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Abstract Many authors have used higher-order spatial dis-
cretizations to reduce numerical diffusion, which can be par-
ticularly pronounced when simulating EOR processes in-
volving active chemical substances that are transported by
linear or weakly nonlinear waves. Most high-resolution meth-
ods reported in the literature are based on explicit temporal
discretizations. This imposes severe time-step restrictions
when applied to the type of grids seen in industry-standard
simulation models of real assets, which usually have orders-
of-magnitude variations in porosities and Darcy velocities
that necessitate the use of implicit discretization. Herein,
we propose a second-order WENO discretization suitable
for complex grids with polyhedral cell geometries, unstruc-
tured topologies, large aspect ratios, and large variations in
interface areas. The WENO scheme is developed as part of
a standard, fully implicit formulation that solves for pres-
sure and transported quantities simultaneously. We inves-
tigate the accuracy and utility of the WENO scheme for
a series of test cases that involve corner-point and 2D/3D
Voronoi grids and black-oil and compositional flow models
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1 Introduction

The workhorse in reservoir simulation is a first-order finite-
volume method with implicit temporal discretization and in-
tercell fluxes computed by a single-point, upstream-mobility
weighting scheme. The method is flexible and robust, but
can suffer from (severe) grid-orientation effects and exces-
sive numerical diffusion. Numerical diffusion can be partic-
ularly detrimental in compositional simulations, which tend
to contain many displacement fronts that can be difficult to
distinguish when smeared out, and in simulation of chemical
EOR, in which the active chemical components propagate as
linear or weakly linear waves that are particularly suscepti-
ble to numerical diffusion.

Many authors have proposed the use of high-resolution
spatial discretizations reduce numerical smearing, see, e.g.,
[4,5,3,20,12,8,28,35,13,21,27,40,42,24,9,55]. TVD meth-
ods based on flux- and slope-limiter approaches dating back
to the early work of [56] and (W)ENO reconstructions both
rely on local polynomial reconstructions computed from the
cell average of each grid cells and its adjacent cell neigh-
bors and are designed to maintain high-order accuracy on
smooth parts of the solution and at the same time minimize
the creation of spurious oscillations around discontinuities.
Such methods are readily applicable to Cartesian grids and
similar grids with structured topology, but have also been
extended to unstructured grids consisting of simplices (tri-
angles and tetrahedrons) or prismatic elements, e.g., as dis-
cussed in [26,61] and references therein. Another approach
is to use discontinuous Galerkin [51,22,23,47] and similar
methods in which the higher-order approximation relies en-
tirely on unknowns localized inside each cell.

Except for [52], little work has been devoted to develop
and analyze high-resolution methods for the type of grids
found in contemporary reservoir models, which are often
characterized by large aspect ratios, large differences in cell
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volumes, nonmatching cells, and various types of degener-
ate cell geometries. In particular, their extension to fully un-
structured grids with general polyhedral cell geometries is
unclear.

The widely used corner-point format [50] was introduced
to represent the stratigraphy and structure of reservoirs with
high accuracy. The stratigraphy of the rock is represented
through a rectangular ijk topology, in which cells with the
same k index typically represent rock units that have been
deposited in the same period. Each grid cell is by default a
hexahedral volume delimited by its eight corner points. The
eight corner points are placed in pairs of two on four verti-
cal/inclined coordinate lines that extend downward from a
rectilinear (or curvilinear) areal mesh. Each pair of points
specifies the depth of the top and bottom surface of the grid
along a given coordinate line and can collapse to a single
point to model erosion of the deposited sediments, effec-
tively leading to various forms of degenerate cell geome-
tries. Corner points of lateral cell neighbors (i.e., same i and
k or j and k index) are specified on the same coordinate
lines, but need not coincide. This is used to model fault dis-
placement and generally gives non-matching cell faces and
an unstructured topology in which each cell may have (sig-
nificantly) more than four lateral neighbors. This, combined
with large aspect ratios and orders-of-magnitude variations
in the area of the cell interface shared by neighboring cells,
can cause severe difficulties for spatial reconstruction meth-
ods (slope-limiter, WENO, etc) that have been developed for
simpler geometries and topologies.

Corner-point grids constitute just one example of the
many grid formats used in reservoir simulation. Another pop-
ular format is the perpendicular bisector (PEBI) grids [19,
49,57], which in other fields of science are known as Voronoi
grids. The stratigraphic or 2.5D form of these grids is con-
structed along the same lines as corner-point grids by ex-
trusion along vertical/inclined coordinate lines, except that
these coordinate lines now extend downward from the ver-
tices of an areal Voronoi mesh and not from a rectilinear
mesh. Use of polygonal tessellations offers improved resolu-
tion control in the lateral direction, but 2.5D PEBI grids have
more lateral neighbors that must be accounted for in a spa-
tial reconstruction and pose the same challenges as corner-
point grids in the vertical direction. Several methods have
also been proposed to construct truly 3D PEBI grids adapt-
ing to various types of geological objects and curvilinear
well paths [43,29]. Such grids will have a fully unstructured
topology and general polyhedral cell geometries.

Another example of unstructured formats are the so-called
cut-cell grids [39], which consist of hexahedral, highly or-
thogonal cells that are arranged in a structured manner way
from faults. Near faults, the hexahedral cells have been clipped
against the triangulated fault surfaces and thus are converted
into general polyhedra. If the clipping surfaces represent

sealing faults, one can argue that having an accurate higher-
order reconstruction may not be very important since flow
will mostly be stagnant. In other cases, however, faults or
fractures may be the main flow conducts and having accu-
rate spatial reconstructions in the polyhedral cells may be
essential to accurately resolve the flow.

A second challenge is the temporal discretization. With a
few exceptions [7,6,36,48,14,47], high-resolution schemes
applied in reservoir simulation have primarily relied on ex-
plicit temporal discretizations. This requires that the mul-
tiphase flow equations are solved using a sequential solu-
tion procedure that computes the flow (pressure and fluxes)
and transport of saturations and component concentrations
in separate steps. Coupling of between fluid pressure and
transport of phases and components can be strong, e.g., in
systems with significant compressibility, and sequential so-
lution procedures are generally not as robust as methods
that seek to solve for all primary variables simultaneously.
More important, sector and field-scale models tend to have
large variations in time constants arising because of high lo-
cal flow rates in the near-well zone, cells with small pore
volumes, etc. This means that the well-known CFL condi-
tion will impose severe time-step restrictions that quickly
can render an explicit high-resolution scheme computation-
ally infeasible. [18] and [62] showed that implicit five-point
TVD schemes are conservative and unconditionally stable
for a scalar equation in 1D if the discrete nonlinear equa-
tions are solved exactly, whereas [16] showed that implicit
time-integration schemes of order higher than one are only
conditionally TVD. To be efficient, the cost of solving the
nonlinear equations, e.g., by a Newton method, must be off-
set with the ability to take larger time steps.

Herein, we develop weighted essentially nonoscillatory
(WENO) high-resolution schemes for all the classes of un-
structured grids discussed above, formulated so that they can
be applied in a fully implicit or a sequentially implicit set-
ting. WENO schemes compute a set of local polygonal in-
terpolations with accompanying nonlinear smoothness indi-
cators that are used to compute a local reconstruction in each
cell that introduces as few spurious oscillations as possible.
The development and application of WENO schemes on un-
structured grids is still ongoing, see, e.g., [15,54,33,58,59,
37]. In previous research [46], we have developed fully im-
plicit WENO schemes and slope-limiter schemes for recti-
linear grids and showed how one can easily overcome the
cumbersome task of linearizing the discrete flow equations
and computing the Jacobian matrix necessary in a Newton-
type nonlinear solver by use of automatic differentiation. To
apply these schemes to realistic reservoir models, we can
reuse most of the same ideas, but need to develop compact
and effective sets of local polynomials and nonlinear inter-
polation weights that are sufficiently robust to large aspect
ratios, significant variations in cell sizes and the number of



A Fully Implicit WENO Scheme on Stratigraphic and Unstructured Polyhedral Grids 3

cell neighbors, and various forms of geometrical degenera-
cies.

In the following, we restrict ourselves to demonstrating
a proof-of-concept in MRST [34,45] and validating the new
WENO schemes by applying them to various types of black-
oil and compositional problems posed on a variety of grid
types that are representative of contemporary models of real
petroleum assets. Local WENO reconstructions can be com-
puted in many different ways. Herein, we only consider a
simple pragmatic choice that gives a relatively small stencil
and seems to work well on representative grids. A deeper
analysis is needed to assess the level of grid-orientation ef-
fects (for adverse mobility displacements), investigate and
compare various strategies for reducing the local stencil (e.g.,
by setting the weights of the least smooth polynomials to
zero), and compare the efficacy of WENO schemes to slope-
limiter schemes. Likewise, we only consider cases with a
single rock type (i.e., a single set of relative permeability
and capillary pressure curves), so that we avoid the problem
of interpolating saturations between regions with different
capillary pressure curves.

2 Governing equations

In reservoir simulation, one is generally interested in flow
systems consisting of N fluid phases that may contain M
different components. Each components can either refer to a
single chemical species or be a pseudo-component that con-
sists of a collection of different chemical species that are
lumped together and assumed to have a distinct behavior.
For simplicity, we will disregard diffusion. The mass con-
servation of component ` = 1, . . . ,M then reads

∂

∂t

(
φ
∑
α

c`αραSα

)
+∇ ·

(∑
α

c`αραv
`
α

)
=
∑
α

c`αραqα.

(1)

Here, φ is rock porosity; Sα, ρα, and qα denote the satura-
tion, density, and source term of fluid phase α; and c`α is the
mass fraction and v`α the superficial velocity of component
` in phase α. The velocities are given by Darcy’s law,

v`α =
Kkrα
µ`α

(∇pα − gρα∇z), (2)

whereK is the absolute permeability; pα is pressure and krα
the relative permeability of phase α; µ`α is the effective vis-
cosity of component ` in phase α; g is gravity acceleration;
and z the vertical coordinate. The fluid phases are assumed
to fill the void space completely, so that

∑
α Sα = 1. In ad-

dition, we need closure relationships for the phase densities,
mass fractions, and phase pressures, as well as models for
the relative permeabilities and effective viscosities.

The standard black-oil equations describe a system con-
sisting of three phases (an aqueous, an oleic, and a gas phase)
and three pseudo-components (water, oil, and gas). At sur-
face conditions, oil is only found in the oleic phase and gas
only in the gaseous phase. At reservoir conditions, however,
oil can be vaporized in the gaseous phase, and gas can be dis-
solved in the oleic phase. To describe the fluid behavior, one
uses a relatively simple PVT model that consists of pressure-
dependent shrinkage/expansion factors b` = V `s /V

` that
relate the volume V `s of component ` at surface condition
to the volume V ` at reservoir conditions. Solubility of gas
in oil is modelled through the solution gas-oil ratio, Rs =

Vgs/Vos defined as the volume of gas, measured at stan-
dard conditions, that at reservoir conditions is dissolved in a
unit of stock-tank oil. The solubility of oil in gas is modeled
similarly by a factor Rv , defined as the amount of surface
oil that can be vaporized in a unit volume of surface gas
at reservoir conditions. Phase pressures are related through
saturation-dependent capillary pressure functions, po−pw =

Pcow(Sw, So) and pg − po = Pcgo(So, Sg). The effective
viscosities are the same for all components within each phase
and are uniquely given by pressure. There are several possi-
ble choices for primary unknowns; herein, we use pressure
of the oleic phase po, water saturation Sw, and gas satura-
tion Sg when all three phases are present, and Rs if all gas
is dissolved or Rv if all oil is vaporized.

As an example of enhanced oil recovery, we also con-
sider a basic model for polymer flooding, which is a model
consisting of a single-component oleic phase and an aque-
ous phase that contains a mixture of water and dissolved
polymer. Here, the primary unknowns are (oil) pressure p,
water saturation Sw, and polymer concentration c. Effec-
tive viscosities for water and polymer are given by a Todd–
Longstaff mixture rule. The model also contains an addi-
tional accumulation term that accounts for adsorption of poly-
mer onto the reservoir rock, and reduced effective perme-
ability of long-chained polymer molecules, which makes K
depend on c. Full details are given in [46].

Compositional models describe the same general three-
phase system as the standard black-oil equations, but allow
the oleic and gaseous phases to consist of any number of
hydrocarbon components. Mass exchange between the two
hydrocarbon phases is governed by the isofugacity relation
for each component (f lg = f lo) if both phases are present.
MRST uses a generalized cubic equation-of-state [41], and
in the following we use Peng-Robinson for the oleic and
gaseous phases with viscosities calculated from the correla-
tion in [38]. The aqueous phase is described as in the black-
oil case and only consists of the water component; see [44]
for a detailed description of the implementation of natural
variables in MRST.
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3 Discretizations and solution method

We start by subdividing the spatial domain Ω into a set of
finite volumes (cells) Ωi. In a stratigraphic grid, the basic
shape of these cells will typically be a hexahedron or a tri-
angular or hexahedral prism, and each cell may potentially
have nonmatching faces with its neighbors. Herein, we sub-
divide nonmatching faces and assume that all grids are fully
unstructured and consist of cells with general polyhedral ge-
ometry. Let N (i) denote the indices of all neighbors of cell
i, and let the interface Γij between two neighboring cells i
and j have normal vector nij pointing from Ωi to Ωj .

We use a finite-volume discretization so that each un-
known quantity u is represented as discrete cell averages,

ui(t) =
1

|Ωi|

∫∫
Ωi

u(x, t)dx. (3)

For brevity, we only present the discretization for a sim-
ple two-phase, two-component system (α = {w, n}, c1w =

c2n = 1, and c2w = c1n = 0) in the absence of gravity and
capillary forces. Picking the wetting phase, integrating (1)
over cell Ωi from time tn to tn+1, and inserting (2) gives
the flow equation on residual form,

Rw =
[
ρwφSw

]n+1 −
[
ρwφSw

]n
+

∆t

|Ωi|
∑

j∈N (i)

∫
Γij

(
ρwλw K∇p · n

)m
ij
ds = 0.

(4)

Setting m = n gives an explicit scheme whereas m = n+1

gives a fully implicit scheme. The two accumulation terms
can be computed directly from cell-averaged quantities if we
approximate each term by a product of cell averages. The
flux integral is more difficult, since any numerical quadra-
ture rule will require point values of the unknown quantities
along Γij . Herein, we only consider schemes of order two
or less and it is hence sufficient to apply the midpoint rule.
For the density at the interface, we simply use the arithmetic
average of the cell averages ρij = 1

2

(
ρi + ρj) in the case

of immiscible flow. For compositional models, phase prop-
erties use the saturation-weighted average to account for the
possibility of an absent phase: (ρij)α =

(
siρi+sjρj
si+sj

)
α

. For
the gradient term, we use a standard two-point flux approxi-
mation:

(K∇p · n)ij =
pi − pj

T−1i,j + T−1j,i

, (5)

Ti,j =
Ki

(
xij − xi

)
· nij

|xij − xi|2
, Tj,i =

Kj

(
xij − xj

)
· nji

|xij − xj |2
,

where xi, xj , and xij denote the centroids of Ωi, Ωj , and
Γij , respectively, and nji = −nij . The difference between
first and second-order schemes lies in how we compute the
mobility term, λw = krw/µw, which governs how the flux
depends upon saturations (and component concentrations).

For a first-order scheme, we reconstruct point values by as-
suming that the mobility is constant inside each cell and can
be computed from the cell-averaged saturation (and com-
ponent concentration) values. This gives two values at the
midpoint, a value λ− reconstructed inside the cell the nor-
mal vector n is pointing from, and a value λ+ reconstructed
inside the cell the normal vector is pointing to. Given these
one-sided point-values, we use the standard upstream method
to evaluate the integrand at each integration point,

λij =

{
λ−, if

(
K∇p · n)ij ≥ 0,

λ+, otherwise.
(6)

Higher accuracy is achieved if we use a higher-order re-
construction of the point values. To this end, we can either
reconstruct point-values for the primary variables and eval-
uate one-sided mobilities at each interface, or we can first
compute mobilities from cell averages and use these “cell-
averaged” values to reconstruct point values. To not distin-
guish between the two, the following discussion considers
the reconstruction of point values û from a set of cell aver-
ages ui. To keep the presentation as simple as possible, we
start by outlining the basic concepts in 2D.

3.1 Local polynomial reconstruction

To obtain a second-order reconstruction, we start by form-
ing linear planes that interpolate the cell averages in xi and
at the centroids for any two neighbors from N (i). For a cell
with N neighbors, it is possible to construct

(
N
2

)
different

planes. Figure 1 shows all stencils that can be used to com-
pute local interpolation planes for a cell with five faces.

Ωi

Ωj1

Ωj2
Ωj3

Ωj4

Ωj5

Primary stencils:
{Ωi, Ωj1

, Ωj2
},

{Ωi, Ωj2
, Ωj3

},
{Ωi, Ωj3

, Ωj4
},

{Ωi, Ωj4
, Ωj5

},
{Ωi, Ωj5

, Ωj1
}.

Ancillary stencils:
{Ωi, Ωj1

, Ωj3
},

{Ωi, Ωj1
, Ωj4

},
{Ωi, Ωj2

, Ωj4
},

{Ωi, Ωj2
, Ωj5

},
{Ωi, Ωj3

, Ωj5
}.

Fig. 1 Example of a cell with five neighbors with a common face and
the ten corresponding stencils. Red dots indicate the cell centers and
blue dots indicate faces centers (used in the two-point flux approxi-
mation). Primary stencils are formed from cells that share a common
vertex, whereas ancillary stencils involve three cells that do not share
a single vertex.

In practice, one only chooses a subset k = {1, 2, . . . , Ni}
of the possible stencils to form the basis of the reconstruc-
tion inside each cell Ωi. As an example, we could use the
five primary stencils in Figure 1 and disregard the five an-
cillary ones. We will return to this discussion later for 3D
stratigraphic grids.
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To compute the local interpolation corresponding to sten-
cil k, we let xk` = (xk` , y

k
` ) and uk` denote the centroids

and the cell averages of the corresponding three cells. If
we introduce barycentric coordinates, the local plane is con-
structed as follows:

ûk(x, y) =
[
uk1 u

k
2 u

k
3

] x
k
1 x

k
2 x

k
3

yk1 y
k
2 y

k
3

1 1 1


−1

︸ ︷︷ ︸
C

xy
1

 . (7)

One possibility to get a multidimensional slope-limiter method
would now be to use the minimum-angle-plane reconstruc-
tion [11], which picks the local plane having the minimum
magnitude gradient. See [30] for an up-to-date discussion of
alternative slope-limiter reconstructions.

3.2 General WENO reconstruction in 2D

The next step is to write the reconstruction as a convex com-
bination of the local interpolation planes

ûi(x) =

Ni∑
k=1

wki û
k
i (x). (8)

To get optimal order of reconstruction, the weightswki should
be chosen so that the overall polynomial has the same for-
mal order on smooth data as we would get if we had used
the Ni + 1 data points to directly form a single polynomial.
For a fully unstructured grid with general polyhedral cells,
these weights will have to be computed uniquely for each
unique cell geometry.

In the WENO reconstruction, the linear weights are re-
placed by nonlinear weights that try to put less emphasis on
nonsmooth parts of the solution. These weights are defined
as follows,

wki = βki /

Ni∑
k=1

βki , βki = γki /(ε+ ISki )
2. (9)

Here, γki are linear weights that sum to unity and ε is a
small positive parameter to avoid division by zero (herein:
ε = 10−7 or ε = 10−12). The smoothness indicator ISki
measures how smooth the kth local polynomial ûki (x) is
on the cell [25]; the smaller the smoothness indicator, the
smoother the function ûki is on Ωi. The general expression
for anmth order polynomial on an unstructured grid is given
by [37] as (here η = (η1, η2) is a multi index)

ISki =
∑

1≤|η|≤m

∫
Ωi

|Ωi||η|−1(Dηûki (x))
2dx, (10)

Dηûki (x) =
∂|η|ûki (x, y)
∂xη1∂yη2

.

This formula applies to meshes with uniform cell sizes. In
3D, the scaling factor is |Ωi|2|η|/3−1. The purpose of the
scaling factor is to make the smoothness indicator invariant
under spatial scaling [54].

For our linear polynomials (m = 1) and the smoothness
indicator for cell Ωi simplifies to:

ISki =

∫
Ωi

((
D(1,0)ûki (x)

)2
+
(
D(0,1)ûki (x)

)2)
dx

=

∫
Ωi

|∇ûki (x)|2dx.
(11)

This gradient is quick to compute. Referring back to (7)
and let C̃ denote the first two columns of the inverse co-
ordinate matrix C, the local gradient is given as a simple
vector-matrix product

σki =
(
∇ûki (x)

)T
=
[
uk1 u

k
2 u

k
3

]
C̃. (12)

With this, the weights are

wki = βki /

Ni∑
k=1

βki , βki = γki /(ε+ |σki |2 |Ωi|)2. (13)

Using that the weights sum to unity, the reconstruction of
the one-sided point value u−ij at the centroid xij of Γij is
another simple vector-vector product

u−ij =
Ni∑
k=1

wki
(
ui + σki (xij − xi)

)
= ui +

(
Ni∑
k=1

wki σ
k
i

)
(xij − xi)

)
.

(14)

3.3 Changes required by complex stratigraphic grids

The construction is analogous in 3D with the obvious mod-
ifications necessary for four points and coordinate/gradient
vectors with three components and works robustly as long
as the polygonal grid is sufficiently regular. In the follow-
ing we will discuss in detail some of the extra precautions
and modifications we have found necessary to ensure ro-
bust reconstructions for the type of complex grids seen in
industry-standard models of petroleum reservoirs. To illus-
trate a few of the typical issues, we use the grid geome-
try from the simulation model of Norne as an example, see
github.com/OPM/opm-data. There are several other
public data sets that contain similar complexities, but we
chose Norne since it is the only one that has been made
specifically to represent a real asset.

By default, each cell in a corner-point grid is hexahe-
dral and thus has six logical neighbors. Exceptions occur
for cells that are adjacent to external boundaries, adjacent
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six neighbors five neighbors

eroded face

Fig. 2 Illustration of cell geometry and local topology for a strati-
graphic corner-point grid, here shown for two cells from the Norne
simulation model.

Fig. 3 Illustration of the complex geometry and topology arising near
faults in real reservoir models, here represented by two cells from the
Norne simulation model. The left figure shows a cell at the top of
the reservoir that lies adjacent to three fault faces. Altogether, the cell
shares faces with twenty other cells, which together with the external
top boundary means that the cell has 21 unique faces. The right figure
shows another cell along with the neighboring cells above, below, and
to the south, where the vertical pillar of cells contains an inactive cell;
this inaccessible rock volume is shown as void space in the figure. No-
flow boundary conditions must be imposed on faces marked in white
color.

to faults, or have degenerate faces that have collapsed en-
tirely. To ensure that the complex layering of the reservoir is
represented with as few cells as possible, each cell may be
tilted axially and have large aspect ratios. Because the eight
corner-points can be shifted independently up and down the
four coordinate lines that deliminate each pillar, the cell faces
will generally be bilinear and can deviate far from being pla-
nar. Pairs of corner-points can also collapse to a single point
so that the cell faces reduce to a triangle or disappear en-
tirely. These effects are illustrated in Figure 2.

Each cell in a stratigraphic grid will only have a sin-
gle neighbor above and below but may have multiple neigh-
bors in each of the four lateral directions if any of the corre-
sponding hexahedral faces are adjacent to a fault. This can
complicates the geometry and topology significantly, as seen
in Figure 3. Even if we restrict the number of local poly-
nomials to primary quadruples defined analogously to the
primary triples in Figure 1, the number of local polynomi-
als can be very large, which results in a dense local stencil.
There is also the risk of putting too much emphasis on poly-
nomials that interpolate across subfaces with small areas.
Herein, we simplify the reconstruction by limiting the local
stencils so that they only include a single neighboring cell
in any of the six logical directions (up, down, north, south,
east, west). That is, if a face of the original hexahedral cell

has been subdivided to create a matching grid, we pick the
neighboring cell with the largest subface and disregard the
others when forming the local polynomials. This is done as
part of a preprocessing step. Our approach is obviously a
significant simplification and it is not difficult to come up
with special cases where this choice is not optimal. How-
ever, we are more concerned with robustness for complex
grids, which has been verified in a number of challenging
test cases.

Cell faces defined by four or more points will generally
not be planar, and this introduces a certain ambiguity in how
to define geometrical quantities such as face areas, cell vol-
umes, and face/cell centroids. Herein, these quantities are
computed by use of a tetrahedral subdivision described in
more detail in [34]. The resulting cells are not necessarily
convex so that cell centroids may lie outside of the cell it-
self, as illustrated in Figure 4.

3.4 Robust scaling of the smoothness indicator

In our experience, nonconvex cells with high aspect ratios,
such as the one shown in Figure 4, do not seem to adversely
affect the construction of the local polynomials. However,
the smoothness indicator (10) is not invariant to aspect ratios
and cannot be used directly, since interpolation using a small
gradient can give a large overshoot when multiplied by a
large coordinate distance. To make the indicator more robust
and invariant under spatial scaling and stretching, we make
an affine transformation into the local coordinate space de-
fined by a singular-value decomposition of the vectors from
the cell centroid to the face centroids of the cell under con-
sideration, computed as part of the preprocessing.

The transformed cell, shown to the upper-right in Fig-
ure 4, is scaled, rotated, and shifted so that the centroids
fit into a unit cube, where smoothness is naturally defined.
Interpolating in this space only affects the smoothness in-
dicators and not the values of each local polynomial. The
local coordinate space is defined by an affine transformation
g(x) = S(x− z), where S is linear map onto the new coor-
dinate axes and z is the origin of the new coordinate system.
If we let X be the matrix of all vectors from cell centroid to
face centroids for a given cell in d dimensions, the singular-
value decomposition UDV T = X has d nonzero singular
values in D, with corresponding right-singular vectors in
V . These vectors are the major axes of variation in the set
of interpolation points, giving us the affine transformation
S = D̃V −1, where D̃ corresponds to the top square part of
D. After rotation, translation and scaling, the transformed
set of face points local to each cell are contained in a cube
with approximately equal axes, with the cell centroid as ori-
gin. As a simple demonstration of the effect large aspect ra-
tios can have on the general smoothness indicator (10), we
consider interpolation inside a parallelogram with sides L



A Fully Implicit WENO Scheme on Stratigraphic and Unstructured Polyhedral Grids 7

physical

z-scaled SVD transformed

Fig. 4 A single grid cell from the Norne model shown in three different coordinate systems: original coordinates, z-direction scaled by a factor
10, and a coordinate system defined from a singular-value decomposition of the vectors from cell to face centroids.
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Fig. 5 Illustration of reconstruction of point values for cells with large aspect ratios. Here, cell averages from four cells are used to reconstruct a
point value at the interface between the red and green cells. The left and middle plots show how the quadrilateral interpolation region, which is
not aligned with the major axes (left), is transformed to square in the local coordinate system by an affine transformation. The right plot shows the
error in the interpolated value when using unscaled variables as a function of height and length. The error increases significantly even for modest
deviations from unit aspect ratio.

andH that connects the midpoints of four cells, as in the left
plot of Figure 5. The right plot shows the error in the inter-
polated value at the midpoint of the interface between two
of the cells, compared to the (constant) interpolated value
computed in SVD-coordinates, for a span of L and H val-
ues. This error increases rapidly as the aspect ratio deviates
from unity. (We note in passing that the original smoothness
indicator for Cartesian grid in [32] is scale-invariant under
axis-aligned changes in aspect ratio.)

For simplicity, we define the linear weights γki in (13)
to be proportional to the volume of the triangle/tetrahedron
spanned by the centroids that define the corresponding poly-
nomial. This ensures that very small, degenerate triplets or
quadruples do not adversely impact the interpolation quality.
Another option would be to select linear weights to obtain a
third-order reconstruction in regions where the interpolated
quantity is smooth, but requires additional treatment for neg-
ative linear weights and we thus leave this for future work.

3.5 Linearization and solution of the nonlinear discrete
problems

Inserting the reconstructions discussed above into the resid-
ual equations of the type shown in (4) for each conserved
component gives a nonlinear system of discrete equations,
F(y) = 0, where the vector y collects all the unknown cell
averages in all cells of the model. For compressible rock and
fluids, the system will generally be nonlinear also if we use
an explicit discretization (i.e., set m = n in (4)). To solve
the nonlinear system, we use a standard Newton method it-
erative solver,

0 ≈ F(yn) + Jδy, yn+1 = yn + δy, (15)

where J is the Jacobian matrix evaluated at y0. The lin-
earized system does not explicitly enforce saturations to be
in the unit interval and to mitigate this and to ensure suffi-
cient convergence rates for nonlinear fluxes, we only allow
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for a maximum saturation update of 0.2 in each Newton up-
date for the examples with nonlinear flux functions. If con-
vergence issues are detected by oscillating or stagnant max-
imum residuals, the solver employs a global relaxation for
the remainder of the current Newton loop. Another option
is to use a line-search, but this may require a large num-
ber of costly WENO evaluations. Likewise, we may have
to halve the time step to obtain convergence when the pre-
scribed number of nonlinear iterations is insufficient (in the
explicit case, the time step is limited by a standard CFL con-
dition).

A main difficulty in developing a fully implicit, high-
resolution simulator is to derive and compute the Jacobian
matrix. The combination of complex constitutive relation-
ships and the high-order reconstruction can lead to very in-
tricate nonlinearities, and deriving the required lineariza-
tions analytically and then coding them is a time-consuming
and error-prone process. To avoid this problem, we use auto-
matic differentiation (AD) as explained in [46]. AD relies on
the premise that the evaluation of any residual equation can
be broken down to a nested sequence of elementary binary
operations (addition, multiplication, etc.) and unary opera-
tions (logarithm, exponential, etc). These operations satisfy
known derivative rules, and we can use these rules in combi-
nation with the chain rule to analytically evaluate the deriva-
tives of any function evaluation. In the AD-OO framework
of MRST [31], this is done by operator overloading, and as
a user, all you have to do is code the residual evaluation, and
then the Jacobian matrix is computed simultaneously with
the residual by the software.

4 Numerical examples

This section reports a series of numerical examples that com-
pare the performance of the fully implicit WENO method to
a first-order, single-point upwind (SPU) method. The study
is a continuation of [46], and if not stated explicitly other-
wise, all two-phase cases with polymer or waterflooding use
the same fluid model. In all simulations reported herein we
only reconstruct primary variables; we have run a number of
test cases to verify that the discrepancy between reconstruct-
ing mobilities and primary variables is negligible. Likewise,
we have already presented several comparisons between ex-
plicit and implicit schemes in [46], and explained in detail
why implicit schemes should generally be preferred. In the
following, we therefore only present results from the im-
plicit versions of the WENO and first-order schemes.

4.1 Example 1: Convergence study

We start by studying the numerical error and the order of
convergence for the method. In many EOR scenarios, the

chemical fronts will propagate as linear or weakly nonlinear
waves. Such waves contain no or very little self-sharpening
and are thus more susceptible to numerical smearing than
leading nonlinear displacement fronts. To illustrate typical
behavior, it is sufficient to study a 1D, single-phase, two-
component displacement process. That is, we consider aL =

100 m wide reservoir initially filled with a ’blue’ fluid ex-
cept for a ’chemical bank’ containing ’red’ fluid to the left
in the reservoir. We displace the bank of ’red’ fluid by inject-
ing ’blue’ fluid from the left boundary, assuming a constant
pressure drop ∆p over the reservoir. The governing equa-
tions reduce to a linear advection equation

ut + aux = 0, u(x, 0) = u0, a = µK∆p/(Lφ),

which has exact solution u(x, t) = u0(x − at). Here, how-
ever, we solve the problem as a two-phase model with equal
fluid properties for the two phases. This setup represents
a worst-case scenario since the linear wave lacks the self-
sharpening mechanisms that tend to counteract numerical
smearing for nonlinear waves.

It is simple to show that the numerical smearing for the
SPU scheme is proportional to ∆x + a∆t. Introducing the
CFL number ν = a∆t/∆x that relates the time step to the
spatial discretization, we get a smearing (1 + ν)∆x, which
for a fixed spatial discretization decreases with the time step.
(This is in contrast to explicit schemes, for which the smear-
ing increases with reduced CFL number.) For the WENO
scheme, we expect a formal L1 error to have aO(∆x2) con-
tribution from the spatial discretization and a O(∆t) contri-
bution from the temporal discretization.

Figure 6 reports the L1 error on a sequence of refined,
uniform Cartesian meshes for two different initial data. For a
smooth Gauss-pulse, the SPU scheme exhibits the expected
linear convergence. The order of convergence for the WENO
scheme is dictated by the choice of the time step, and we can
only expect to observe quadratic convergence if we choose
∆t ∝ ∆x2 or introduce a second-order temporal discretiza-
tion. It is more interesting to observe the improvement in
accuracy for ν ∼ 1. For many EOR models, linear waves
are typically trailing waves that move slower than leading
displacement fronts. Thus, if the CFL number of the leading
nonlinear waves are chosen to be moderately above unity,
the effective CFL number of the linear wave would be in a
range where the second-order WENO discretization would
give significantly better resolution than the standard first-
order SPU scheme. For the discontinuous double-step pro-
file, the convergence order is one half for both schemes, as
expected. For both initial conditions, the nonlinear solver
converged in one iteration for all time step for SPU and
WENO.



A Fully Implicit WENO Scheme on Stratigraphic and Unstructured Polyhedral Grids 9

16 32 64 128 256 512
10-5

10-4

10-3

10-2

10-1

100

Number of discretization points

SPU, ν = 10
WENO, ν = 10
SPU, ν = 1
WENO, ν = 1
SPU, ν = 0.1
WENO, ν = 0.1
O(∆x)
O(∆x2)

Initial data:

u0(x) = e−(0.1x−3)2

16 32 64 128 256 512
10-5

10-4

10-3

10-2

10-1

100

101

Number of discretization points

SPU, ν = 10
WENO, ν = 10
SPU, ν = 1
WENO, ν = 1
SPU, ν = 0.1
WENO, ν = 0.1
O(∆x1/2)
O(∆x)
O(∆x2)

Initial data:
u0(x) = χ[10,50](x)

Fig. 6 Convergence study of the L1-error of the SPU (blue) and
WENO (red) schemes for smooth and discontinuous initial data.

4.2 Example 2: Quarter five-spot

To compare how the SPU and WENO schemes perform for a
full displacement profile, we consider the well-known quar-
ter five-spot setup for a displacement of oil by water contain-
ing polymer. Instead of using a full well model, we model
the injector placed in the south-west corner as a source term
with constant injection rate and represent the producer placed
in the north-east corner as a boundary condition with fixed
pressure. We compare how the two schemes perform on a
simple Cartesian grid, a Voronoi grid, and a triangle grid,
which all have a comparable number of cells.

Figure 7 reports saturation profiles at a fixed time, cho-
sen so that water has just broken through at the producer in
all three grids. The leading water front and the trailing chem-
ical front are both resolved more sharply by the second-
order WENO scheme. The computed saturations are more
patchy on the two unstructured grids than on the Cartesian
grid. The effect is somewhat exaggerated for WENO since
we plot cell averages and not the piecewise bilinear recon-
struction. A simple grid-refinement study on the Voronoi
grid shows that the first-order scheme needs approximately

four times as many grid cells as WENO to achieve the same
accuracy. This is consistent with observations made for Carte-
sian grids in [46].

4.3 Example 3: Layer from SPE 10

To see how the difference in resolution between SPU and
WENO translates to a highly heterogeneous setting, we con-
sider a fluvial formation consisting of high-permeable sand-
stone channels embedded in a low-permeable background
of shale and coal, modelled by a 60 × 220 Cartesian grid
with permeability sampled from Layer 45 of the SPE 10
benchmark [10]. We inject water with polymer from a point
source placed in grid cell (36, 1) and produce fluids at con-
stant bottom-hole pressure from a producer located in cell
(1, 217). From the contours of cell-averaged saturations in
Figure 8, sampled 3000 days after injection started, it is ev-
ident that WENO scheme captures the displacement fronts
with approximately the same accuracy as SPU on a 2 × 2

refined grid. We observed the same trend for similar simu-
lations on other layers of the SPE 10 model, including the
more smoothly varying, shallow-marine, Tarbert formation.

For this example we have used a time-step control built
into MRST, which, in its simplest form, takes a set of time
step targets (control steps) and a desired number of nonlin-
ear iterations as input. Here, we have used five iterations as
our target and a step target that consists of 30 equally spaced
time steps of 100 days. To avoid a large initial error, the
first step is replaced by a ( 1

32 ,
1
32 ,

1
16 ,

1
16 ,

1
4 ,

1
2 ) subdivision

to form a gradual ramp-up. For some control steps, the time-
step controller will reduce the actual time step to achieve
convergence within the specified number of nonlinear itera-
tions. The bar graphs in Figure 8 report the number of non-
linear iterations for the two schemes. For SPU, most steps
require three iterations and all controls steps complete with-
out chopping. This gives an average time step of 81 days and
a minimum step size of 3 days (CFL number 50 and 1.87,
respectively). For WENO, the Newton solver struggles more
and requires three times as many iterations as SPU in total,
giving an average step size of 68 days and a minimum step
size of 2 days (CFL number 42.5 and 1.25, respectively).

4.4 Example 4: Norne field model

This example seeks to demonstrate how the WENO scheme
can significantly improve the resolution of linear or weakly
linear waves at the typical grid resolution seen in field-scale
models by considering the conceptual fluid model from Ex-
ample 2 posed on the grid from the Norne simulation model.
We impose a constant injection rate at the end of the reser-
voir, with no-flow conditions elsewhere, and place two pro-
ducer wells operating at fixed bottom-hole pressure on the
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SPU WENO SPU WENO SPU WENO

Fig. 7 Quarter five-spot with polymer flooding computed on three different grids with constant (first-order) and WENO (second-order) recon-
struction. The color plots show cell-averaged saturation values.
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Fig. 8 Polymer injection into a fluvial reservoir (Layer 45 from SPE 10). The contours show water saturation at values 0.22:0.030:0.78. The bar
graphs show the number of nonlinear iterations per targeted time step (control step) for SPU (left) and WENO (right) schemes. Some steps have
been divided to ensure that the number of iterations per step (green bars) do not exceed five. Steps that have not converged within 10 iterations are
considered to fail and illustrated by a red bar.

opposite end of the domain. This simple piston-like displace-
ment of a ’blue’ fluid by an identical ’red’ fluid, see Figure 9,
clearly exhibits how

WENO reduces the numerical smearing significantly com-
pared with the SPU scheme for the same time step. In fact,
WENO reduces the smearing more than if we let SPU use
ten times as many time steps. Comparing water-cuts from
the three simulations, we see how the smearing effect causes
SPU to predict almost 80 days earlier breakthrough than
WENO. We now repeat the same experiment with perme-
ability and porosity from the original field model. In this
case, we observe less discrepancy between the water cut for
SPU and the two other simulations. This is to be expected,
as the layering of the real model leads to very different flow
paths through the model, which reduces the impact of nu-
merical diffusion on the aggregate water production in a

long well, as the first arrival time varies between layers. We
use 300 time-steps to simulate 2000 days of displacement
with maximum CFL-numbers of 185.5 and 161.8 for the ho-
mogeneous and heterogeneous cases, respectively. The cell-
average CFL numbers are 1.32 and 0.88. When we examine
the nonlinear iterations used by WENO in Figure 10, we
note that WENO uses more iterations (3.58 on average) or
the heterogeneous permeability than for homogeneous per-
meability (1.56 on average), largely because of a number of
time-step cuts. As this is a linear problem, SPU uses a single
iteration per time-step.
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Fig. 9 The two upper rows report water saturations for a piston displacement on the Norne field model with homogeneous permeability simulated
by SPU and WENO with the same time step and by SPU with ten times as many time step; locations of the producer wells are plotted in red. The
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Fig. 10 Number of nonlinear iterations per time step used by WENO for the Norne model with uniform permeability and porosity (left) and
original petrophysical data (right).

4.5 Example 5: Unstructured grids

The examples discussed so far have focused on illustrating
how the WENO scheme improves the resolution of linear
and nonlinear waves. To illustrate the utility of WENO on
fully unstructured grids, we consider a case from [2] that de-
scribes a vertical cross-section with a producer represented
by a single point and an injector whose curved trajectory
spans a relatively large part of the domain. The setup con-
sists of four grids:

G1: a coarse Cartesian grid with 231 cells;

G2: a composite grid in which the coarse Cartesian grid is
refined locally around the wells by adding Voronoi cells,
giving in total 939 cells;

G3: an unstructured Voronoi grid with 1926 cells, which is
adaptively refined near the wells; the grid is constructed
so that the centroids of the perforated cells are placed
exactly on the well trajectory;

G4: a fine Cartesian grid with 20 000 cells.

Figure 11 verifies that WENO gives improved resolution
of the leading saturation front as well as the weakly nonlin-
ear chemical front for the two unstructured polyhedral grids.
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On grid G3, in particular, WENO seems able to capture the
shape of the chemical front with much higher accuracy. Un-
like the first-order scheme, WENO captures small undula-
tions in the trailing rarefaction waves caused by the tabu-
lated relative permeabilities on G3 and G4, see [46].

Looking at the oil and water production, we see that the
finest grid (G4) has so high resolution that both methods
seem to capture the fluid production with almost similar ac-
curacy. On all the other grids, WENO gives much sharper
resolution of the water breakthrough and the corresponding
decay in oil production. This effect would be even more pro-
nounced if the simulations were continued past the time the
chemical displacement front breaks through. Trailing chem-
ical fronts generally have weaker self-sharpening mecha-
nisms than the primary displacement front and are thus more
difficult to capture accurately. Use of a higher-order recon-
struction can therefore be a feasible alternative to increasing
the grid resolution.

4.6 Example 6: Grid effects

The two previous examples demonstrated that the WENO
scheme is applicable to grids with the complexity seen in
contemporary simulation models. The method nevertheless
has two features that may create numerical artifacts. First of
all, like in most commercial simulators, we compute inter-
cell fluxes K∇p · n using a two-point discretization, which
is only consistent on K-orthogonal grids [1,60]. To illustrate
the resulting single-phase errors, we use the same setup as
in Example 1, except that we now simulate the 1D advec-
tion on a 2D quadrilateral mesh in which the nodes have
been perturbed so that none of the cells satisfy the condition
for K-orthogonality.

The 2D plots in Figure 12 report cell-averaged values
for both schemes, whereas the scatter plots report recon-
structed point values at the cell centroids for SPU and at face
centroids for WENO, plotted as function of the correspond-
ing x-coordinates. In the absence of grid effects, the dots
should all fall on a single curve. Here, they do not, and both
schemes obviously suffer from errors induced by the incon-
sistent pressure discretization. On the positive side, WENO
resolves the width and the height of the ’chemical bank’ sig-
nificantly more accurately than SPU. This is very important
in EOR studies in which enhanced local displacements tend
to depend strongly and nonlinearly on the concentration of
the active chemical substances. The nonlinear solver uses
two iterations in the first time step and one iteration for the
remaining time steps for the SPU scheme. For WENO, the
nonlinear solver needs two iterations in all time step.

The type of error illustrated in Figure 12 is a single-
phase phenomenon that stems from an incorrect discretiza-
tion of the linear operator K∇ and should not be confused
by grid-orientation errors that arise because of insufficient

multidimensional approximation of the (nonlinear) multi-
phase phase flux, which can give particularly severe grid-
orientation errors for adverse mobility displacements also on
K-orthogonal grids; see e.g., [17] and references therein. Ex-
periments reported in [46] indicate that second-order TVD
and WENO discretizations are somewhat less susceptible to
such errors compared with the SPU scheme for a (rotated)
quarter-five spot problem posed on Cartesian grids. On the
other hand, using a higher-order reconstruction will reduce
the stabilizing role of numerical diffusion, and more numer-
ical experiments are needed to assess whether WENO miti-
gates or enhances this nonlinear error mechanism in general.

Secondly, one could imagine that the stencil reduction
discussed in Section 3.3 will introduce artifacts. To investi-
gate this, we consider a nonmatching interface between two
rectilinear meshes of different resolution, see Figure 13. At
the interface between the two submeshes, the eastern faces
of some of the fine cells to the left are split in two. Likewise,
the western face of all the coarser cells to the right are subdi-
vided into three or four subfaces with largely different areas.
This introduces grid effects both for the SPU scheme and
for the WENO scheme with full stencil. On the other hand,
reducing the stencil to only involve cell pairs on opposite
sides of the subfaces with the largest area does not introduce
any notable adverse effect on the scatter plot. For SPU, the
nonlinear solver uses two iterations for the first time step
and one iteration for the remaining time steps, whereas it
requires one or two iterations for all time steps when using
WENO with full or compact stencil.

4.7 Example 7: Compositional flow

We consider a gas injection case described using a two-
phase, three-component compositional model with Peng–
Robinson equation-of-state. The reservoir is a rectangular
block with homogeneous properties and no-flow boundaries
and produced by a pair of vertical injector/producer wells
placed in the southwest/northeast corners. We consider two
different variations of the same injection scenario. In both
cases, the compositional fluid model is comprised of methane,
CO2, and n-decane. Initially, the reservoir contains a mix-
ture of C1 and C10 in a pure liquid phase. One pore-volume
of a gas with a mixture of 10% C1 and 90% CO2 by moles is
injected. The first scenario is at a high pressure of 400 bar at
datum depth. The resulting injection is completely miscible
with no free gas and gives a displacement profile consisting
of a single shock. Gravity forces have limited effect on this
single-phase flow scenario. For the second scenario, the ini-
tial reservoir pressure is 120 bar at datum depth. Now, the
injection gives rise to free gas upon injection and significant
gravity segregation and multiphase behavior. High viscosity
of the resident liquid results in a weak and unstable displace-
ment profile.
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Fig. 11 Example taken from [2] with a point well and a curved well path with the perforated cells marked in blue and red color, respectively. The
lower plots show oil and water production rates. In the production plots, solid lines are the first-order method and dashed lines the WENO scheme.

The basic setup is a 2.5D Voronoi grid with 2470 cells,
i.e., a grid that is laterally unstructured, but vertically struc-
tured. For comparison, we consider three refined grids with
twice the vertical resolution and/or approximately 2× 2 the
lateral resolution. To keep the CFL number approximately
the same, we also use twice the number of time steps. To
assess the spatial contribution to the smearing for SPU, we
also run a simulation with the time step reduced by a fac-
tor one hundred. Figure 14 shows 3D snapshots of the CO2
fraction for some of the simulations.

For the high-pressure scenario, we observe the same be-
havior as in the other cases above: WENO gives much sharper
resolution than SPU on the same grid, and slightly better res-
olution than SPU on all the refined grids. This is particularly
evident when looking at the production rate of CO2 shown
in Figure 15. Because the CO2 front travels faster the higher
you are in the reservoir, the breakthrough will be sharper
and occur earlier when the vertical resolution is increased
for WENO. Figure 16 shows that the WENO scheme only
requires slightly more iterations than SPU on the same grid.
At low pressure, we see a much bigger change for both dis-
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Fig. 12 Simulation of a 1D displacement on a 2D quadrilateral grid that does not satisfy the condition for K-orthogonality.
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Fig. 13 Simulation of a 1D displacement across a nonmatching grid interface.

cretizations when the vertical resolution is increased. The
stair-stepping artifact is likely a result of mobility contrasts
between different layers. Using a high-resolution reconstruc-
tion does not significantly reduce this artifact. For this, and
comparable scenarios, the most efficient method would be to
use a high-resolution method on a grid with relatively coarse
lateral resolution and high vertical resolution.

5 Concluding remarks

We have presented the formulation of a fully implicit WENO
scheme, which is applicable to black-oil type and composi-
tional simulations, and discussed some special adaptations
necessary to obtain an efficient and robust scheme on the
types of grids found in contemporary reservoir models. In
particular, we promote the use of a local coordinate transfor-
mation to robustly handle cells with high aspect ratios and
nonconvex geometries and the use of automatic differenti-
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Fig. 14 Snapshots of the CO2 front part-way during the simulation of the compositional case for two different pressure regimes.
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Fig. 16 Number of nonlinear iterations for the compositional gas in-
jection test cases.

ation to overcome the challenge of linearizing the resulting
system of discrete nonlinear equations.

A series of numerical tests, some of which are reported
herein, show that the WENO scheme improves the resolu-
tion of both linear and nonlinear waves significantly, typi-
cally giving the same resolution as the standard SPU scheme

with twice as many grid cells in each spatial direction or
ten times as many time steps. The results presented herein
should nonetheless only be considered as preliminary proof-
of-concept. We believe that one can obtain even better re-
sults by optimizing the choice of local polynomials and lin-
ear weights for each cells. More research is required to this
end.

The computational cost of WENO is obviously higher
than SPU, not only because of the reconstruction procedure
and the denser local stencil, which incurs more evaluations
of partial derivatives, but also because the scheme requires
more iterations. One can reduce the cost of the reconstruc-
tion somewhat by precomputing all geometric parts of the
stencil (the local SVD coordinate transformation and the in-
verse matrix C̃ in (12)). In [46], we also discussed lagged
evaluation of the nonlinear weights βki to reduce the non-
linearity of the discrete stencil. Lagging the evaluation over
the whole time step seems to work well for imbibition or
drainage processes with monotone displacement profiles, but
breaks down almost immediately in water-alternating-gas
(WAG) type scenarios. Lagging the evaluation in the nonlin-
ear iteration process does not seem to cause similar break-
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down, but has little effect on the computational efficiency.
We believe a better approach would be to localize recon-
struction to regions with significant fluid movement (see e.g.,
[53]) and try to reuse previous nonlinear weights for stencils
where changes in cell averages are below a prescribed value.
This requires more research.
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