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Abstract  

This study investigates the use of Fourier Transform Near-Infrared (FT-NIR) spectroscopy and Raman spectroscopy 
to monitor the CO2 absorption process when over 65 wt % concentrated monoethanolamine (MEA) solutions are 
used. Using high concentrated amines instead of the conventional 30 wt %, is a strategy to decrease the cost of CO2 
capture plants by minimizing the energy consumption spent for amine regeneration and reducing the size of the 
process equipment. In addition, higher solvent concentration has a positive impact on mass transfer. CO2 loading 
and solvent strength are two main parameters that are used to characterize the well-known CO2 capture process by 
MEA. Several analytical methods are in practice to determine these two parameters but most of them are time-
consuming and not favourable when quick results are demanded. Process analyzers such as Raman spectroscopy or 
NIR (Near Infrared) spectroscopy can be used for real-time monitoring of chemical or physical attributes in a system 
and have advantages over traditional analytical methods. Authors have previously published spectroscopic methods 
combined with chemometrics to determine CO2 loading in 30 wt % MEA solutions by Raman spectroscopy in 
laboratory scale and pilot plant experiments. The aim of this paper is to extend these spectroscopic investigations 
when both the amine concentration and loading are spanned in a range. CO2 loading range was selected between 0-
0.6 mol CO2 / mol MEA and solvent concentration was varied between 66-99.5 wt %. Two analyzers were selected; 
Raman and Fourier transform near infrared (FT-NIR) spectrometers. It is relatively easy to generate data in a short 
time by these instruments, however identification of components of a chemical mixture and calibration methods 
become challenging as the FT-NIR and Raman spectral data are not straightforward. Many spectral responses appear 
similarly and therefore the choice of chemometrics methods is more reliable than the traditional univariate methods. 
In this study, chemometrics has been applied for data preprocessing, data exploration and finally for multivariate 
calibration of four models to predict CO2 loading and MEA concentration from FT-NIR and Raman spectroscopy. 

Keywords: high concentrated MEA, CO2 loading, MEA weight percentage, spectroscopy, chemometrics 
 

1. Introduction  
Body Carbon capture, utilization and storage (CCUS) is 
an obligatory action in the global climate change 
mitigation plans. Electricity/thermal power generation 
and transport account for two thirds of total CO2 
emissions and 32.8 billion tons of global CO2 emissions 
in the atmosphere are the results of fuel combustion [1]. 
Post-combustion CO2 capture using amines is the most 
widespread method in CCUS. Monoethanolamine 
(MEA) has prioritized the other amines to remove CO2 
from flue gas at atmospheric pressure and is considered 
to be a “first generation solvent”.  
30 wt% MEA has been the benchmark for most of the 
experimental, theoretical and modelling work. 15-20 
wt% was the recommended amine concentration and 
since 1960s 30 wt % has been the standard [2, 3]. The 
limitations to avoid using higher amine concentration are 
the thermal degradation, corrosion and fouling problems 
[4, 5]. Raksajati, Ho [6] show that the development of 
aqueous chemical absorption technology for CO2 capture 
should also focus on new solvents with high solvent 
concentration to make a significant impact on the capture 
cost. They claim if the solvent concentration increases 

from 30 to 50 wt %, the capture cost decreases by about 
16% from US$88 to US$72 per metric ton of CO2 
avoided. When the solvent concentration is increased, the 
solvent flow rate decreases and the mass transfer 
increases which makes to have a reduced absorption unit 
size [6]. In this aspect, moving from the traditional ’30 
wt % MEA based capture process’ to ‘high concentrated 
MEA process’ has a significant interest. However, the 
corrosion, degradation and fouling effects which are 
more in high concentrated MEA process should also be 
carefully addressed [7, 8]. EFG plants by Fluor Inc. and 
CO2 capture plants by Union Engineering in Denmark 
have upgraded amine technology for commercial 
applications using over 30 wt % MEA. 
Process information described by CO2 loading (mol  
CO2/mol  amine)  and  the  amine  concentration (wt%) 
are used in R&D experiments and capture plant 
operations to characterize absorption and regeneration. 
Loading is defined as the ratio between number of moles 
of CO2 and the number of moles of the solvent and the 
solvent concentration, is expressed as the solvent mass 
fraction. Samples extracted from rich stream, lean stream 
and water wash in amine based CO2 capture plants, are 
continuously analyzed offline for CO2 loading and amine 
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concentration. The frequency of sample extraction is 
limited by several factors such as the time spent for lab 
analysis, sample preservation facilities during lab-to-
plant transport, risk factors during sample extraction and 
availability of laboratory resources such as chemical and 
skilled manpower. In addition, operational delays are 
unavoidable when decisions are dependent on laboratory 
results. In this aspect, process analytical technology 
(PAT) plays a vital role which speeds up the analysis time 
and opens the opportunity to give live feedback while 
minimizing sampling errors, risk and health issues [9].   

1.1 PAT tools 

PAT tools in industrial applications has more than 70 
years history, and today many sophisticated analyzers are 
across chemical and petrochemical industries [9]. Some 
types of spectroscopic methods have been tested for 
liquid and gas analysis in CO2 capture plants particularly 
during last 10 years and have shown a positive 
impression. A list of published work where spectroscopic 
methods were used for liquid analysis in amine based 
CO2 capture process is given by Jinadasa [10]. IR 
(Infrared), UV/Vis (Ultra-Violet Visible) and NIR (Near 
Infrared) and Raman spectrometers have been used for 
qualitative and quantitative analysis of chemical 
components. NIR spectral data was combined with other 
measurement data to determine MEA wt% and CO2 %  
[11, 12]. CO2 absorption by an amine mixture at high 
pressure was monitored by a predictive statistical model 
where NIR data was one of measurements [13]. Raman 
spectroscopy has also become a popular method in liquid 
phase analysis in laboratory experiments and pilot plant 
trials as reported in several literature [14-19]. These 
authors have used the high spectral features of Raman 
data to determine species concentration.  
Spectroscopy reveal in-depth chemical information of a 
system because molecular vibrations produce unique 
spectra. Weak Raman scattering for water, compact 
chemical information in fingerprint area for organic 
solvents and non-invasive remote monitoring facility are 
some of the features which have made Raman 
spectroscopy appropriate to analyse MEA-CO2-H2O 
system. Various organic compounds exhibit selective 
absorption for infrared radiation. Water molecules 
provide a very strong signal on the NIR spectra as they 
are highly polarized and used as an indication on water 
content in a sample. FT-NIR spectroscopy is considered 
as the best performing among other NIR analysers based 
on speed of analysis, higher signal (S/N) to noise ratio 
and precision and accuracy of wavelength. It uses the 
Fourier transform algorithm on the interferogram to 
convert a spectrum and provides easy transfer of 
calibration models between instruments [20]. 
Figure 1 shows a schematics representation of using an 
immersion probe for in-situ analysis of gas loading and 
solvent concentration. The immersion probe is connected 
to a process analyzer such as Raman spectrometer where 
it acquires data from a process stream. The spectral data 
is converted into chemical data using a calibration model. 
This model can be prepared using a univariate analysis or 
a multivariate analysis (Næs & Martens, 1984), and the  
figure mentions a PLS model which is one type of a 
multivariate analysis method (described in section 2.4.3). 

For highly correlated data, multivariate analysis become 
the preferred choice over univariate. Our previous studies 
demonstrated the use of Raman spectroscopy for a 
complete in-situ speciation of CO2 capture by 30 % MEA 
[19, 21]. In this study, a similar approach was used for 
developing multivariate regression models for CO2 
absorption by higher concentrated MEA.  

 

Figure 1: An immersion probe used as a process monitoring 
tool in gas absorption process; (PLS = partial least squares 
regression) 

 

2. Experimental section 

2.1 Chemicals and samples 

MEA purchased from Merck (>99%) and CO2 from AGA 
were used as received without further purification. 
Degassed milli-Q water (18.2 MΩ.cm) was used for all 
the sample preparation. 105 samples were prepared for 
both calibration and validation at room temperature (25 
°C) and pressure maintaining the same experimental 
conditions. 

 
 
 
 
 

Figure 2: CO2 loading apparatus 

Amine stock solutions were prepared by mixing (>99%) 
MEA and degassed Milli-Q water in different ratios. To 
ensure the homogeneity of the mixture, these stock 
solutions were stirred for 20 minutes at 300 rpm after 
mixing. The prepared stock solutions were then loaded 
with CO2 by bubbling a CO2 gas stream (0,15 l/min) 
using a fritted glass column (Figure 2). CO2 feeding was 
carried out for a sufficient period of time, to ensure 
saturation of stock solutions with gaseous CO2 at 
experimental conditions. After that, the CO2 loaded 
solutions were stirred for 20 minutes at 300 rpm in a 
closed vessel and kept for 24 hours to give adequate time 
for equilibrium. To obtain a sample set having variation 
in both amine and CO2 concentration, each sample was 
prepared by mixing a liquid portion from CO2 unloaded 
MEA stock solution with a portion from CO2 loaded 
MEA stock solution. Analytical balance Mettler Toledo 
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(±0.0001 g) was used to prepare samples gravimetrically. 
Figure 3 and Figure 4 show the actual MEA strength and 
CO2 loading values of 105 samples as obtained from 
titration measurements for each sample.  

Figure 3. MEA concentration of calibration and validation 
samples 

Figure 4. CO2 loading of calibration and validation samples  

 

2.2 Raman spectroscopy 

The Raman measurements were taken with a 785 nm 
RXN2 Kaiser Raman System (Figure 5). Since the Raman 
measurements are light sensitive, the sample to be 
measured was placed inside a black plastic sample holder 
to avoid fluorescent disturbances and was covered with 
an aluminium foil to further get rid of any disturbances 
from the background light. The immersion probe was 
washed with deionized water followed by acetone before 
each measurement to remove impurities on the probe tip 
and avoid contamination of measurements by each other. 
Presence of air bubbles on the probe tip gives incorrect 
spectra. Therefore, the Raman probe tip was examined 
for any air bubbles after immersing in the liquid. S/N 
ratio was optimized by varying the acquisition time and 
the number of scans. 4 scans having 30 second exposure 
time per scan was selected as the optimum S/N ratio. 
Raman measurements were taken from several spatial 
locations inside the each sample bottle and compared to 
ensure that the solutions were chemically and physically 
homogeneous throughout the sample.  

2.3 FT-NIR spectroscopy 

Figure 6 shows the FT-NIR instrument (Q-Interline; MB 
3000, 760nm laser wavelength) used for this study. The 
optimized instrument setting used per each measurement 
was 128 scans and a resolution of 16. Wavelength 
between 0–15000 cm-1 was considered for all the 
measurements. It was not possible to maintain stable 

temperatures below 40°C inside the FT-NIR sample 
holder accessory due to instrument configuration. 
Therefore, all the measurements were taken at 40°C in 
5mm diameter sample vials. Since the solutions were 
highly viscous it was difficult to fill the solution into the 
small diameter vials without forming air bubbles. By 
tapping few times and holding upwards the sample vials, 
most of the trapped air bubbles could be released.  

2.4 Spectral data 

2.4.1. Data pretreatment 

A process analyzer such as Raman or NIR spectroscopy 
generate several responses, but very often the irrelevant 
response to solve the analytical problem is larger. These 
responses hinder the relevant information and usually 
dominate the entire spectra such as by giving baseline 
offsets and multiplicative effects. The environmental 
light, stray light, fluctuation of laser intensity, 
fluorescence from the sample and instrument inherited 
noise are some of components that come with the raw 
spectroscopic data. These data (“noise part”) should be 
stripped from raw data to keep the most relevant chemical 
responses (“structure part”). In chemometrics, data 
pretreatment (preprocessing) algorithms are applied on 
raw data prior to the detailed data analysis for this 
purpose. The selection of the type of pretreatment 
methods is dependent on several parameters such as the 
type of chemical/physical system that we analyze and the 
instrument. In addition, the selected pretreatment 
methods highly affect the subsequent data analysis.  The 
preprocessing methods can be classified into five 
categories such as offsetting, variable-wise scaling, 
sample-wise scaling, filtering and compression [22].  
 
 

There are some common pretreatment algorithms which 
fits well with many NIR data such as scatter correction 

 
Figure 5: Raman instrument and sample compartment 

 

 
Figure 6: FT-NIR instrument and the sample compartment 

Sample holder 
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methods and spectral derivatives [23]. The impact of 
preprocessing methods of Raman data for chemometric 
modelling has been reviewed by [24, 25]. 

2.4.2. Exploratory analysis – PCA 

Principal component analysis (PCA) is a popular data 
compression method in chemometrics where a several 
number of original measured variables are compressed 
into fewer number of uncorrelated variables called 
principal components (PCs). The PC1 which includes the  
highest variance describes the maximum variation of the 
data set. PCA decomposes data into scores (which 
describe the relationship between observations) and 
loadings (which show the relationship of the variables) 
using a mathematical algorithm [26].   

2.4.3. Developing calibration models - PLS 

Partial least squares regression (PLS) is a multivariate 
calibration method which can be used to directly correlate a 
chemical or physical property of a sample with a spectra 
collected [27]. In this method, the co-variance existing 
between the observation data (x data) and the reference 
values (y data) is explored. Then a linear regression 
model is built by estimating the regression coefficients b 
in such a way as to maximize the covariance between y 
and xpreprocessed, as shown in equation (1). 

y = xpreprocessed b + f Equation 1 
f is the vector of residuals [27]. Instead of using raw x 
data, preprocessed x  data are used in equation 1 to get 
rid of noisy data. In our case, x data is the spectroscopic 
measurements (FT-NIR or Raman spectra). y is a vector 
of CO2 loading or MEA concentration of calibration 
samples. x variables represent values in x data matrix 
which are Raman shifts for Raman data and 
wavenumbers for FT-NIR data.  
 
The chemical information distributed inside large 
number of x variables are compressed into a small 
number of variables called latent variables or PLS 
components when the covariance between x and y data 
are maximized. These fewer number of latent variables 
can interpret the entire chemical system which would 
otherwise become impractical with thousands of 
variables. The most common performance indicators of 
PLS models are root mean square error of cross 
validation (RMSECV), root mean square error of 
prediction (RMSEP), coefficient of determination (r2) 
and bias.  

𝑅𝑀𝑆𝐸 =  ∑ 𝑦 − 𝑦𝑛  
Equation 2 

The root mean square error (RMSE) is defined as in 
equation 2 (when all samples are included in the model), 
where 𝑛 is the number of samples (observations), 𝑦  is the 
values of the predicted property value (CO2 loading or 
MEA wt in our case)and 𝑦  is the measured property 
value. RMSECV is defined similar to the equation 2 
where 𝑦  are samples not included in the model 
formulation. RMSEP is also calculated similar to 
equation 2 where all 𝑦 are new data. 𝑦   and  𝑦  are 
measured property values and predicted property values 
respectively from previously calibrated model (using 

calibration data). RMSEP is an indicator how well the 
model predicts for future samples and therefore all the 
models in this study were validated with a validation data 
set to obtain RMSEPs for each model.  r2 gives the 
measure of how well the regression predictions 
approximate the real data points. Bias shows the 
tendency of overestimate or underestimate of parameter.  
Figure 7 shows, four PLS calibration models in this study 
where two models were developed from each 
spectrometer for each chemical property. Preprocessing 
of x and y data and PLS regression were carried out in 
PLS toolbox 8.6 in Matlab 2017.  
 

 
Figure 7: Description of four calibration models 

 

3. Results and Discussion 

3.1 Data exploration 

3.1.1. FT-NIR data 

Identifying the “structure part” and “noise part” 
becomes primarily important to extract the useful 
chemical information from spectral data. The structure 
part from a signal acquired by Raman spectroscopy or 
FT-NIR for this study represents correlation with CO2 
loading and amine concentration. Knowledge on NIR 
overtones and Raman vibrational modes related to the 
MEA-CO2-H2O chemical system is helpful to identify 
this structure part.  
The raw FT-NIR data in this study are 105 multivariate  
signals of different CO2 loaded amine samples in the 
range of  5500 – 10000 cm-1. They are shown in Figure 8 
which are also grouped according to their CO2 loading 
value. It is possible to see variations between each sample 
with naked eye through this figure but they are not 
systematic sufficiently to correlate with CO2 loading 
values due to overlap of overtones. The MEA-CO2-H2O 
system has bonds between C, H, N and O atoms which 
generate different vibrations when excited by laser 
power. The C-H stretching vibration makes first and 
second overtone in the NIR region 5500-6250 cm-1 [28]. 
Deformation vibration of the O-H group occurs at 7140 
cm-1 and primary amines have two bands for N-H first 
overtone region in 6500-7000 cm-1 [28]. These 
vibrational modes are not clearly visible in Figure 8 
however, they are apparent in the baseline corrected FT-
NIR data as shown in Figure 10 (a) and (b).  
 

M
od

el
s

FT-NIR

Model 1 - CO2
loading prediction

Model 2 - MEA wt% 
prediction

Raman

Model 3 - CO2
loading prediction

Model 4 - MEA wt% 
prediction
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Figure 8: FT-NIR wavenumber vs absorbance data for 
different CO2 loaded amine samples   

Figure 9: Raman shift vs Raman intensity (a.u.) for 
different CO2 loaded amine samples 

 

 
 

(a) Variation according to CO2 loading (b) Variation according to MEA wt% 
Figure 10: FT-NIR data in the wavenumber range 4500-7500 cm-1 after baseline correction 
 

  

(a) Variation according to CO2 loading (b) Variation according to MEA wt% 
Figure 11: Raman data in the fingerprint region after baseline correction  
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3.1.2. Raman data 

The raw data obtained from Raman spectrometer 
between wavenumber 100-3426 cm-1 for different CO2 
loaded amine samples are shown in Figure 9. Spectral 
variations can be hardly correlated to distinguish between 
chemical compositions of samples.  After removing the 
baseline variations of Raman data, the spectra become 
more informative as shown in Figure 11. Raman active 
vibrational modes for CO2 loaded amine data are densed 
in the fingerprint region from 1000 -1500 cm-1 Raman 
wavenumbers. They belong to bands rising due to carbon 
species in the system which are carbonate, bicarbonate 
and carbamate as well as protonated amines and free 
amines. The bands observed in this study are comparable 
with our previous studies [19, 21].  

3.2 Qualitative data analysis – PCA 

The structure parts of FT-NIR and Raman data which 
have correlations with CO2 loading and MEA 
concentration identified in section 3.1, were used for the 
PCA.  

3.2.1. PCA for FT-NIR 

Figure 12 shows the results of the PCA, which shows the 
score plot for PC1 vs PC2 for FT-NIR data. The 
preprocessing methods applied for input data were,  
Savitzky-Golay method, detrend, standard normal 
variate, and mean centering [23]. The best PCA results 
were achieved for 6000-7190 cm-1 wavenumbers. PCA 
analysis proves high correlation of spectroscopic data 
when both solvent strength and gas loading vary. 
According to Figure 12, PC1 describes 73% and PC2 
describes 24% of the data variation for FT-NIR. The 
number of samples which belong to the amine 
concentration 70-75 wt%, 75-80  wt% and 80-85 wt% are 
considerably higher in the data set (refer Figure 3). 
Samples which belong to these categories are aligned 
tangentially in the score plot. Arrow A in Figure 12 (a) 
marks the direction of increasing CO2 loading of the 
samples while Arrow B marks the increasing MEA 
concentration in Figure 12 (b). 

3.2.2. PCA for Raman 

Score plot of PC1 vs PC2 for Raman data is shown in 
Figure 13. The input data was preprocessed using 
standard normal variate, Whittaker filter [29] and mean 
centered. The wavenumbers in the range 790-1525 cm-1 
and 2734-3077 cm-1 resulted more meaningful overview 
for PCA. Among these two Raman shifts regions, the first 
one includes most of the vibrational modes related to 
carbon species and the second region include mainly the 
vibrational modes related to protonated amines and free 
amines. PC1 describes 85% and PC2 describes 11% of 
the data variation. On the other hand, as the CO2 loading 
is expressed as mole CO2 absorbed per mole MEA, even 
when there are different amounts of CO2 moles absorbed, 
different MEA concentration can yield same CO2 
loading. PC1 vs PC2 plot in Figure 13 (a) shows sample 
distribution according to the CO2 loading. Line 1, Line 2 
and Line 3 represent CO2 loaded samples for 70-75 MEA 
wt %, 75-80 MEA wt % and 80-85 MEA wt % in these 
figures. These lines are distinct at lower CO2 loading 
concentrations, but overlap at higher CO2 loading 

concentrations. This is due to the complex correlation of 
spectroscopic data when both solvent and gas 
concentration vary.  

3.3 PLS for FT-NIR and Raman  

Quantitative determination of CO2 loading and MEA 
concentration are shown in this section. Derivatives of 
raw data were used to preprocess FT-NIR data because 
they have the capability to remove both additive and 
multiplicative effects in NIR data [23]. Similarly, 
Whittaker filter was used to correct baseline in Raman 
data [29]. The overview of the four calibration models is 
shown in  Table 1. Model 1 and 2 correspond to FT-NIR 
spectroscopy to determine CO2 loading and MEA 
concentration respectively. The NIR region from 5570-
7291 cm-1 were included for the PLS model and this 
region includes the first overtones of C-H, O-H and N-H 
[28]. Some samples were removed as outliers from the 
data set and the reasons were abnormal spectra due to 
instrument noise, unstable temperature in the sample 
holder compartment and human errors during the 
reference analysis. 
Model 3 and 4 correspond to Raman spectroscopy to 
determine CO2 loading and MEA concentration 
respectively. The Raman wavenumber region from 940-
1490 cm-1 was included as it represented chemical 
characteristics for all the carbon and amine species in the 
system [16, 19, 30, 31]. This wavenumber region also 
gave the minimum RMSEP value for each model.  Few 
samples were removed as outliers which negatively 
affected to the stability of the model. The reasons for 
removing them were mainly the instrument related noise.  

 
The results of PLS calibration models which are 
significant for quantitative determination are shown from 
Figure 14 to Figure 17.  
Each figure shows the measured property (i.e. CO2 
loading and MEA wt% from titration which were 
considered as actual property of the sample) and the 
predicted property (based on the developed PLS model in 
this study) for calibration and validation set. The number 
of calibration and validation samples after removing 
outliers are also shown in Table 1.  Presence of outliers  
makes the model unstable (poor predictability) and 
therefore such samples were removed after a careful 
investigation. The RMSEP value, r2 and bias values can 
be used to understand the fit of correlation between an 
actual property and modelled property. 
    

Table 1:Summary of the model results 
Model 
no: 

Model name 
(instrument_
measured 
property) 

No.of 
cal* 

No of 
val*  

Wavenum
ber range 
(cm-1) 

RMSEP 

1 FT-NIR_CO2 43 33 5570 -7291 0.01695 
mol/mol 
MEA 

2 FT-
NIR_MEA 

43 31 5570 -7291 0.72893 
wt% 

3 Raman_CO2 44 43 940 - 1490 0.01338 
mol/mol 
MEA 

4 Raman_ME
A 

44 49 940 - 1490 0.90178 
wt% 

*(after removing outliers); cal = calibration samples; val = validation samples 

- 34 -



High concentrated MEA solvent systems for CO2 absorption – an FT-NIR and Raman spectroscopic investigation 

 

 

Estimated uncertainty of the model predictions have been 
shown as error bars. The line “fit” corresponds to the 
regression line and 1:1 is the target line when measured 
and predicted values overlap. For all the models, fit and 
1:1 lines were almost same and r2 value was more than 
0.98. The red points mark the validation samples which 
are a completely new data set (data not used for model 
calibration) and therefore they represent future data. The 
good agreement of these validation samples with the 1:1 
line is an indicator of the model predictability with future 
samples.  
The wavelength of the spectrometer included in the 
calibration model and the RMSEP value are shown in 
Table 1.  For model 1 the RMSEP is 0.0169 mol/mol 
MEA which implies for a future sample tested by the FT-
NIR spectrometer, the CO2 loading will be the actual 
value ± 2*0.01695. When the same sample is measured 
by Raman spectrometer this value will be predicted by 
Model 3 as actual value ± 2*0.01338. The MEA wt% of 
a future sample will be predicted with an RMSEP of 0.7 
and 0.9 by FT-NIR and Raman instruments respectively. 
The wavenumber region for FT-NIR PLS models were 
5570 -7291 cm-1 where the first overtone of N-H, C-H 
and O-H absorption bands occur. The Raman 
wavenumber region for model 3 and 4 was selected from 
940-1490 cm-1  because it contains most of the vibrational 
modes related to characterize amine and absorbed CO2 
concentration.  

4. Conclusion 
This study aimed for developing a quick and reliable 
analysis method to determine two most important 
chemical properties frequently measured in an amine 
based CO2 capture process which are the gas loading and 
solvent strength. The standard procedure of analysis 
these parameters are offline laboratory methods such as 
titration. Raman spectroscopy and FT-NIR spectroscopy 
were used for this study to investigate their feasibility to 
report quantitative determination of CO2 loading 
(mol/mol) and MEA wt%. 
Both spectroscopic methods show similar competencies 
for these analyses in the CO2 loading range from 0 – 0.6 
mol CO2/mol MEA and MEA strength from 66-99.5 wt 
%. The paper shows the methodology of transforming a 
difficult-to-explain spectra into meaningful chemical 
information by a chemometric approach. Qualitative 
analysis of data was performed by PCA for the pretreated 
spectral data. Results show that there is possibility to 
distinguish samples in different CO2 loading and MEA 
concentration using score plots. Eventhough PCA did not 
provide a perfect discretization of the data it proved 
having opportunity to explore data.  PLS algorithm was 
used to develop prediction models for CO2 loading and 
solvent strength. There was a reasonable fit between 
calibration and validation data in the PLS regression. 
RMSEP values for 4 PLS models were in an acceptable 

  
(a) Grouped according to CO2 loading values (b) Grouped according to MEA wt % 

 
Figure 12: PCA analysis for preprocessed FT-NIR data - sample distribution in PC1/PC2 space 
 

 
(a) Grouped  according to CO2 loading values (b) Grouped according to MEA wt % 

 
Figure 13: PCA analysis for preprocessed Raman data - sample distribution in PC1/PC2 space 
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region. The models are competent enough to be used as 
real-time monitoring tools when high concentrated amine 
is used. In addition, these models are also useful in 
optimization of CO2 capture process such as to find the 
absorption capacity with time, optimum lean and rich 
loadings, minimum liquid & steam flow rates and 
optimum CO2 feed gas flow rate.  
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