Average 
X15 0.122 0.944 0.851 0.903 0.705 
X30 0.842 0.975 0.973 0.914 0.926 
X45 0.552 0.921 0.894 0.524 0.723 
GX15 0.754 0.935 0.873 0.925 0.872 
GX30 0.934 0.982 0.991 0.778 0.917 
GX45 0.752 0.094 0.248 0.221 0.329 
FondX 0.595 0.998 0.350 0.591 0.633 
FondGX 0.657 0.997 0.623 0.826 0.776 
Average 0.651 0.856 0.725 0.710 0.735 

Average squared correlation coefficients (r2) for the parameter estimation datasets were 0.926, 
0.917, 0.633, and 0.776 for X30, GX30, FondX and FondGX, respectively. Our results are in 
the range of r2 values calculated in similar studies. The r2 values between model predictions 
and experimental observations found in the works of Shinto et al. were 0.909 and 0.970; in 
results of Raganati et al. were 0.894 and 0.890 for fermentations of 65.7 mM (10 g/l) xylose 
and 70.6 mM (12.7 g/l) glucose, and 60 g/l glucose and 60 g/l xylose, respectively [19-21]. It 
is important to note that the fermentations in these studies were single sugar fermentations. To 
our knowledge, the only model proposed for mixed sugar fermentation was by Diaz and Willis 
(2018), and r2 was 0.955 for fermentation of 32 g/l xylose and 31 g/l glucose [22]. The higher 

This is the accepted version of an article published in Biochemical engineering journal 
http://dx.doi.org/10.1016/j.bej.2019.04.002



12 
 

average squared correlation coefficients can be due to use of a more detailed model considering 
more metabolites and a variety of different datasets used in parameter estimation. 

The r2 values were further assessed to check the model accuracy with our validation datasets. 
Model predictability was satisfactory for X15, X45 and GX15, while poor for GX45. The 
lowest average r2 between predicted and observed values for cell mass concentration was 0.571. 
This eventually caused a lower overall model accuracy. Predictability of cell mass was lowest 
in the literature values as well. Therefore, further efforts need to focus on enhancing the model 
predictability for cell mass concentration. 

4.3. Sensitivity analysis on model parameters 
We identified the critical parameters by performing a sensitivity analysis. The reference 
trajectory was the concentration profiles from model simulations under the given initial 
concentrations and model parameters estimated for X30 and GX30. Figure 3 shows the 
sensitivity analysis for the cell mass, glucose, xylose and butanol in terms of end point 
deviations (%) in concentrations with 10% perturbations in the parameters. 

Figure 3 Sensitivity analysis on model parameters for a) and e) cell mass, b) and f) glucose, c) 
and g) xylose, and d) and h) butanol concentrations. 

End point deviations (%) were significantly larger in cell mass, glucose and xylose 
concentrations for GX30 than X30, while in the same range for butanol. Figures 3.a and 3.b 
show that +10% variations of all growth parameters resulted in a greater end point cell mass 
concentration due to increased net growth rate. While positive influence of µmaxG and µmaxX on 
growth is apparent, the same impact of KsG and KsX can be explained by decreased competitive 
inhibition between the sugars when SG > KsG and SX > KsX as shown in Equations 1 and 2. 
The greatest end point deviation in cell mass was 49.68% in GX30 with respect to a +10% 
increase in µmaxG. Another critical parameter was specific death rate of cell mass, kd and its -
10% perturbation caused 11.28 and 18.48% end point deviations in cell mass concentrations in 
X30 and G30, respectively as a result of increased net growth rate, µnet.  

Figures 3.b and 3.f illustrate that glucose concentrations were most sensitive to the 
perturbations in growth parameters due to its correlation with cell mass concentration as given 
in Equation 6. Therefore, any perturbation of any parameter causing an increase in cell mass 
concentration results in a decrease in glucose concentration. Moreover, +10% variation in 
YB/SG yielded 3.84 and 16.68% end point deviations for X30 and GX30, respectively, as a result 
of greater growth inhibition due to increased butanol level. Figures 3.c and 3.g show that the 
critical parameters were the same for xylose as for glucose. The greatest end point deviations 
in xylose concentrations were 12.66% for X30 and 52.8% for G30 resulting from -10% 
variations in µmaxX and µmaxG, respectively. 

Growth parameters were the most critical for butanol since its production is dependent on 
growth and cell mass concentrations as given in Equation 8. Figures 3.d and 3.h show that 
+10% variation in the most critical parameter, µmaxG resulted in 21.17 and 38.95% end point 
deviations, while +10% variation of the second most important parameter, KsX caused 16.88 
and 21.27% end point deviations for X30 and GX30, respectively. Sensitivity analysis 
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identified critical parameters, which can be re-estimated with more experimental data to 
improve the model accuracy. 

5. Conclusions 
A dynamic model structure describing key characteristics of fermentative butanol production 
from glucose and xylose mixtures was proposed. Literature data [11] and our experimental 
results of fermentations with cultures pre-grown on xylose as the sole sugar, and cultures pre-
grown on a mixture of glucose and xylose were used for estimation of the parameters in the 
proposed model structure. Parameter estimates for both literature and our experimental data 
revealed that pre-growth has a profound impact on the kinetics, and parameter values coincide 
with observations done in similar studies. Sugar utilization and butanol production were higher 
in fermentations by cultures pre-grown on glucose and xylose. Sugar utilizations and butanol 
productions decreased with increasing initial sugar concentrations, which is consistent with the 
results of our exploratory data analysis performed by using data of 175 fermentations with 
lignocellulosic hydrolysates and mixed sugars (manuscript submitted). We validated both 
models developed for both pre-growth strategies with two more experimental datasets for each, 
and average squared correlation coefficients (r2) between predicted and observed values were 
satisfactory. Growth parameters were critical for all components as identified by sensitivity 
analysis. The main contributions of this study can be stated as below: 

1. This is the first study, which investigates the effect of different pre-growth strategies 
on kinetics of mixed sugar fermentations. 

2. The proposed model is the first attempt to incorporate the noncompetitive inhibition 
between sugars together with high substrate and butanol inhibitions. 

3. This paper provides insight into contributions of each sugar to cell mass growth and 
butanol formation in terms of yield parameters. 

The suggested model can serve as a basis to describe fermentations of lignocellulosic biomass. 
The cell mass growth part of the model can be extended with the inhibitions due to the presence 
of inhibitory components in real biomass-derived substrates, which would reflect on sugar 
utilization and thus butanol production. Therefore, the extension of the suggested model would 
improve its applicability to industrial fermentation processes. 
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Nomenclature 
B = concentration of butanol (g/l) 
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Bacc = accumulated concentration of produced butanol (g/l) 

Bmax = concentration of butanol at which cell mass growth stops (g/l) 

iB = butanol inhibition constant to cell mass growth 

kd = specific death rate of cell mass (h-1) 

KI = substrate inhibition constant (g/l) 

KsG = substrate affinity constant for glucose (g/l) 

KsX = substrate affinity constant for xylose (g/l) 

SG = concentration of glucose (g/l) 

SGacc = accumulated concentration of consumed glucose (g/l) 

SX = concentration of xylose (g/l) 

SXacc = accumulated concentration of consumed xylose (g/l) 

X = concentration of cell mass (g/l) 

YB/SG = butanol yield on glucose (g/g) 

YB/SX = butanol yield on xylose (g/g) 

YB/XG = butanol yield on cell mass utilizing glucose (g/g) 

YB/XX = butanol yield on cell mass utilizing xylose (g/g) 

YX/SG = cell mass yield on glucose (g/g) 

YX/SX = cell mass yield on xylose (g/g) 

Greek letter 
µg = specific growth rate of cell mass (h-1) 

µmaxG = maximum specific growth rate of cell mass on glucose (h-1) 

µmaxX = maximum specific growth rate of cell mass on xylose (h-1) 

µnet = net growth rate of cell mass (h-1) 

µSG = specific growth rate of cell mass on glucose (h-1) 

µSX = specific growth rate of cell mass on xylose (h-1) 
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