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Finite element analysis of shear deformation in reinforced concrete 18 

shear-critical beams 19 

The objective of this paper was to study the contribution of shear deformation in 20 

reinforced concrete (RC) shear-critical beams. A 2D concrete material model 21 

based on smeared fixed crack was presented and incorporated into a commercial 22 

finite element (FE) software Abaqus. A method of calculating shear and flexure 23 

deformation separately out of total deformation in the shear span was presented 24 

and implemented into the FE analysis. Several experiments of RC shear-critical 25 

beams were simulated and good agreement between the experimental and 26 

numerical results was obtained in terms of total deformation, flexure deformation, 27 

shear deformation and crack patterns. The results show that after shear cracking, 28 

the contribution of shear deformation to total deformation increases rapidly. The 29 

shear span-to-depth ratio, the longitudinal reinforcement, the shear reinforcement 30 

and the load level could be the critical factor to influence the contribution of 31 

shear deformation. It appears that for RC shear-critical beams without shear 32 

reinforcement, the deformational behaviour is governed by flexure deformation. 33 

However, for RC beams with shear reinforcement, the contribution of shear 34 

deformation is not negligible after shear cracks develop. Moreover, the 35 

measuring method could also affect the measured shear deformation. Finally, 36 

future work on experimental investigation into this topic is recommended. 37 

Keywords: shear deformation; reinforced concrete shear-critical beams; 2D 38 

concrete material model; finite element analysis;  39 

1 Introduction 40 

In the design of reinforced concrete (RC) beams, the deflection should be restricted to 41 

satisfy the serviceability limit state requirements. It is widely-accepted that the 42 

deformation of RC beams which are not subjected to axial load comprises flexure 43 

deformation and shear deformation. For the concrete beams with span-to-depth ratios 44 

larger than 10, the shear deformation is negligible prior to diagonal cracking 45 

(Timoshenko & Gere, 1972). However, after diagonal cracks form, the contribution of 46 

shear deformation is not negligible (Debernardi & Taliano, 2006; Hansapinyo, 47 



Pimanmas, Maekawa, & Chaisomphob, 2003; Pan, Li, & Lu, 2014; Ueda, Sato, Ito, & 48 

Nishizone, 2002) 49 

The existing codes (AASHTO, 2007; ACI, 2014; CEN, 2004; FIB, 2010a) for 50 

concrete structures only provide formulas for estimating flexure deformation based on 51 

Navier-Bernoulli theory which could underestimate the deflection as a result of 52 

neglecting shear deformation (Desalegne & Lubell, 2012; Pan, et al., 2014).  53 

Although extensive shear-failure experiments have been conducted on RC shear-54 

critical beams (K. S. Kim, 2004), little attention has been paid to the shear deformation. 55 

To the authors' knowledge, the shear deformation of RC shear-critical beams was rarely 56 

measured separately out of the total deformation in existing experiments except for the 57 

following three. Ueda, et al. (2002) performed experiments of four rectangular RC 58 

beams with shear reinforcement in which the shear deformation in the shear span was 59 

measured by the laser speckle method. The experimental results suggested for 60 

rectangular RC beams, the shear deformation could account for 10% to 40% of the total 61 

deformation at half of the ultimate load and 30% to 60% at failure. Hansapinyo, et al. 62 

(2003) examined the shear deformation of four rectangular RC beams with shear 63 

reinforcement. Three measuring lattices were attached to the surface of the shear span to 64 

measure the shear deformation. The results indicated the shear-to-total deformation ratio 65 

could reach 20% to 30% at half of the ultimate load and 30% to 40% at failure. 66 

Debernardi and Taliano (2006) carried out experimental investigations into six RC 67 

beams with thin web and square lattices were used to measure the shear deformation in 68 

the shear span. It showed that 25% of the total deformation was comprised of shear 69 

deformation at the ultimate load in terms of RC beams with thin web. Large scatter 70 

could be found when it came to the measured shear deformation in those tests. The 71 

reason could be that the measured shear deformation was affected by many factors, such 72 



as the shear span-to-depth ratio, the reinforcement, the web width and the measuring 73 

method. 74 

A number of theoretical investigations into this topic have also been conducted 75 

in the past few years. The truss analogy (Debernardi, Guiglia, & Taliano, 2011; J. H. 76 

Kim & Mander, 2007; Pan, et al., 2014; Ueda, et al., 2002; Wang, Dai, & Zheng, 2015) 77 

and the modified compression field theory (Desalegne & Lubell, 2012; Hansapinyo, et 78 

al., 2003; F. J. Vecchio & Collins, 1986) have been adopted to estimate the shear 79 

deformation in the shear span of RC beams. A theoretical and experimental study 80 

including time-dependent behaviour has been performed by (Jin, 2016). 81 

The Finite Element Method (FEM) is a typical alternative of examining the 82 

performance of reinforced concrete structures to physical testing in a laboratory. The 2D 83 

FEM model with plane stress elements is suitable for simulating the shear behaviour of 84 

RC shear-critical beams and has been widely employed by other researchers (Bertagnoli 85 

& Carbone, 2008; J. Cervenka & Cervenka, 2010; V. Cervenka & Pukl, 1992; Coronelli 86 

& Mulas, 2006; FIB, 2010b; Maekawa, Pimanmas, & Okamura, 2003; Malm, 2006; 87 

Sato, Tadokoro, & Ueda, 2004; F. J. Vecchio & Shim, 2004). Nevertheless, all of these 88 

simulations were performed to investigate the shear capacity and the load-total 89 

deformation curve of RC shear-critical beams. Shear deformation has barely been 90 

extracted separately from total deformation in these FEM analyses to estimate its 91 

contribution. 92 

In this paper, a 2D concrete material model based on smeared fixed crack model 93 

is presented and incorporated into the general-purpose FEM software Abaqus 6.10 94 

(Hibbitt, 1997) through the subroutine interface VUMAT. Additionally, a method of 95 

separating flexure and shear deformation out of total deformation is presented and 96 

implemented in the FEM model. In order to validate the capability of this  FEM model 97 



along with the deformation-separation method to reproduce the deformational behaviour 98 

of RC shear-critical beams, the results produced using this model are compared with 99 

those obtained from a number of well documented tests on RC beams conducted by 100 

different authors. The contributions of the shear deformation to the total deformation of 101 

these beam specimens are investigated. What's more, the influence of measuring 102 

methods on the experimental results of shear deformation is also discussed via the FEM 103 

analysis to guide the future experimental research. 104 

2. Two-dimensional concrete material model 105 

Three built-in material models are available for simulating concrete material in Abaqus 106 

6.10, i.e.. Concrete Damaged Plasticity (CDP), Concrete Smeared Cracking (CSC) and 107 

Brittle Cracking (BC). According to the authors' investigation (Huang, Lü, & Tu, 2016; 108 

Huang et al., 2016), it appears that the damage evolution laws of the CDP model could 109 

influence the predicted shear behaviour of RC shear-critical beams but it was difficult to 110 

specify such laws which were capable of well predicting the real crack pattern and shear 111 

capacity of RC beams. When applying the CSC model to simulating RC shear-critical 112 

beams, convergence difficulties could always be encountered and it was hard to track 113 

the overall failure process. In terms of the BC model provided by Abaqus, the 114 

compression behaviour is assumed to be linear elastic which is not suited for modelling 115 

the RC shear-critical beams because significant compression stresses may develop in 116 

the concrete in this case and nonlinear compression behaviour will influence the 117 

performance of these beams. Hence, it is necessary to incorporate a reliable concrete 118 

material model to Abaqus which can well simulate RC shear-critical beams. 119 

The proposed concrete material model was incorporated into Abaqus through 120 

the subroutine interface VUMAT. The concrete was treated as a nonlinear isotropic 121 

elastic material before cracking while the smeared fixed crack model based on the 122 



orthotropic material was used to model the post-cracking behaviour. For the sake of 123 

eliminating the effect of Possion's ratio on applying the uniaxial stress-strain curve to 124 

biaxial stress state, the concept of 'equivalent uniaxial strain' developed by Darwin and 125 

Pecknold (1977) was introduced in this model as shown: 126 
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 (1) 127 

where ε1 is the maximum principle strain for uncracked concrete or the strain normal to 128 

the fixed crack for cracked concrete, ε2 is the minimum principle strain for uncracked 129 

concrete or the strain parallel to the crack for cracked concrete, γ12 is null for uncracked 130 

concrete or the shear strain along the crack for cracked concrete, the strain symbol with 131 

superscript 'eq' represents the corresponding equivalent uniaxial strain in which the 132 

Possion's ratio effect is removed and ν is Possion's ratio. According to the guidelines 133 

presented by Hendriks et al. (2012), ν was set to be equal to 0.2 for uncracked concrete 134 

and 0 for cracked concrete. 135 

2.1 Stress-Strain Relationships 136 

The expression of the stress-strain curve proposed by the fib Model Code 2010 (FIB, 137 

2010a) was adopted for the ascending branch of concrete in compression： 138 
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where fc is the concrete cylinder compressive strength, εc is the strain at peak stress, Ec 140 

is the concrete elastic modulus and βc is the coefficient of compressive strength aimed 141 

for taking the biaxial stress state into account which will be discussed below. fc was 142 

determined according to the experiment while εc and Ec were estimated from the 143 

cylinder compressive strength according to Model Code 2010. 144 

Compared to the ascending branch of the compressive stress-strain curve, it was 145 

much more complicated to define the compressive softening behaviour. In order to 146 

reduce the mesh size sensitivity during compressive strain localization, Nakamura (2001) 147 

proposed a model based on compressive fracture energy which was constant regardless 148 

of the size and the shape of the specimen. What's more, due to lateral confinement, the 149 

presence of in-plane and out-of-plane reinforcement could enhance the ductility of 150 

concrete which also had some influence on the compressive descending branch 151 

(Bertagnoli, Mancini, Recupero, & Spinella, 2011; Kent & Park, 1971). J. Cervenka and 152 

Cervenka (2010) also presented a compressive softening model based on compressive 153 

fracture energy as shown in Equation (3). In this equation, the end point of the softening 154 

curve was defined by wd (in mm), termed as the value of the plastic end displacement. 155 

Under this way, the compressive fracture energy was defined. According to the 156 

experimental investigation into the compressive behaviour of concrete performed by 157 

Van Mier (1986), the value of wd could be taken as 0.5mm. J. Cervenka and Cervenka 158 

(2010) simulated  a RC shear-critical beam without shear reinforcement with good 159 



accuracy by taking the value of wd as 0.5mm. However if using the same value for 160 

another beam with shear reinforcement, the peak load was underestimated. In order to 161 

obtain a best-fit response, the value of wd was adjusted to 50mm. The reason might be 162 

that for RC shear-critical beams containing shear reinforcement which failed in the 163 

mode of shear-compression, the crushing of concrete around the loading plate was a 164 

critical factor. Therefore, it was necessary to consider the ductility enhancement of 165 

concrete compressive softening caused by the restraining effect of the loading plate 166 

(Bertagnoli, et al., 2011; F. J. Vecchio & Shim, 2004). In this study, the compressive 167 

descending stress-strain relationship was defined as a linear softening law following that 168 

proposed by J. Cervenka and Cervenka (2010): 169 
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where wd is the plastic end displacement and lc is the characteristic length. The concept 171 

of this model was analogous to the crack band theory (Bazant & Oh, 1983) and lc was 172 

taken as√2𝐴 as recommended by Rots (1988), where A is the area of the element. 173 

εc+wd/lc represents the ultimate strain where the compressive stress is zero as shown in 174 

Figure 1. The value of wd had to be calibrated for modelling different RC shear-critical 175 

beams on the basis of the aforementioned discussion. In this paper, this value was 176 

calibrated to 5 for all the beams with shear reinforcement and 0.5 for the beams without 177 

shear reinforcement studied in Section 4. 178 

Before cracking, the behaviour of concrete subjected to tension was assumed to 179 

be linear elastic: 180 

 eq

c t tE f      (4) 181 



where ft is the tensile strength of concrete derived from fc according to Model Code 182 

2010 and βt is the coefficient of concrete tensile strength in biaxial stress state. 183 

For the purpose of mitigating the mesh size sensitivity caused by tension 184 

softening, the stress-crack opening displacement curve proposed by Model Code 2010 185 

was used to describe the post-cracking behaviour of concrete in tension: 186 
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 (5) 187 

where w is the crack opening displacement which is equal to (εeq-σ/Ec)lc according to the 188 

crack band theory, w1 is the displacement when σ=0.2βtft and wc is that when σ=0. The 189 

tensile strength ft was estimated according to the Model Code 2010 while the tensile 190 

fracture energy GF was calculated according to CEB-FIP Model Code 1990 (CEB-FIP, 191 

1993) which is shown below because that calculated from Model Code 2010 could be 192 

excessively high (Hendriks, et al., 2012). 193 
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where da is the maximum aggregate size. If no experimental value of this parameter was 195 

provided, da was assumed to be 20mm. 196 

2.2 Uncracked Concrete 197 

The biaxial failure criteria proposed by Kupfer and Gerstle (1973) was used to describe 198 



the failure criteria of uncracked concrete. This envelope is shown in Figure 2. For the 199 

uncracked concrete in the biaxial compression state, the enhancement of compressive 200 

strength was taken into account by defining the corresponding coefficient of 201 

compressive strength βc which was calculated: 202 
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where σ1 and σ2 is the maximum and minimum principal stress respectively. For 204 

uncracked concrete under tension-compression, the presence of compressive stress 205 

could reduce the tensile strength in the orthogonal direction which was considered by 206 

defining the corresponding coefficient of tensile strength βt using the following formula: 207 

 21 0.8t

cf


    (8) 208 

In the tension-tension state, it was assumed the tensile strength kept constant for both 209 

two principal directions as recommended by Kupfer and Gerstle (1973).  210 

The stiffness matrix for uncracked concrete was in the form of a nonlinear 211 

isotropic elastic material as shown below: 212 
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where [D] is the stiffness matrix and Esec is the nonlinear secant modulus determined 214 

from the uniaxial stress-strain curve in the minimum principal stress direction. 215 



2.3 Cracked Concrete 216 

For the cracked concrete, a smeared fixed crack model based on an orthotropic 217 

constitutive law was adopted. According to the RC shear panel experiments performed 218 

by F. Vecchio (1982) and Belarbi and Hsu (1995), the compressive strength could be 219 

weakened by the orthogonal tensile strain. Hendriks, et al. (2012) suggested that this 220 

tension-compression interaction should be taken into consideration to avoid the non-221 

conservative estimation. In this paper, the reduction of compressive strength induced by 222 

parallel cracks was described by the formula proposed by F. Vecchio and Collins (1993): 223 
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The shear retention factor, representing the degradation of shear transfer across 225 

the cracks, is the ratio of secant shear modulus of cracked concrete to the elastic shear 226 

modulus of concrete before cracking. A variable shear retention factor was preferred 227 

instead of a constant to avoid the stress-locking phenomenon in which  spurious 228 

principal stresses and an over-stiff response may be produced (Crisfield & Wills, 1989; 229 

Hendriks, et al., 2012; Rots, 1988). Many variable shear retention factor models 230 

dependant on the crack normal strain or/and the crack shear strain have been presented 231 

(Bazant & Gambarova, 1980; J. Cervenka & Cervenka, 2010; V. Cervenka, 1985; 232 

Maekawa, et al., 2003; Rots, 1988; Zhu, Hsu, & Lee, 2001). Although this factor has a 233 

significant influence on the predicted behaviour of cracked concrete, there is no widely-234 

accepted model for it. In this paper, the variable shear retention factor model was used 235 

as proposed by Hendriks, et al. (2012), and J. Cervenka and Cervenka (2010) in which 236 

the secant shear stiffness decreased following the degradation of the secant tensile 237 

stiffness normal to the crack:  238 
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 (11) 239 

where βG is the shear retention factor, Gcr is the secant shear modulus of cracked 240 

concrete, G is the elastic shear modulus of concrete, σ(wmax) is the tensile stress normal 241 

to the crack at the maximum crack opening displacement ever reached during the 242 

loading process calculated based on the tension softening law shown in Equation (5), 243 

εmax is maximum crack opening strain ever reached during the loading process which 244 

can be taken as wmax/lc according to the crack band theory and sF is the scaling factor. 245 

The recommended value of sF was within the range of 1-10 according to J. Cervenka 246 

and Papanikolaou (2008). However, in order to well simulate the behaviour of one RC 247 

beam without shear reinforcement and one with shear reinforcement, the values of sF 248 

were set to be equal to 20 and 300 respectively by J. Cervenka and Cervenka (2010). It 249 

seems that the estimation of this value is strongly dependent on the reinforcement 250 

arrangement and maybe some other design parameters of RC structures. In this study, 251 

the value of sF was calibrated to 125 for all the beams studied in Section 4.  252 

The shear strength at the crack also needed to be defined as can be found in the 253 

existing models of shear stress transfer across the crack (or aggregate interlock models) 254 

(Bazant & Gambarova, 1980; Maekawa, et al., 2003; F. J. Vecchio, 2004). In this paper, 255 

the shear strength at the crack was estimated from the equation proposed in the 256 

Modified Compression Field Theory MCFT (Bentz, Vecchio, & Collins, 2006) which 257 

was also adopted by J. Cervenka and Cervenka (2010): 258 
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where fc in MPa, w and da in mm. 260 

The stiffness matrix based on the orthotropic model (F. J. Vecchio, 1989) was 261 

used for the cracked concrete: 262 
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where [D] is the stiffness matrix, [Dcr] is the stiffness matrix at the local coordinate of 264 

cracks and [T] is the transformation matrix. As presented above, the Possion's ratio for 265 

concrete after cracking was assumed to be zero. Thus, the [Dcr] was given: 266 
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where E1 is the secant modulus for the direction normal to the crack, E2 is the secant 268 

modulus for the direction parallel to the crack and βGG is the degraded shear modulus 269 

for describing the shear behaviour of the crack. In terms of the fixed crack model, the 270 

direction of crack propagation remained fixed after initial cracking. Hence, the 271 

transformation matrix [T] remained constant as given below: 272 
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where θ is the angle between the cracks and the longitudinal direction of the beam.  274 

3. Finite element model 275 

The concrete was modelled using the plane stress element CPS4R in Abaqus and the 276 

reinforcement modelled by the truss element. Elastic-perfectly plastic material was 277 



applied to the reinforcement with the yield stress determined from the experiments and 278 

the elastic modulus taken as 200,000MPa. Perfect bond was assumed for describing the 279 

concrete-reinforcement interaction. In order to reduce the computational time, only half 280 

of the beams were built to take advantage of the symmetry if any. The steel plates at the 281 

supports and the loading points were included in the FEM model to distribute the stress 282 

caused by the concentrated load. The linear elastic materials with the elastic modulus of 283 

200,000MPa and the Poisson's ratio 0.3 were used to model the steel plates. 284 

With the aim of overcoming the convergence difficulty in modelling the 285 

propagation of cracks in concrete, the explicit dynamic solution approach provided by 286 

Abaqus was adopted. In the explicit dynamics procedure, the total step time is divided 287 

into a large number of small time increments and the explicit central difference method 288 

is used to conduct time integration (Chen, Teng, Chen, & Xiao, 2015; Hibbitt, 1997). 289 

Each increment is computationally inexpensive because neither iteration nor inversion 290 

of matrix needs to be done so that it often results in an economical computation. This 291 

integration method is conditionally stable and each time the increment should be 292 

smaller than the stability limit to produce a reasonable result. The value of the time 293 

increment can be automatically calculated in Abaqus and satisfactory results can be 294 

obtained using this value according to the authors' investigation. Moreover, the dynamic 295 

effect should be avoided in applying the dynamic analysis procedure to simulating static 296 

structural responses. In order to control this effect, the loading time should be 297 

sufficiently large and 100T1 is suitable for this parameter according to Chen, et al. (2015) 298 

where T1 is the period of the fundamental vibration mode of the beam. Detailed 299 

information about applying explicit dynamic to quasi-static analysis of RC beams can 300 

be found in (Chen, et al., 2015). 301 



4. Validation of the proposed model and calculation of shear and flexure 302 

deformation 303 

Three groups of experiments on RC shear-critical beams conducted by different authors 304 

were studied in this section. The first group contained one I-section beam tested by 305 

Debernardi and Taliano (2006). The second group was comprised of four rectangular 306 

beams tested by Hansapinyo, et al. (2003). Experimental results in these two groups 307 

included measures of total deformation, flexure deformation and shear deformation. 308 

These beam specimens were chosen in order to validate the proposed FEM model and 309 

the method of calculating flexure and shear deformation presented in Section 4.1. The 310 

third group of experiments, carried out by Bresler and Scordelis (1963), consisted of 8 311 

RC beams with rectangular cross sections. These specimens were commonly regarded 312 

as a benchmark against which FEM models could be calibrated and validated 313 

(Bertagnoli, et al., 2011). Moreover, These tests proved to be repeatable according to 314 

the duplicate beams tested by F. J. Vecchio and Shim (2004).  The load-total 315 

deformation curves and crack pattern were reported by the authors while the shear 316 

deformation was not measured. In this paper, the total deformation and crack patterns 317 

were compared against the experimental observation and in addition, the contribution of 318 

shear deformation was estimated using the FEM model and the deformation-separation 319 

method presented in Section 4.1. 320 

4.1 A method of calculating flexure and shear deformation in the FEM model 321 

The method of extracting the shear deformation in the shear span of RC beams 322 

separately out of the total deformation in the FEM model was presented in this section. 323 

According to the finite element theory, the shear strain at the centre of a first-order four-324 

nodes rectangular element and the corresponding shear deformation of this element can 325 

be calculated: 326 
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where γe is the shear strain at the centre of the element, ui is the displacement in the x 328 

direction of ith node while vi is that in the y direction, h and a are the height and the 329 

length of the element respectively, and δs is the shear deformation. All the variables 330 

above are illustrated in Figure 3(a). Figure (b) shows a schematic diagram of one half of 331 

one RC beam subjected to three point loads. The shear span of this beam could then be 332 

divided into several such macro-elements. Thus, the shear deformation at the loading 333 

point (or the end of the shear span) could be obtained by integrating the shear 334 

deformation of all these macro-elements. 335 

The flexure deformation in the shear span was calculated on the basis of these 336 

macro-elements as well. Firstly, the mean curvature of the element was calculated: 337 
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where κe is the mean curvature of the element. The rotation angle of each marco-339 

element arising from the curvature was calculated by assuming constant curvature in 340 

each element: 341 

 e ea    (18) 342 

where θe is the rotation angle of each element. Considering that the rotation angle 343 

atmid-span was zero, the rotation angle at the support could be obtained: 344 
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where θsupport is the rotation angle at the support, θe
i is the rotation angle of the ith macro-346 

element and n is the number of the macro-elements within the shear span. Finally, the 347 

flexure deformation at the right-most of the ith macro-element was calculated using the 348 

following recursion formulas: 349 
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 (20) 350 

where δf
i is the flexure deformation at the right-most of the ith macro-element, θi is the 351 

cumulated rotation angle at the left-most of the ith macro-element. In this way, the 352 

flexure deformation in the shear span was obtained. 353 

In this paper, the above method of calculating shear and flexure deformation was 354 

implemented in the FEM model by which the contribution of shear deformation to total 355 

deformation can be quantified as shown in the following sections. 356 

4.2 Debernardi-Taliano (DT) and Hansapinyo-Pimanmas (HP) Beams 357 

In this section, the proposed model was used to simulate one I-section RC beams 358 

tested by Debernardi and Taliano (2006) and four rectangular beams tested by 359 

Hansapinyo, et al. (2003). All these beams were simply supported. The loading 360 

arrangements and geometry are shown in Figure 4. Table 1 lists the details of these 361 

beams and Table 2 provides the material properties of the reinforcement.  362 

For DT-TR6, the shear span-to-depth ratio of the shorter shear span was 4.1. 363 

500mm×500mm  square lattices were used to measure the shear deformation. Instead of 364 

measuring the shear deformation along the beam axis continuously, square lattices were 365 

placed at several zones of different moment-to-shear ratio in the beam as depicted in 366 



Figure 4. In order to obtain the contribution of the shear deformation to the total 367 

deformation at the load point, the experimental mean curvatures along the beam axis 368 

were recorded and integrated to estimate the flexure deformation. Then, the shear 369 

deformation was calculated by subtracting the flexure deformation from the total 370 

deformation. It should also be noted that only the cubic strength of concrete was 371 

provided for DT-TR6 in the original paper. In this paper, the cylinder strength of this 372 

beam was assumed to be 0.85 times the cubic strength.Hansapinyo, et al. (2003) tested 373 

four rectangular beams to study the following factors which could influence the shear 374 

deformation: the shear span-to-depth ratio, the longitudinal reinforcement and the shear 375 

reinforcement. Three measuring grids were used to cover the shear span to 376 

experimentally obtain the contribution of shear deformation to total deformation in the 377 

shear span. 378 

In order to test the mesh sensitivity of this proposed model in simulating RC 379 

shear-critical beams, square or nearly square elements of different sizes were adopted. 380 

Figure 5 illustrates the numerical load-displacement curves of DT-TR6 using elements 381 

of sizes from 80mm to 20mm. It suggested that the use of elements of different sizes led 382 

to little variance in the simulated behaviour due to the fracture-based softening branch 383 

adopted in the proposed concrete model. This conclusion holds true for all beam 384 

specimens studied in this paper. The mesh size of 10mm was selected for all beams 385 

studied in this paper except for DT-TR6. Instead, the mesh size of 20mm was chosen 386 

for DT-TR6 to save computational time because of its fairly large size.The method of 387 

calculating shear deformation in the FEM model presented in the previous section was 388 

implemented in these beams. Before applying such method, the influence of the number 389 

of macro-elements that the shear span was divided into was investigated. Theoretically 390 

speaking, as the number of macro-elements increases, the measured shear deformation 391 



will converge as this method is analogous to the finite element method. Figure 6 392 

compares the calculated contributions of the shear deformation of DT-TR6, HP-S1, HP-393 

S2 with different numbers of such macro-elements. The x-axis represents the ratio of the 394 

calculated shear deformation to the calculated total deformation and the y-axis 395 

represents the applied load. The shear span-to-height ratio (a/h) of these three beams 396 

were 3.8, 2.3 and 3.0 respectively. It appears that the calculated shear deformation 397 

would converge after the selected number of macro-elements exceeded the value of a/h. 398 

In the experimental investigation performed by Hansapinyo, et al. (2003), the number of 399 

measuring lattices in the shear span was 3 which agreed with the above conclusion. 400 

However, if the shear span was divided into only one macro-element, the calculated 401 

shear deformation was significantly larger than the converged result. In the experiment 402 

conducted by Ueda, et al. (2002) , the value of a/h of the beam specimens was 2 but the 403 

experimental shear deformation was calculated by the measured displacement of four 404 

corners of the shear span using the laser speckle method which was just the same as 405 

dividing the shear span into only one macro-element. Hence, the shear deformation 406 

could be overestimated in their experimental investigation according to the above 407 

discussion. 408 

Figure 7 shows the experimental results of the total deformation, the flexure 409 

deformation and the shear deformation at the load point for DT-TR6. Using the FEM 410 

model and the deformation-separation method mentioned above, the deformational 411 

results were also obtained numerically. It can be seen in this figure that if the shrinkage 412 

was omitted in the model, the three deformational results could all be underestimated. 413 

Investigations conducted by some researchers (Gribniak, Cervenka, & Kaklauskas, 414 

2013; Kaklauskas, Gribniak, Bacinskas, & Vainiunas, 2009) indicated that the 415 

shrinkage of concrete might significantly influence cracking loads and flexure 416 



deformations of RC members subjected to short-term loading. To the authors' 417 

knowledge, no investigation concerning the effect of shrinkage on shear deformation 418 

has been performed. In this paper, the shrinkage effect was taken into account in the 419 

FEM model by applying initial strain to the concrete before loading. As the original 420 

paper didn't report the shrinkage strain, a typical value of -200με for concrete at 28 days 421 

suggested by Kaklauskas, et al. (2009) was assumed in the simulation. As shown in 422 

Figure 7, by introducing the shrinkage, the cracking load was reduced. It was because 423 

the reinforcement could restrain the shrinkage of concrete which resulted in initial 424 

tension strain prior to loading. Using the FEM model with shrinkage considered, 425 

accuracy of the predictions improved not only for flexure deformation but also for shear 426 

deformation and total deformation.  427 

Figure 8 compares the calculated deformational behaviour with the experimental 428 

results of HP series beams. A shrinkage strain of -200με was also applied in the 429 

simulations. Note that for HP beams, the elastic modulus of concrete was estimated 430 

using the expression specified by ACI (2014) (i.e., Ec=4700√fc) which was smaller 431 

than that proposed by FIB (2010a) to fit the experimental results. It was reasonable 432 

because the modulus of elasticity for concrete is not only dependent on the concrete 433 

strength but also sensitive to the modulus of elasticity of aggregate and mixture 434 

proportions of concrete. These details were not reported in the original paper. It can be 435 

seen in Figure 8 that the proposed FEM model also satisfactorily simulated the total 436 

deformation, the flexure deformation and the shear deformation of HP series beams,.  437 

Figure 9 compares the calculated flexure deformation and shear deformation of 438 

HP beams. The shear cracking load was achieved from the experimental observation 439 

while the flexure cracking load was obtained from the numerical analysis. HP-S1 and 440 

HP-S2 had identical design parameters except for the value of a/d. As can be found in 441 



Figure 9, both the shear deformation and flexure deformation of HP-S2 with larger a/d 442 

were larger than those of HP-S1. With the aim of studying the effect of longitudinal 443 

reinforcement, the response of HP-S1 and HP-S3 were compared. HP-S1 contained 444 

longitudinal reinforcement twice as much as HP-S3. As shown in Figure 9(a), after 445 

flexure cracking, HP-S3 had larger flexure deformation than HP-S1. Moreover, the 446 

amount of longitudinal reinforcement also had effects on the shear deformation as can 447 

be seen in Figure 9(b). Less longitudinal reinforcement (i.e. HP-S3) resulted in larger 448 

crack width which could reduce the shear stiffness as mentioned in Section 2. HP-S3 449 

and HP-S4 only differed in the amount of shear reinforcement. No obvious difference 450 

could be observed with respect to the flexure deformation in Figure 9(a). As shown in 451 

Figure 9(b) the shear deformation of these two specimens were similar before shear 452 

cracking. After the shear cracks formed, the shear deformation of HP-S4 with smaller 453 

amount of shear reinforcement increased more rapidly than that of HP-S1. Similar 454 

discussion about the comparison of HP series beams can also be found in Hansapinyo, 455 

et al. (2003). 456 

Figure 10 depicts the calculated contributions of shear deformation for DT and 457 

HP beams. The flexure cracking load and shear cracking load of DT-TR6 were both 458 

achieved from the experiment. At the elastic stage, the shear-to-total deformation ratio 459 

remained constant and the value ranged from 5 to 10 for different beams, depending on 460 

different shear span-to-depth ratios. At the onset of flexure cracks, this ratio decreased 461 

slightly because of the degradation of flexure stiffness induced by flexure cracking. 462 

Then, before shear cracking, the ratio began increasing after passing a turning point. It 463 

was attributed to the fact that the growth of the width of flexure cracks could degrade 464 

the shear transfer across the cracks as mentioned in the above paragraph and in Section 465 

2. However, in general, during the phase between shear cracking and flexure cracking, 466 



the contribution of shear deformation didn't vary significantly compared to that at the 467 

elastic stage. After the shear cracks developed, the increase of the shear deformation 468 

was faster than that of the flexure deformation and the shear-to-total deformation ratio 469 

kept rising. For DT-TR6, the shear-to-total deformation ratio was 18% at 60% of the 470 

peak load and over 20% after the load level exceeded 80% of the peak load. For HP 471 

series beams, this ratio ranged from 12% to 18% at 60% of the peak load and exceeded 472 

20% over 80% of the peak load. It can be seen in Figure 10(b) that for the lower 473 

longitudinal reinforcement ratio, the lower shear reinforcement ratio, the lower shear 474 

span-to-depth ratio and the higher load level, the contribution of shear deformation 475 

could be more significant. 476 

4.3 Bresler-Scordelis (BS) Beams 477 

In this section, the simulated results of eight RC shear-critical beams tested by Bresler 478 

and Scordelis (1963) were presented. The failure mode of beams containing no shear 479 

reinforcement(e.g. BS-OA1, BS-OA2) was diagonal-tension while that of the others 480 

with shear reinforcement was shear-compression. These beams were simply supported 481 

under three point loads and differed in the shear span-to-depth ratio, the amount of 482 

reinforcement and the beam width. The details are given in Table 1 and the material 483 

properties of the reinforcement are listed in Table 2. Figure 11 provides the schematic 484 

diagrams of the cross section and elevation of three typical BS series beams (e.g. BS-485 

OA1, BS-B1, BS-C2). 486 

Figure 12 shows the curves of the applied load versus mid-span displacement of 487 

all the eight beams from both experiments and numerical simulations. Figure 13 488 

illustrates the comparison of the crack patterns at failure obtained numerically and 489 

experimentally. It should be noted that in simulating the BS beams, no shrinkage strain 490 

was applied to the concrete prior to loading. The calculated load-displacement curves 491 



showed good agreement with the experiments. The reason might be that all BS beams 492 

were tested at fairly young age (13 days after being cast) (Bresler & Scordelis, 1963) 493 

when no significant shrinkage strain may have developed in the concrete.  494 

For beams containing no shear reinforcement, which was controlled by diagonal 495 

tension, failure was sudden after the formation of the 'critical diagonal tension crack' as 496 

observed in the experiments (Bresler & Scordelis, 1963). This crack also propagated to 497 

the compression zone and the bottom reinforcement near the end of the beam 498 

developing into longitudinal splitting finally. As shown in Figure 12 and Figure 13, the 499 

crack pattern at failure, as well as the overall load-displacement response, produced by 500 

the FEM model with the calibrated parameters are in good agreement with experimental 501 

observations.  502 

For beams with shear reinforcement, the shear-compression failure was 503 

characterized by concrete crushing in the compression zone but without splitting along 504 

the bottom reinforcement (Bresler & Scordelis, 1963). These beams failed at loads 505 

greater than those at which the first diagonal crack emerged. The satisfactory 506 

simulations of load-displacement curves and crack patterns were obtained as shown in 507 

Figure 12 and Figure 13 in comparison with the experiments. 508 

The method of separating shear and flexure deformation mentioned in Section 509 

4.1 was implemented in BS series beams. The number of macro-elements was selected 510 

based on the relevant discussion in Section 4.2. Figure 14 shows the calculated 511 

contributions of the shear deformation of BS-OA2 and BS-A2 along with the flexure 512 

cracking load obtained from the FEM analysis and the shear cracking load from 513 

experiments. Note that in Figure 14, 15 and 16, the y axis represents the ratio of the 514 

applied load to the experimental peak load instead of the value of the applied load. 515 

These two beams were similar in all aspects, except that BS-A2 contained shear 516 



reinforcement while BS-OA2 did not. It can be seen in Figure 14 that at the beginning 517 

of the loading procedure, the shear deformation accounted for only around 5% of the 518 

total deformation for both two beams due to their similar geometry. After flexure 519 

cracking, the contribution of shear deformation declined first and then started to rise 520 

after passing a turning point below the shear cracking load. This phenomenon was 521 

similar with that of the above specimens and was also observed in all other BS series 522 

beams. Then, after shear cracking, the shear-to-total deformation ratio increased as the 523 

load level rose. Before 80% of the peak load, this ratio increased slowly and ranged 524 

from 4% to 5%. However, for BS-A2, after the applied load exceeded this level, this 525 

ratio went up to over 10% near failure. Whereas for BS-OA2 without shear 526 

reinforcement, this ratio remained almost constant during the overall loading procedure. 527 

It was because, in terms of shear-critical beams without shear reinforcement, the 'critical 528 

diagonal cracks' formed at a load quite close to the ultimate load before which no 529 

evident shear cracks could be found (Bresler & Scordelis, 1963). Namely, the shear 530 

cracking load was close to the peak load. Hence, the deformation of RC shear-critical 531 

beams without reinforcement is governed by flexure while shear deformation is 532 

negligible. 533 

Figure 15 shows the calculated shear deformation for BS-B1 and BS-B2. All the 534 

design parameters of these two beams were the same except for the shear span-to-depth 535 

ratio (3.9 for BS-B1 and 4.9 for BS-B2). The results indicated that at the elastic stage, 536 

the ratio of shear-to-total deformation of BS-B1 (about 7%) was slightly larger than that 537 

of BS-B2 (about 5%) due to its smaller shear span-to-depth ratio. This difference 538 

became even larger over 80% of the ultimate load. The ratio of the shear-to-total 539 

deformation for BS-B1 was 10% at 80% of the peak load and more than 25% at 540 



ultimate load while for BS-B2, the corresponding value was 5% at 80% of the peak load 541 

and less than 10% at failure.  542 

Among all BS series beams studied in this section, BS-C1 had the largest 543 

contribution of shear deformation. Despite of the fairly large shear-to-total deformation 544 

ratio at a higher load level (e.g. over 80% of the peak load), the corresponding value for 545 

BS-C1 at the service load (assumed to be 60% of the peak load) was 9.5% which was 546 

only slightly larger than that of 7.7% at the elastic stage as shown in Figure 16. It was 547 

because that the shear cracking load was quite close to the service load level which 548 

meant the shear stiffness didn't degrade significantly at the service load. Compared to 549 

BS-C1, DT-TR6 had similar shear span-to-depth ratio (4.1 vs 3.9) and longitudinal 550 

reinforcement ratio (1.57% vs 1.48%) while contained even more shear reinforcement 551 

(0.51% vs 0.20%). The shear-to-total deformation ratio for DT-TR6 was lower than that 552 

for BS-BC1 at the elastic stage. However, this ratio at the service load for DT-TR6 was 553 

nearly twice as much as that for BS-C1. It was attributed to its relatively low level of 554 

shear cracking load as shown in Figure 16. The shear cracks in DT-TR6 developed at 555 

only 20% of the peak load which meant at the service load (60% of the peak load), the 556 

shear stiffness could degraded significantly due to the propagation of shear cracks. It 557 

demonstrate that it is important to consider the effect of the load level when assessing 558 

the contribution of shear deformation in RC beams. 559 

5. Conclusion 560 

In this paper, finite element analysis was conducted to investigate the contribution of 561 

shear deformation in RC shear-critical beams. A 2D concrete material model based on 562 

the smeared fixed crack theory was presented and incorporated into a commercial FEM 563 

software Abaqus through subroutine interface VUMAT. This model took into 564 

consideration the following characteristics of concrete: (1) biaxial failure criteria; (2) 565 



the reduction of compressive strength due to orthogonal tensile strain; (3) the variable 566 

shear retention factor and shear strength at the crack dependent on the crack opening 567 

displacement; (4) The energy-based softening branch of uniaxial stress-strain relations 568 

of both compression and tension. A method of calculating the flexure and shear 569 

deformation separately out of the total deformation in the shear span was presented and 570 

implemented in the FEM model. The proposed FEM model and the deformation-571 

separation method was validated by comparing the numerical simulations with 572 

experimental results of several RC shear-critical beams. The contribution of shear 573 

deformation in RC shear-critical beams, as well as the influence of several design 574 

parameters on it, was investigated. Based on the results shown in this paper, the 575 

following conclusions could be drawn: 576 

(1) The mesh size sensitivity could be reduced when applying the presented energy-577 

based softening branch to describing the compressive and tensile stress-strain 578 

relations. 579 

(2) The FEM model combined with the proposed deformation-separation method 580 

could reproduce the total deformation, the shear deformation, the flexure 581 

deformation and crack patterns with reasonable accuracy for the beam 582 

specimens studied in this paper. 583 

(3) In terms of the deformation-separation method presented in this paper, the 584 

number of the macro-elements into which the shear span was divided should be 585 

larger than the shear span-to-height ratio of the studied beam to obtain 586 

converged results. If not, the shear deformation could be overestimated. 587 

(4) The shrinkage strain appears to be an important factor which may influence the 588 

cracking load and deformational behaviour, including both the flexure 589 

deformation and the shear deformation, of RC beams.  590 



(5) For RC shear-critical beams without shear reinforcement, the deformational 591 

behaviour was governed by flexure because failure occurred soon after the 592 

formation of 'critical diagonal cracks'. No evident shear cracks could be seen 593 

before 'critical diagonal cracks' formed. 594 

(6) For RC shear-critical beams with shear reinforcement, the shear deformation 595 

was not negligible after shear cracking. For the lower longitudinal reinforcement 596 

ratio, the lower shear reinforcement ratio, the lower shear span-to-depth ratio 597 

and the higher load level, the contribution of shear deformation could be more 598 

significant.  599 

It should also be noted that flexure deformation defined in this paper was in fact 600 

the deformation induced by mean curvature which not only consisted of the flexure 601 

deformation based on Navier-Bernoulli theory but also the additional flexure 602 

deformation caused by shear cracks (Debernardi & Taliano, 2006; Ueda, et al., 2002). If 603 

the nominal shear deformation was defined as the total deformation minus the flexure 604 

deformation based on Navier-Bernoulli theory, the contribution of this nominal shear 605 

deformation could be even larger than that obtained in this study. That was why the 606 

formula proposed by ACI (2014) could strongly underestimate the deformation 607 

(Desalegne & Lubell, 2012). 608 

Future work 609 

As mentioned in the introduction, very few experiments have been conducted to 610 

measure the shear deformation in the shear span of RC shear-critical beams. With the 611 

help of digital image correlation (DIC) techniques, the displacement field on the surface 612 

of the shear span could be measured. Further experimental investigations are 613 

recommended in which the DIC techniques will be employed to measure the shear 614 



deformation and what's more, the strain field in the shear span. These experimental 615 

results not only are useful for studying the contribution of shear deformation in RC 616 

shear-critical beams but also can provide more comprehensive experimental results for 617 

calibrating and validating FEM models. 618 
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Table 1 Details of beam specimens 753 

Reference Beam fc (MPa) b×h (mm) a/d Bottom Steel Top Steel Stirrup 

Debernardi and Taliano (2006) DT-TR6 35.6 100*×600 4.1 9D16 3D12 D8@200 

Hansapinyo, et al. (2003) 

HP-S1 33.0 150×350 2.6 4D25 2D25 D6@80 

HP-S2 33.0 150×350 3.5 4D25 2D25 D6@80 

HP-S3 33.0 150×350 2.6 2D25 2D25 D6@80 

HP-S4 33.0 150×350 2.6 2D25 2D25 D6@120 

Bresler and Scordelis (1963) 

BS-OA1 22.6 305×552 3.9 4No.9 None None 

BS-OA2 23.7 305×552 4.9 5No.9 None None 

BS-A1 24.1 305×552 3.9 4No.9 2No.4 No.2@210 

BS-A2 24.3 305×552 4.9 5No.9 2No.4 No.2@210 

BS-B1 24.8 229×552 3.9 4No.9 2No.4 No.2@190 

BS-B2 23.2 229×552 4.9 4No.9 2No.4 No.2@190 

BS-C1 29.6 152×552 3.9 2No.9 2No.4 No.2@210 

BS-C2 23.8 152×552 4.9 4No.9 2No.4 No.2@210 

*For DT-TR6, b refers to the web width 754 
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Table 2. Material properties of the reinforcement 756 

Reference Reinforcement Area (mm2) fy (MPa) 

Debernardi and Taliano (2006) 

D8 50 570 

D12 113 540 

D16 201 540 

Hansapinyo, et al. (2003) 

D6 28 370 

D25 490 440 

Bresler and Scordelis (1963) 

No. 2 32.2 325 

No. 4 127 345 

No. 9 645 555 

  757 



Figure 1. Uniaxial stress-strain relations of concrete; (a) compressive stress-strain curve; 758 

(b) tension softening. 759 
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Figure 2. Biaxial failure criteria of concrete. 761 
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Figure 3. The method of calculating the shear deformation in the FEM model; (a) 763 

macro-element; (b) the division of the shear span. 764 
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Figure 4. Details of DT and HP series beams 766 

767 
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Figure 5. Calculated load-displacement curves of DT-TR6 with elements of different 769 

sizes 770 
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Figure 6. Calculated contributions of shear deformation with different numbers of 772 

macro-elements 773 
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Figure 7. Load displacement curves for DT-TR6 775 
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Figure 8 Load displacement curves for HP series beams 777 

778 
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Figure 9 Flexure deformation and shear deformation for HP series beams 780 
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Figure 10 Calculated contributions of shear deformation for DT and HP beams 782 
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Figure 11 Details of three BS beams 784 
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Figure 12 Load displacement curves for BS series beams 787 
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Figure 13 Crack patterns at failure for BS series beams 789 
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Figure 14 Calculated contributions of shear deformation for BS-OA2 and BS-A2 792 
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Figure 15 Calculated contributions of shear deformation for BS-B1 and BS-B2 794 

  795 



Figure 16 Calculated contributions of shear deformation for BS-C1 and DT-TR6 796 
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