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Abstract 

Oil spill in ice-covered waters can become entrapped in sea ice and may be subjected to 

biodegradation by sea ice microorganisms. The extent of the hydrocarbon biodegradation, 

and microorganisms involved in such process in sea ice are not well understood. In this study, 

we performed ice formation in lab-tanks (125 l) with unpolluted seawater from Ofotfjorden, 

Norway. The tanks were insulated at the perimeter and bottom with Styrofoam and heated 

from the bottom so that ice only grew from the tank surface. Troll B crude oil was injected 

underneath the ice, forming an oil lens which later was encapsulated in the ice as the ice con-

tinued growing. The ice was harvested and stored at -14°C for 3 months following encapsula-

tion. Metagenomic analysis of the microbial communities in the ice samples which formed in 

the lab showed changes in the microbial community structure with dominance of Alpha- and 

Gammaproteobacteria. At the same time, Archaea, Bacteroidetes and Actinobacteria re-

duced significantly in the ice compare to the original seawater. No significant change of the 

microbial community in the ice was observed in the presence of the oil. However, a slight in-

crease in abundance of some bacterial genera such as Cowellia, Glaciecola and Acrobacter 

was detected among the phylotypes of the oil-contaminated ices. Member of genera Cowellia 

and Glaciecola are common sea-ice inhabitants and have been known for their n-alkanes and 

aromatic hydrocarbons metabolism capacity. Despite this development, no significant loss of 

the oil or change of n-C17/Pristane or n-C18/Phytane ratio was detected. But a slight reduction 

of water soluble PAHs was observed that may results from microbial activity in the ice.   

1. Introduction 

Further development of oil exploration activity into Arctic areas which have seasonal ice 

cover presents challenging conditions for oil spill response. Oil spills may happen in ice-cov-

ered waters or drift into the ice-covered areas where they can become encapsulated in the ice 

in winter. In spring, the oil may permeate to the surface through brine channels within the sea 

ice. Drifting ice can further transport the pollution and release it far from the source follow-

ing melting of the ice. Understanding how sea-ice microorganism response in the presence of 

oil would help predicting the fate of spilled oil in the ice as well as helping the preparation of 

a relevant remediation strategy in the event of the oil release.  

Sea ice is an ideal habitat for both psychrophilic and psychrotrophic microorganisms. 

There is evidence that microbial activity can occur in Arctic sea ice at -20 C (Junge et al., 

2004). But very few studies have focused on biodegradation of oil in sea ice and how the sea-

ice microorganism response in the presence of oil (Gerdes et al., 2005; Brakstad et al., 2008; 

Greer et al., 2014; Garneau et al., 2016). Some of the studies revealed that Gammaproteobac-

teria became predominant phylotypes in the oil-contaminated sea ices from Svalbard (Gerdes 

et al., 2005; Brakstad et al., 2008) or from bottom sea ices from Canadian Arctic Archipelago 

(Greer et al., 2014). Bacterial genera such as: Marinobacter, Shewanelle, and Pseudomonas 
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were found predominated in the melted sea ices which were incubated with crude oil for one 

year (Gerdes, et al., 2005). While Colwellia, Marinomonas and Glaciecola were the predomi-

nant phylotypes in the oil-contaminated ice cores from Svalbard (Brakstad et al., 2008). Gar-

neau et al., (2016) compared the ice with the sub-ice water from Nunavut, Canada, and found 

that Bacteroidetes became dominated in the oil-contaminated microcosm of melted ice while 

Epsilonproteobacteria increased in the oil-contaminated microcosm of the sub-ice water 

(Garneau et al., 2016). 

Most of the mentioned studies were performed with natural ice by adding oil to melted 

ice, to the surface of the ice or in a hole in the ice. In this study, for the first-time oil biodeg-

radation was performed with laboratory-formed sea ice. Short-gun metagenomic sequencing 

technique was applied for comparing the microbial community of the starting seawater with 

the formed ice, and the ice which had been exposed to crude oil to study the effect of ice for-

mation as well as oil encapsulation on the microbial community of seawater.    

2. Materials and Methods 

2.1.  Materials  

Five hundred litres of surface seawater were collected from near shore areas: Taraldsvika 

(68.44743° N; 17.43525° E) and Kvitvika (68.44208° N 17.38917° E), in Ofotfjorden. Two 

individual experiments were conducted from each seawater.   

The Troll B type crude oil was used for all experiments. The crude oil was pasteurized at 65 

C for 30 min, for three consecutive days and pre-cooled at 4 C overnight prior to use, to 

eliminate any contamination in the oil. 

2.2.  Chemical Analyses  

Nitrate and ammonium concentration in the seawater and sea ice were determined spec-

trometrically with nitrate test kit, and ammonium cell test kit (Merck, Darmstadt Germany) 

followed the manufacturer’s instructions after diluting the seawaters. Total nitrogen and total 

organic carbon (TOC) content of the seawater were analysed by Akvaplan niva. The soluble 

phosphorous was determined using spectrometric method described by Murphy and Riley 

(1962). 

The pH of the seawater and melted sea ice was measured using pH/Cond 340i meter 

(Wissenschaftlich-Technische Werkstätten GmbH). The salinity of the seawater was meas-

ured with salinity meter YSI 30-25FT (YSI incorporated, USA).    

2.3.  Sea Ice Mesocosm Setup 

Ice formation in mesocosm has been demonstrated in Norut’s cold climate laboratory as 

described in an earlier study (Petrich and Arntsen, 2013). About 120 L of seawater were 

filled into a pre-cleaned tank made from Plexiglass. The tank was insulated at perimeter and 

bottom with Styrofoam which was 5 cm thick (Fig 1A). Heating elements and fan were 

placed underneath the tank to maintain a constant heat flux into the water beneath the ice. 

Cleaned thermocouples were installed to monitor the temperature in the growing ice and in 

the water. The lab temperature was set at -1 C for two days to pre-cool the water in the tank. 

To start the ice growing process, the lab temperature was decreased to -15 C.   

For each experiment, two tanks were prepared. Tank A was used for growing clean sea 

ice. Tank B was set up similar to tank A but was injected with Troll B crude oil. As the ice 

was about 7-8 cm, an amount of 250 ml of well mixed crude oil was injected aseptically un-

derneath the ice (Fig 1B). The sea ice was then allowed to grow about 5 cm thicker under the 

oil lens. The final ice thickness was about 12-14 cm before being harvested. Ice samples of 9-



10 kg with encapsulated oil were then remove from the tanks and kept at -14 C for 3 months 

prior to melting for DNA isolation and subsequently metagenomic sequencing.   

For oil analysis, several smaller oil lenses (3 ml each) were introduced in the ice. The ice 

with oil lens was subsequently cored and kept frozen at similar condition as the big ice and 

analysed for total hydrocarbon content (THC) and n-C17/Pristane and n-C18/Phytane ratios.     

2.4. Oil Analysis  

The ice core containing oil was kept frozen in a closed-cap bottle before it was melted at 

room temperature and extracted with 3 volumes of dichloromethane (DCM). The DCM was 

then concentrated by evaporation. The concentrated extract was purified by solid phase ex-

traction through a silica column and further evaporated before gas chromatography analysis. 

The total hydrocarbon content (THC) of the sample was determined by GC-FID analysis 

(Agilent 7890A model gas chromatograph with a flame ionisation detector) using a Varian 

Wcot Fused Silica column (25 m  0.32 mm id, coating CP-sil 8CD.CP7452), with hydrogen 

as carrier gas (flow 2.5 ml/min) and the temperature program of 55C (3 min) - 25C/min → 

300C (10 min) splitless in 1 min.  

Sixteen PAHs according to EPA standard were analysed with GC-MS by Akvaplan Niva 

using standard method. The concentration of 16-PAHs in the samples were nomalized against 

chrysene to evaluate their reduction over 3 months. Chrysene was chosen among the analysed 

PAHs because of its resistance to biodegradation (Alimi et al., 2003)          

2.5. DNA Isolation   

The ices of about 9-10 kg were melted at room temperature in sterile artificial seawater 

(Instant Ocean) at ratio 1:1 (w/w). The melted water was then filtered aseptically through 0.2 

m Sterivex filter SVGPL10RC (Milipore). The Sterivex filters contains DNA were then 

stored at -80C until DNA extraction. The DNA extraction was conducted using PowerWa-

ter® Sterivex™ DNA isolation kit (MOBIO laboratories, Inc) followed the instruction of the 

manufacturer.  Genomic DNA samples were quantified using the Qubit 2.0 (Invitrogen), 

along with the Qubit dsDNA HS assay kit (Thermo Fisher Scientific). 

2.6.  Generation of Sequencing Libraries and Sequencing 

The Indexed pair-ended libraries were prepared using Nextera DNA sample preparation 

kit (Illumina) and Nextera DNA sample preparation index kit (Illumina) as described by the 

manufacturer with minor modifications: fifty nanogram genomic DNA was tagmented at 

55°C for 10 min. The tagmented DNA was amplified with two primers from Nextera DNA 

sample preparation Index Kit. Each PCR reaction contained 5μl index 1 primer (N7xx), 5μl 

index 2 primer (N5xx), 15μl NPM (Nextera PCR master Mix), 5μl PPC (PCR primer cock-

tail) and 20μl tagmented DNA. PCR amplification was carried out as follows: 72°C x 3min 

,98°C x 30s, 8 cycles of 98°C x 10s, 63°C x 30s, 72°C x 3min and held at 10°C. PCR prod-

ucts were cleaned using Agencourt AMPure XP beads (Beckman Coulter) and the purified 

PCR products were quantified using Qubit dsDNA HS assay kit. The sizes of the fragmented 

libraries were analyzed using Agilent 2100 Bioanalyser. The samples were pooled at concen-

tration of 4nM and denatured with 0.2N NaOH, then diluted to 10pM with HT1 (hybridiza-

tion buffer). Samples were sequenced on MiSeq (Illumina) sequencing platform, using 2 x 

300 cycle V3 kit (Illumina), following the standard Illumina sequencing protocols. 

2.7. Bioinformatics Analysis 

Sequence reads were processed using a Galaxy version of META-pipe 

(doi: 10.12688/f1000research.10443.1). In short, sequencing reads were filtered using 



PRINSEQ (doi: 10.1093/bioinformatics/btr026). The filtered reads were used as input for 

rRNASelector, a tool for selecting rRNA sequences from metagenomics shotgun reads (doi: 

10.1007/s12275-011-1213-z) (Table 1). Selected rRNA sequences were annotated using 

LCAClassifier with default parameters (LCA relative range: 2%; minimum bit score: 155), 

using the manually curated SilvaMod database (doi: 10.1371/journal.pone.0049334). Taxo-

nomic analysis was performed using MEGAN4 (doi:  10.1101/gr.120618.111). 

3. Results  

3.1.  Seawater and Ice Characteristics 

The chemical characteristics of the collected seawaters and ice samples are summarised 

in Table 2. The salinity of the collected seawaters was about 27.8 ppt, lower than usual for 

seawater, which properly due to the rain during the weeks prior to seawater sampling. The 

seawaters had also low TOC, nitrogen, ammonium, nitrate and orthophosphate. No signifi-

cant differences were observed for the seawaters collected from the two locations, except that 

sample from location 1 contained slightly higher TOC concentration, 2.76 instead of 2.1 

mg/l.     

Analysis of the ice samples after harvesting showed a consistent salinity ranging from 

9.4-9.6 ‰, which is a typical magnitude for fast-growing and relatively thin sea ice. 

3.2.  Microbial Community in Seawater and Sea Ice 

The microbial community in seawater was dominated by Alphaproteobacteria (36.9-

41.9%), Gammaproteobacteria (11.2%), Bacteroidetes (15.7-16.7%) and Actinobacteria 

(13.8-18.1%) (Fig 2). Dominance of Alphaproteobacteria in the Arctic surface seawater has 

been reported by Garneau et al., (2006) and Alonso-Sáez et al., (2008).  

In comparison to the seawater, the microbial community of the ice shifted toward enrich-

ment of Alpha- and Gammaproteobacteria, 59.2-62.4% and 16.4-19%, respectively. Other 

groups such as Archaea, Bacteroidetes and Actinobacteria, in the contrary reduced signifi-

cantly in the ices. Archaea reduced from 2.8-3.4 % to 0-0.3 % in the ice; Bacteroidetes from 

15.7-16.7 % to 6-6.9 %; Actinobacteria from 13.8-18.1 % to 0-2.4%. The seawater and the 

ice samples from two locations did not exhibit significant difference in their microbial com-

munity structure (Fig 2).  

The most abundant OUTs in the seawater, sea ice and oil-encapsulated ice samples are 

depicted in Table 3. Within the Alphaproteobacteria and Gammaproteobacteria, bacterial 

groups which became dominant in the ice are members of the SAR11 clade (41-48 %), 

Rhodosprillaceae (4-5%), Rhodobacteraceae (6.6-7.7%) and the SAR86 clade (7.2-8.6 %) 

(Table 4).    

3.3.  Oil Degradation and Microbial Response to the Oil 

Analysis of the oil which was encapsulated in the ice did not show any change in the oil 

quantity. GC-FID chromatogram of the starting oil and the oil in the ice for 3 months did not 

show any obvious change (Figure 3). Both n-C17/Pristane and n-C18/Phytane ratios of the 

encapsulated oil (0.3 and 0.5 respectively) were unchanged compared to the starting oil sug-

gesting no significant biodegradation of n-alkanes > C17 occurred in the ice. However, 

whether n-alkanes < C17 was biodegraded or not we don’t know. 

The GC-MS analysis of 16 PAHs according to EPA exhibited a reduction of some 2 and 

3-rings PAHs after 3 months (Figure 4). This result suggests a slow biotransformation of 

small aromatic hydrocarbons might have occurred in the ice.          

Metagenomic comparison of sea ice samples which contain encapsulated crude oil with 

the clean sea ice did not showed any difference in the microbial community structure (Figure 



2). Both clean ice and oil-encapsulated ice samples showed similar microbial community pat-

tern, which were predominant by the Alphaproteobacteria (47.8-62.4 %), Gammaproteobac-

teria (13.8-27 %) and Bacteroidetes (4.4-6.9 %). However, a comparison of the samples at 

genus level revealed greater similarity between the two oil-encapsulated ices. Genera 

Glaciecola, and Arcobacter seemed to increase in the two oil contaminated samples, while 

Colwellia increased in one of the oil contaminated ice (Figure 4).  

4. Discussion  

4.1.  Microbial Community in Seawater and Sea Ice 

It is generally known that bacteria become enriched in sea ice in association with algae 

(Grossmann and Diekmann 1994; Helmke and Weyland 1995; Riedel et al., 2007). Higher 

bacteria abundance in newly formed sea ices compared to the initial seawater was reported 

for sea ice formed in mesocosm (Rasimus et al., 2014) as well as for ice cores from first-year 

sea ice in Franklin Bay, Canada (Collins et al., 2010). Collins and other authors observed a 

greater abundance of the Alpha- and Gammaproteobacteria in first year winter sea ice com-

pared to the seawater through clone library sequencing of the microbial community (Collins 

et al., 2010), which coincides with our results. In our experiment, the bacteria increased from 

97% of the microbial community in the original seawaters to 98-99% in the ices with the 

dominance of Alpha- and Gammaproteobacteria. The presence of algae, however, was very 

low in our sea ice possibly because the experiment was conducted mostly in the dark.  

Bacterioplankton belonging to the SAR11 clade of Alphaproteobacteria which was 

found predominant in our lab formed sea ice (41-48 %), have been found distributed through-

out the world’s ocean and represent about one quarter of all rRNA genes identified in the 

clone libraries from marine environments (Morris et al., 2002). They were also found repre-

sent at 47 % of the prokaryotic phenotype in first year winter sea-ice in Franklin Bay (Collins 

et al., 2010). These organisms have the smallest genome known for free-living heterotrophic 

cells, results of genome streamlining and reduction driven by the selection for efficient 

growth in oligotrophic ocean habitats (Giovannoni et al., 2005).  

4.2. Effect of Oil    

Almost no change of the microbial community was observed in the ice after introduction 

of the oil lens in the ice. The ice samples were kept at -14 C for 3 months, which led to low 

microbial activity in the ice. Having a nominal pour point of -15 C, at -14 C Troll B oil 

would have been very viscous. The oil geometry imposed another constraint on biodegrada-

tion, as activity is limited to the surface of the oil lens. In additional to that, encapsulated oil 

was not subjected to evaporation, and at such high concentration, volatile hydrocarbons can 

be toxic to the sea-ice microorganisms which could explain almost zero biodegradation of the 

oil and no significant alteration of the microbial communities. Brakstad et al., (2008) when 

studying biodegradation of an oil lens which was frozen into an ice core during winter 

months in Svalbard, also observed a slow biotransformation of soluble naphthalene in the top 

ice layer, while no change of n-C17/Pristane ratio was observed. But the n-C17/Pristane ratio 

showed reduction in the bottom part of the ice where the oil concentration was much lower. 

In another study, Gerdes (2004) did not find any significant biodegradation of crude oil 

which was spread on the ice surface for 2 months at -20 to -30 °C in Van Mijenfjorden.  

Genera Cowellia and Glaciecola have been found being enriched in bottom ice formed in 

mesocosm from seawater of North Sea, near Heligoland (Rasimus et al., 2014). Moreover, 

members of those genera have been identified in both Arctic and Antarctic sea ice (Deming, 

2009), suggesting they are sea-ice inhabitants. Many species of Glaciecola have been known 

for their hydrocarbon-degrading ability (Yakimov et al., 2004; Deppe et al., 2005; Brakstad et 



al., 2008; Chronopoulou et al., 2015). Genus Glaciecola have been identified in oil contami-

nated Arctic and Antarctic seawater (Brakstad and Lødend, 2005; Yakimov et al., 2004) as 

well as in oil contaminated sea ices (Brakstad et al., 2008). Some Glaciecola isolates showed 

capability of degrading n-alkanes (Chronopoulou et al., 2015). Colwellia have been associ-

ated with oil-contaminated cold marine environments such as Antarctic and Arctic seawater 

and sea ice (Yakimov et al., 2004; Brakstad et al., 2008; Greer et al., 2014; Brakstad et al., 

2015). They have been found dominant in Deepwater horizon after the oil spill (Redmond 

and Valentine, 2012; Mason et al., 2014). There were direct and indirect evidences about 

their capability of degrading gaseous alkanes (Redmond and Valentine 2012; Mason et al., 

2014; Brakstad et al., 2015). In addition to gaseous hydrocarbons, there was also data sup-

porting the uptake of aromatic hydrocarbons by Cowellia (Redmond and Valentine, 2012). 

Genus Arcobacter were identified by sequencing analysis of the water phase of water-

flooded oil reservoir (Wang et al., 2014), and seawater contaminated with hydrocarbons (Ya-

kimov et al., 2004; Pradagaran et al., 2007). Their preferred growth substrates are mostly the 

water-soluble intermediates of organic matter degradation such as petroleum hydrocarbons 

(Wang et al., 2014). 

The depletion of the small molecular weight PAHs in the ice after 3 months may be the 

result of microbial activity. However, we do not have continuous data to show the develop-

ment of those bacteria in the ice overtime. 

5. Conclusion  

Artificial sea ice was grown in lab tanks from Atlantic seawater to investigate the devel-

opment of sea-ice borne microbial communities. Ice properties resembled naturally-grown 

sea ice, and the ice temperature ranged from -15 to -1.8 °C (from surface to bottom) during 

the experiment. Metagenomic analysis of the microbial communities in the ice samples which 

formed in the lab showed changes in the microbial community structure with dominance of 

Alpha- and Gammaproteobacteria. At the same time, Archaea, Bacteroidetes and Actinobac-

teria reduced significantly in the ice compare to the original seawater.  

An oil lens was introduced beneath the ice in one of the tanks and overgrew subsequently. 

Over the course of three months at -14 °C, the oil did not cause a significant change in the 

microbial community of the ice. However, a slight increase in abundance of some bacterial 

genera such as Cowellia, Glaciecola and Acrobacter was detected among the phylotypes of 

the oil-contaminated ices. Member of genera Cowellia and Glaciecola are common sea-ice 

inhabitants and have been known for their hydrocarbon-degrading capacity. Despite of this 

development, no significant loss of the total hydrocarbon content or change in n-C17/Pristane 

and n-C18/Phytane ratios was detected after three months. But the observed reduction of 2 and 

3-ring PAHs in the ice may have been result of biotransformation. Biodegradation may have 

been inefficient due to a low surface area-to-volume ratio and limited accessibility of hydro-

carbons due to high viscosity at low temperatures. 
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Figure 1. Sea ice mesocosm setup. A: Before oil injection; B: After oil injection  

 

 
Figure 2. Relative abundance of microorganisms in original seawater compared to lab 

grown sea ice (not taken in account unidentified organisms)  

 
 

 

 

Figure 3. GC-FID chromatogram of starting Troll B oil and the encapsulated oil at -

14 °C for 3 months. 
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Figure 4. Depletion of 16 EPA aromatic hydrocarbons in the ice after 3 months.  

The depletion of the PAHs war determined after normalizing the targeted PAH against 

Chrysene.     

  

 
Figure 5. Increased abundance of some bacterial genera in the oil-contaminated ice 

compared to clean ice samples. 

 

Table 1. Number of reads, contigs and predicted 16S rRNA sequences   

 

Sample ID 

Reads Sequences 

Total paired reads Filtered Discarded 
Predicted 16S 

rRNA 

Seawater 1 9 577 768 2 991 347 8 645 13 378 

Seawater 2 5 018 744 2 451 066 1 915 5 938 

Ice 1 5 959 978 2 026 956 3 232 8 837 

Ice 2 6 256 830 3 123 900 3 586 8 834 

Ice + oil 1 4 349 480 1 113 093 3 252 6 995 

Ice + oil 2 4 500 830 2 335 813 6 149 3 894 



 

Table 2. Temperature and chemical characteristics of seawater and formed ice 

Sample 

 

Temperature 

(°C) 

Salinity 

(ppt) 
pH 

TOC 

(mg/l) 

Total nitrogen 

(mg/l) 

 

Ammonium 

(mg/l) 

 

Nitrate 

(mg/l) 

 

Orthophosphate 

(mg/l) 

 

Seawater 1 8 27.7 ± 0.2 7.94 ± 0.05 2.76 ± 0.02 0.5 ± 0.01 0.06 3.65 ± 0.21 0.003 

Seawater 2 8 27.8 ± 0 7.97 ± 0.1 2.1 ± 0.01 0.5 ± 0.01 0.06 3.7 ± 0.28 0.003 

Ice 1 -2 to -15 9.4 ± 0.7 7.8 ± 0.1   0.06 3.65 ± 0.07 0.003 

Ice 2 -2 to -15 9.65 ± 0.9 8.0 ± 0.1   0.06 3.9 ± 0.14 0.003 

 

 

 

Table 3. Summary of the bacteria and Archaea from the taxonomic assignment of starting seawater, formed ice and oil contaminated ice 

samples. Reads from the dataset predicted with rRNASelector was used for taxonomic classification with LCAClassifier using the Silvamod 

database.   

Name 
Reads assigned 

Seawater 1 Seawater 2 Ice 1 Ice 2 Oil ice 1 Oil ice 2 

All bacteria 11692 5166 8278 8269 6720 3538 

Proteobacteria  

Alphaproteobacteria  

SAR11 clade 3145 1265 3973 3445 2964 1008 

Rhodospirillaceae 405 159 338 419 362 129 

Rhodobacteraceae 897 372 551 646 485 460 

SAR116 clade 203 66 121 154 102 50 



Other Alphaproteobacteria 395 112 193 281 177 82 

Gammaproteobacteria  

SAR86 clade 618 276 712 605 388 103 

Alteromonadaceae 249 116 254 160 253 173 

Oceanospirillaceae 78 27 248 86 24 220 

Other Gammaproteobacteria 404 182 363 517 267 482 

Betaproteobacteria 403 198 380 384 374 90 

Deltaproteobacteria 43 26 11 33 28 13 

Epsilonproteobacteria 6 0 59 2  96 

Other Proteobacteria 124 36 88 82 199 35 

Bacteroidetes  

Flavobacteria 1796 858 558 474 285 228 

Other 94 34 15 26 12 17 

Other groups  

Cyanobacteria 292 82 23 62 26 12 

Actinobacteria 135 66 62    

Verrucomicrobia 130 40 7 23 6 22 

SAR406 clade 133 88 16 28 26 15 

Candidate division OD1 147 61 28 22 5 18 

 



All Archaea 336 180 24 98 22 83 

Thaumarchaeota 40 21 10 76 22 66 

Euryarchaeota 296 159 14 22  17 

 

Table 4. Comparing relative abundance of several bacterial groups in Proteobacteria class between seawater and formed ice samples (in 

%) 

Bacterial phylotype Seawater 1 Seawater 2 Ice 1 Ice 2 

SAR11 clade 26.1 23.7 47.9 41.2 

Rhodospirillaceae 3.4 3.0 4.1 5.0 

Rhodobacteraceae 7.5 7.0 6.6 7.7 

SAR86 clade 5.1 5.2 8.6 7.2 

 


