
Small-Signal State-Space Analysis of Inductive
Battery Charging System in Off-Resonant Operation

Ernst Torsgård1
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Abstract—This paper analyses the small-signal dynamics of a
series-series compensated inductive charging system with a pas-
sive diode rectifier interfaced directly to a battery on the receiving
side. The analyzed system is designed for utilizing the constant
voltage load (CVL) characteristics of the battery to enable power
flow control at constant input/output voltages by changing the
frequency in response to variations in coupling conditions. A
linearizable state-space model, including the nonlinear CVL
characteristics, is presented and utilized to evaluate the small-
signal dynamics of the studied system. Eigenvalue trajectories
and frequency characteristics are presented to show how the
small-signal dynamics vary with the coupling conditions and how
this will influence controller tuning requirements. Time-domain
simulations are presented to verify the validity of the small-signal
modelling and to demonstrate the performance of sub-resonant
frequency control by a simple PI-controller regulating the power
flow in response to variations in the coupling conditions.

Index Terms—Eigenvalue Analysis, Inductive Power Transfer,
Nonlinear Time-Invariant State-Space Model, Off-Resonant Op-
eration of Inductive Charging System, Small-Signal Analysis

I. INTRODUCTION

Inductive power transfer (IPT) technology is currently being

widely studied for wireless battery charging of electric vehicles

(EVs) [1], [2], [3]. The functionality and operating frequency

of such systems are currently being standardized for resonant

operation within a narrow frequency band [4]. However, IPT

system designs and control strategies relying on variable

frequency control have also been proposed [5], and can still

be relevant for applications that are not standardized for

operation in a narrow frequency range. In addition to specially

engineered or customized systems, variable frequency control

can, for instance, be relevant for subsea charging systems, [6]

or marine transport applications [7], [8].

Most proposed strategies for frequency control of resonant

IPT systems are based on increasing the operating frequency

when the magnetic coupling is reduced [5]. The system

must then be designed so that the power flow at a constant

The work of SINTEF Energy Research in this paper was supported by
the Internal Strategic Institute Project ”Innovative Power Transfer Transfer
Technology for Electric Transportation (IPT-ElTra) financed by the national
Basic Funding Scheme of Norway.

input voltage amplitude is decreased when the frequency is

increased beyond the resonance frequency. Thus, such systems

are typically designed to operate at resonance with maximum

sending side voltage at the highest expected coupling. Fre-

quency control, or dual voltage-frequency control, in the super-

resonant region can then be applied for regulating the power

flow at lower coupling [5].

A different approach for design and control of series-

series (SS) compensated IPT systems intended for off-resonant

operation was introduced in [7], [9], [10]. By this approach, the

system should be designed for resonant operation with rated

input voltage at the minimum coupling condition. The design

approach takes advantage of the constant voltage load (CVL)

characteristics resulting from a diode rectifier directly inter-

faced to a battery for enhancing the off-resonant power transfer

capability. Thus, the system is operated in the bifurcated

region when the magnetic coupling is above the minimum

value where the system is designed for rated power flow. This

design approach can enable off-resonant control for regulating

the power flow over a wide range of coupling conditions

with constant input and output voltages, ensuring minimized

current rating requirements for the system components [10].

As discussed in [9], [10] designs for power control by sub-

resonant operation should be preferred, since this can ensure

slightly inductive operation and minimized switching losses

for the sending side converter. However, the design approach

and the analysis presented in [10] were only based on the

steady-state frequency characteristics of the system.

This paper presents a linearizable state-space model of an

SS compensated IPT system designed according to the ap-

proach from [9], [10], for analyzing the small-signal dynamics

and the controller tuning for variable frequency operation. The

presented model includes the nonlinearity due to the CVL

characteristics of battery charging and allows for accurate

assessment of the small-signal dynamics at off-resonant op-

eration over a defined range of variations in the operating

conditions. The accuracy of the presented model is verified

by time-domain simulations. Furthermore, the eigenvalues and

frequency-domain characteristics of the small-signal model

are evaluated along the trajectory corresponding to a constant

rated power transfer over the full range of expected coupling

conditions. The results are utilized to design a simple PI-978-1-7281-1842-0/19/$31.00 c©2019 IEEE
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Fig. 1. Series-series compensated IPT system with constant voltage load

controller for regulating the power transfer for battery charging

in response to variations in operating conditions.

II. DESIGN OF SS COMPENSATED IPT SYSTEMS FOR

OFF-RESONANT OPERATION WITH CVL

The studied configuration is an SS compensated IPT system,

as shown in Fig. 1, with an H-bridge converter on the sending

side and a diode rectifier interfaced directly to a battery on

the receiving side, as represented by a voltage source.

A. Dynamic model with time-periodic variables

The state equations for the configuration in Fig. 1 can be

expressed directly from the circuit diagram as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = vC1 +R1i1 + L1
di1
dt

−M
di2
dt

v2 = M
di1
dt

− L2
di2
dt

−R2i2 − vC2

dvC1

dt
=

1

C1
i1

dvC2

dt
=

1

C2
i2

(1)

Assuming sinusoidal currents and introducing a first harmonic

approximation of the voltage v2 at the terminals of the diode

rectifier, the CVL characteristics can be modelled by:

v2 =
i2
I2

· 4
π
· Vdc,out (2)

In this equation I2 represents the amplitude of i2. Thus, the

amplitude of the first harmonic voltage component at the

receiving side is determined by the dc output voltage while

the characteristics of the diode rectifier impose that the voltage

will be in phase with the receiving side current. As will be

shown in the following, the nonlinearity introduced by the

constant dc voltage in combination with the diode rectifier

significantly influences the frequency characteristics and the

small-signal dynamics of the system.

B. Frequency characteristics of CVL IPT systems with impact
of unbalancing and detuning

Representing the fundamental frequency currents and volt-

ages in (1) and (2) by phasor variables, it is possible to derive

the steady-state frequency characteristics (i.e. with d/dt = jω)

of the power transfer capability of the studied system with

CVL characteristics, as explained in [10]. The power transfer

capability and phase angle of the equivalent impedance for

an ideal lossless case is given by the black curves in Fig. 2.
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Fig. 2. Effect of unbalancing: ”L” denotes a lossless system , coils with
coupling factor k = M√

L1L2
= 0.4, ω0 = 1√

C1L1
= 1√

C2L2
, Q1 = 310

and Q2 = 270. Power is normalized to P0 = P (k, xu, xc, ω0).

These curves show that the power transfer capability with CVL

characteristics are ideally approaching infinite when reducing

or increasing the frequency from the resonance frequency,

while the phase angle of the equivalent impedance is zero in

the full range of feasible operating conditions. In a practical

circuit, the losses will limit the maximum power transfer

capability as shown by the blue curve in Fig. 2a. Still, the

figure shows how the CVL characteristics will cause two

pronounced peaks in the power transfer and Fig. 2b shows

that the phase angle of the equivalent impedance will be close

to zero in a large share of the frequency range between these

two peaks.

In [9] and [10], it is shown how the off-resonant peaks

in the power transfer characteristics of a system with CVL

characteristics can be enhanced by introducing an unbalance

factor xu defined by:

x2
u · L2

L1
=

(
V2

V1

)2

, 0 < xu ≤ 1 (3)

The result of reducing xu is shown by the green and red curves

in in Fig. 2. As demonstrated by Fig. 2a, unbalancing of the

voltage or inductance ratios can be utilized to enhance the off-

resonant peaks in the power transfer capability. The curves in

Fig. 2b also show how unbalancing enhances the bifurcation

in the phase characteristics.

To further shape the frequency characteristics, a detuning

factor xc, [10], can be introduced as given by (4):
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Fig. 3. Effect of detuning and comparison between CVL and CRL. Coils
with coupling factor k = 0.4 as in Fig. 2 and unbalance factor xu = 0.98.
Power is normalized to P0 = P (k, xu, xc, ω0).

xc =
C1 · L1

C2 · L2
(4)

As a result of such detuning, the system will no longer have a

single defined resonance frequency, i.e. ω0 = ω2,0 = 1√
C2L2

�=
1√

C1L1
= ω1,0. By selecting values for xc above or below

1.0, either the sub- or super-resonant peak in power transfer

characteristics, respectively, can be enhanced. Fig. 3 shows

how this affects the frequency characteristics of a system

with CVL compared to a case with a constant resistive load

(CRL). Clearly, a small amount of detuning will more strongly

enhance the sub- or super-resonant power peaks in the CVL

case than for the CRL case. Furthermore, the effect of detuning

on the phase characteristics is shown in Fig. 3b. This figure

shows how a detuning factor of xc > 1 ensures a slightly

inductive sending side impedance over the whole frequency

range of interest, whereas a factor of xc < 1 implies a slightly

capacitive impedance. The figure also shows that the CVL

leads to an almost constant phase angle close to zero in a

much wider frequency range than for the CRL.

C. Off-resonant operation for power flow control

The introduction of unbalancing and detuning of the SS IPT

system with CVL allows for maintaining high power transfer

capability in a wide range of coupling conditions by utilizing

off-resonant operation. Thus, the power transfer can be kept

constant by regulating the operating frequency in response

to changes in the coupling conditions [10]. An example of

such operation is illustrated by the frequency characteristics
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Fig. 4. Operation with constant power transfer at variable coupling: operating
points marked with a circle. Coils with unbalance factor xu = 0.98, detuning
factor xc = 1.03, nominal coupling factor knom = 0.2. Power normalized
to P0 = P (knom, xu, xc, ω0).
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Fig. 5. Required operating frequency as function of coupling factor for
maintaining constant power transfer with sub-resonant frequency control.

of the IPT system for three different values of k in Fig. 4. As

indicated by Fig. 4b, the equivalent sending side impedance

will remain slightly inductive over the whole frequency range,

which will help to minimize switching losses of the sending

side H-bridge converter. Since the operating strategy given by

Fig. 4 is obtained with constant input and output voltage and a

phase angle of the sending side equivalent impedance close to

zero, the current amplitude will also remain almost constant

over the full range of expected operating conditions. Thus,

contrary to systems operating at the resonance frequency, IPT

systems designed and controlled according to the approach

from [9], [10] avoids the need for increasing the current rating

of components proportionally to the expected variations in the

coupling coefficient.

The required variations in the frequency as a function of

the coupling conditions are shown in Fig. 5. It can be noticed

from Fig. 4a and Fig. 5 that the sensitivity of the power flow
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to the frequency will change significantly with the coupling

conditions. Thus, it will be important to evaluate the small-

signal dynamics of the system for designing a suitable control

loop to regulate the power flow by changing the frequency.

III. TIME-INVARIANT STATE-SPACE MODELLING OF SS

COMPENSATED ITP SYSTEMS WITH CVL

For utilizing state-space modelling techniques to analyze

the small-signal characteristics of the studied system, a time-

invariant and linearizable model is needed. Such models can

be obtained by dq-frame representation or dynamic phasor-

based modeling [11]. Such modelling approaches have been

studied for various IPT systems, for instance by [12], [13],

[14], [15]. However, the following analysis will specifically

address the nonlinearity of CVL characteristics and the off-

resonant operation according to Fig. 4 and Fig. 5.

A. Nonlinear state-space model

As mentioned, CVL characteristics introduce nonlinearity

in the receiving side. Assuming a dq-frame representation

of the state variables in a first harmonic approximation, the

nonlinearity from (2) can be represented by (5) [16]:

v2,dq =
i2,dq
|i2,dq| ·

4

π
· Vdc,out =

i2,dq√
i22,d + i22,q

· 4
π
· Vdc,out (5)

Thus, a nonlinear model can be derived by dq-frame repre-

sentation of all state variables from (1), and can be expressed

on the general state-space form given by:

ẋ = f(x, u), y = g(x, u) (6)

with the states x, input signals u and output y defined by:

x =
[
i1,d i1,q i2,d i2,q vC1,d vC1,q vC2,d vC2,q

]T
u =

[
v1,d v1,q ω Vdc,out

]T
y =

[
Pin

Pout

]
=

[
v1,d · i1,d + v1,q · i1,q
v2,d · i2,d + v2,q · i2,q

] (7)

Introducing the leakage factors Lα1 = L1 − M2/L2 and

Lα2 = L2−M2/L1, the resulting nonlinear state-space model

can be derived as given by (8). This model can be linearized

at any equilibrium point corresponding to a feasible oper-

ating condition of the system. Accordingly, the small-signal

dynamics around the steady-state operating point defined by

f(x0, u0) = 0 can be studied by evaluating the eigenvalues

of the A-matrix when the system is expressed on the general

linearized state-space form according to (9). The A,B and

C matrices resulting from linearization of the studied system

can be expressed by (10), (11) and (12), respectively. The

elements Ai,j and Bi,j in (10) and (11) are given by (13). For

these expressions, dq-subscripts indicate that i2,d,0 and i2,q,0
should be used in the first and second element, respectively,

and the ±-sign indicates a positive and negative value for the

corresponding first and second matrix entry.

di1,d
dt

= ω · i1,q − R1

Lα1
· i1,d − MR2

Lα1L2
· i2,d − 1

Lα1
· vC1,d

− M

Lα1L2
· vC2,d +

1

Lα1
· v1,d − M

Lα1L2
· i2,d√

i22,d + i22,q

· 4
π
· Vdc,out

di1,q
dt

= −ω · i1,d − R1

Lα1
· i1,q − MR2

Lα1L2
· i2,q − 1

Lα1
· vC1,q

− M

Lα1L2
· vC2,q +

1

Lα1
· v1,q − M

Lα1L2
· i2,q√

i22,d + i22,q

· 4
π
· Vdc,out

di2,d
dt

= ω · i2,q − MR1

Lα2L1
· i1,d − R2

Lα2
· i2,d − M

Lα2L1
· vC1,d

− 1

Lα2
· vC2,d +

M

Lα2L1
· v1,d − 1

Lα2
· i2,d√

i22,d + i22,q

· 4
π
· Vdc,out

di2,q
dt

= −ω · i2,d − MR1

Lα2L1
· i1,q − R2

Lα2
· i2,q − M

Lα2L1
· vC1,q

− 1

Lα2
· vC2,q +

M

Lα2L1
· v1,q − 1

Lα2
· i2,q√

i22,d + i22,q

· 4
π
· Vdc,out

dvC1,d

dt
= ω · vC1,q +

1

C1
· i1,d

dvC1,q

dt
= −ω · vC1,d +

1

C1
· i1,q

dvC2,d

dt
= ω · vC2,q +

1

C2
· i2,d

dvC2,q

dt
= −ω · vC2,d +

1

C2
· i2,q

(8)

Δẋ = A(x0,u0) ·Δx+B(x0,u0) ·Δu

Δy = C(x0,u0) ·Δx
(9)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R1

Lα1
ω0 A1,3 A1,4

−1
Lα1

0 −M
Lα1L2

0

−ω0
−R1

Lα1
A2,3 A2,4 0 −1

Lα1
0 −M

Lα1L2

−MR1

Lα2L1
0 A3,3 A3,4

−M
Lα2L1

0 −1
Lα2

0

0 −MR1

Lα2L1
A4,3 A4,4 0 −M

Lα2L1
0 −1

Lα2

1
C1

0 0 0 0 ω0 0 0

0 1
C1

0 0 −ω0 0 0 0

0 0 1
C2

0 0 0 0 ω0

0 0 0 1
C2

0 0 −ω0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Lα1

0 i1,q,0 B1,4

0 1
Lα1

−i1,d,0 B2,4

M
Lα2L1

0 i2,q,0 B3,4

0 M
Lα2L1

−i2,d,0 B4,4

0 0 vC1,q,0 0

0 0 −vC1,d,0 0

0 0 vC2,q,0 0

0 0 −vC2,d,0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

C =

[
v1,d,0 v1,q,0 0 0 0 0 0 0

0 0
4·i2,d,0·Vdc,out,0

π
√

i22,d,0+i22,q,0

4·i2,q,0·Vdc,out,0

π
√

i22,d,0+i22,q,0
0 0 0 0

]
(12)
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TABLE I
PARAMETERS OF SIMULATED IPT-SYSTEM

Nominal power, P0 10 kW
Nominal operating frequency, f0 85 kHz
Nominal coupling factor, k 0.2

Primary coil
Nominal voltage, V1 380 V
Self-inductance, L1 176 μH
Quality factor, Q1 310

Secondary coil
Nominal voltage, V2 235 V
Self-inductance, L2 41 μH
Quality factor, Q2 270

A2,4 = A1,3 = − M

Lα1L2

(
R2 +

4 · i22,dq,0 · Vdc,out,0

π(i22,d,0 + i22,q,0)
3/2

)

A1,4 = A2,3 = −4MVdc,out,0

πLα1L2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)

3/2

A3,3 = A4,4 = − 1

Lα2

(
R2 +

4 · i22,dq,0 · Vdc,out,0

π(i22,d,0 + i22,q,0)
3/2

)

A3,4 = A4,3 = ±ω0 − 4Vdc,out,0

πLα2

i2,d,0 · i2,q,0
(i22,d,0 + i22,q,0)

3/2

B1,4 = B2,4 = − 4M

πLα1L2

i2,dq,0√
i22,d,0 + i22,d,0

B3,4 = B3,4 = − 4

πLα2

i2,dq,0√
i22,d,0 + i22,q,0

(13)

B. Model verification

The validity and accuracy of the nonlinear state-space

model defined by (8) and the corresponding linearized model

defined by (9)-(13) is validated by time-domain simulations

in the MATLAB/Simulink/Simscape environment, using the

parameters in Table I. As the validity of a similar model

representing a system operated at its resonance frequency is

demonstrated in [16], only examples with off-resonant opera-

tion are presented in the following. For the simulations shown

in Fig. 6, the system is first linearized at steady-state operation

in a condition close to the nominal coupling, with slightly sub-

resonant frequency for maintaining nominal power transfer. A

step change of 10% in the input voltage is applied at t = 2

ms, and after steady-state operation is achieved, a similar step

change in the receiving side voltage is applied at t = 2.4 ms.

After reaching steady-state operation with these conditions,

the system is brought back to the linearization point at t =

2.8 ms. The dynamic responses of the sending and receiving

side currents resulting from the circuit model in Fig. 1, the

nonlinear state-space model from (8) and the corresponding

linearized model, are shown in the same plots for comparison.
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(a) Sending side currents.
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(b) Receiving side currents.

Fig. 6. Comparison of the current dynamics for the simulated models
along the constant power trajectory. Simulation point k = 1.02knom,
ω = 0.988ω0.
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(a) Sending side currents.
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(b) Receiving side currents.

Fig. 7. Comparison of the current dynamics for the simulated models along
the constant power trajectory. Simulation point k = 2.6knom, ω = 0.827ω0.

The same sequence is repeated for a relatively high coupling

coefficient and a correspondingly reduced frequency in Fig. 7.

The results show that both the nonlinear and linearized state-

space models accurately capture the dynamics of the system

along the constant power trajectory illustrated in Fig. 5.

To further document the validity of the presented state-space

models, additional time-domain simulations are presented in
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Fig. 8. Comparison of the current dynamics for the simulated models
along the constant power trajectory. Simulation point k = 1.02knom,
ω = 0.988ω0.
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Fig. 9. Comparison of the current dynamics for the simulated models along
the constant power trajectory. Simulation point k = 2knom, ω = 0.866ω0.

Fig. 8 and Fig. 9, illustrating how the system behaves in

response to a step change in the operating frequency. For

the simulations presented in Fig. 8, the small-signal model is

obtained at the same operating point as in Fig. 6. The system

is first at steady-state conditions with an operating frequency

of 10 700 rad/s higher than the frequency where the system

is linearized, before a step back to the linearization point is

applied at t = 6 ms. A similar sequence is repeated in another

point along the frequency trajectory in Fig. 5 and the results

are shown in Fig. 9, this time with a step change of 5 350 rad/s.

From 8a, a slight deviation can be observed, indicating that

the accuracy of the small-signal model is sensitive to changes

in the operating frequency. However, the oscillation frequency

and settling time are virtually identical, demonstrating that the

small-signal model provides accurate results as long as it is

operated close to the linearization point.

IV. ANALYSIS OF SYSTEM DYNAMICS AND CONTROL

The linearized model from (9)-(13) can be utilized to

evaluate the small-signal dynamics of the system and to design

suitable control loops for regulating the power transfer.

A. Eigenvalue analysis

The change in the eigenvalues of the A-matrix when the

coupling conditions are changed in the range of knom ≤ k ≤
3knom while ensuring constant power transfer by operating
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Fig. 10. Eigenvalue trajectory for variation of k in the range knom ≤ k ≤
3knom with frequency control for maintaining constant power: points market
with blue circles correspond to k = knom and points marked with red
triangles corresponds to k = 3knom. Operating points in Fig. 6 and Fig.
7 are marked with green and yellow circles, respectively.

on the frequency trajectory from Fig. 5 is shown in Fig. 10.

The figure also shows the operating points used for the time-

domain simulations in Fig. 6 and Fig. 7, which are marked

with green and yellow circles, respectively. As seen from

the figure, the system will have a dominant pole-pair with

relatively low oscillation frequency and long settling time

when operating close to the nominal coupling. The corre-

sponding oscillation mode is clearly seen in the time-domain

results in Fig. 6 and Fig. 8. The real part of this dominating

pole-pair rapidly decreases when the operating frequency is

moved away from the resonance frequency along the trajectory

from Fig. 5. However, a sudden change in the movement

of these eigenvalues appears around an operating condition

with coupling factor k ≈ 1.04knom and operating frequency

ω ≈ 0.98ω0. For an increased coupling coefficient beyond

this point, the imaginary part of the dominant eigenvalues

decreases while the real part increases when the operating

frequency is reduced, making the system more damped but

slower. The corresponding differences in system dynamics

for close to nominal coupling compared to high coupling

conditions are also clearly seen from the simulated responses

in Fig. 6 and Fig. 7 or Fig. 8 and Fig. 9, respectively.

B. Power controller design

The small-signal state-space model from (9)-(13) can also

be utilized to extract the input-output frequency domain char-

acteristics of the system and to support frequency domain

design of control loops. In order to regulate the power transfer

in response to variations in the coupling conditions according

to the strategy defined by Fig. 4 and Fig. 5, a simple PI-

controller can be utilized to change the operating frequency

[9]. For explicit regulation of the power provided to the load,

it would be necessary to use the received power Pout as

the feedback signal. However, this would imply the need for

feedback across the air gap of the wireless power transfer.

Thus, it would be preferable to use only feedback signals from

the sending side to regulate the power transfer.

Assuming power control by a PI-controller, the open loop

transfer functions for control loops based on feedback from
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Fig. 11. Frequency response of open loop transfer function from Pref to
Pin for three different coupling conditions.

Fig. 12. Frequency response of open loop transfer function from Pref to
Pout for three different coupling conditions.

either the sending side power Pin or the receiving side power

Pout can be expressed as:

Pin

Pref
(s) = hrhp1hf (s) = kp

1 + Tis

Tis
hp1(s)

1

1 + Tfs
(14)

Pout

Pref
(s) = hrhp2hf (s) = kp

1 + Tis

Tis
hp2(s)

1

1 + Tfs
(15)

In these equations, hp1(s) and hp2(s) are the transfer func-

tions from the small-signal frequency input to Pin and Pout,

respectively. Additionally, the open loop transfer functions

include the assumed PI-controller hr(s) and a low-pass filter

hf (s) with time constant Tf = 100/2πf0 for extracting the

average value of the single-phase power flow. The frequency

characteristics of the two open loop transfer functions in (14)

and (15) are shown for three different coupling conditions in

Fig. 11 and Fig. 12, respectively.

In order to achieve robust closed-loop performance over

the whole variation range knom ≤ k ≤ 3knom, the general

Fig. 13. Power controller for off-resonant operation by sending side feedback.
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Fig. 14. Closed-loop response to step changes in coupling factor with
feedback of sending side power. The sending side power reference is adjusted
to compensate for the efficiency of the system.

frequency characteristics in Fig. 11 and Fig. 12 are utilized

to design the PI-controller parameters such that no overshoot

or oscillations occur at operating conditions where the system

dynamics are fast. The resulting parameters are selected to

be kp = −0.65057 and Ti = 1/2846, and the corresponding

amplitude- and phase-margins with the different feedback

signals are indicated in Fig. 11 and Fig. 12. However, the

design for damped response in all coupling conditions implies

a relative slow response close to the nominal coupling.

To illustrate the performance when using only sending side

power feedback for the control, results from operating the

system with the simple control loop in Fig. 13 is shown in

Fig. 14. The sequence of ideal steps applied in the coupling

factor is shown in Fig. 14a while Fig. 14b shows the resulting
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Fig. 15. Response to steps in the power reference with control based only
on sending side feedback.

output power. As indicated by the figure, the power reference

is increased slightly above 1.0 to compensate for the losses in

the system. The operating frequency resulting as output from

the PI-controller in Fig. 13 is shown in Fig. 14c. As can be

seen, the response is much faster in the case of high coupling

coefficient, which is expected when considering the frequency

trajectory in Fig. 5 and the frequency characteristics in Fig. 12.

The results also confirm how the operating frequency resulting

from the closed-loop controller corresponds to the trajectory

for maintaining nominal power according to 5.

Another example of the closed-loop power control per-

formance is shown in Fig. 15. In this case, the system is

initially operating at the secondary side resonance frequency

according to the red curve in Fig. 4a with k = 3kknom and a

correspondingly low power reference of 0.32 pu. A step in the

sending side power reference to 0.66 pu is applied at t = 5 ms,

and a second step in the power reference is applied at t = 32

ms, bringing the system to the operating point corresponding

to nominal power transfer indicated by the red circle in Fig.

4a. The operating frequency resulting from the PI-controller

is shown in Fig. 15b. The results clearly illustrate how the

response is stable and well damped over the entire operating

region, although much faster when approaching operation at

rated power at high coupling.

V. CONCLUSION

This paper has presented a time-invariant state-space model

of a Series-Series (SS) compensated Inductive Power Transfer

(IPT) system designed for battery charging with minimized

component ratings. The evaluated system is intended for power

flow control by off-resonant operation during variations in

the coupling conditions, which is obtained by utilizing the

bifurcated characteristics of the IPT system to allow for

frequency control with constant input and output voltages.

The presented model accurately represents the influence of

the Constant Voltage Load (CVL) characteristics resulting

from a receiving side diode rectifier directly interfaced to the

battery. The linearized state-space model is utilized to evaluate

the small-signal dynamics over the full range of expected

operating conditions. This small-signal analysis is also utilized

to design a simple but robust PI-controller, which can operate

with only sending side feedback for regulating the power flow

in response to variations in the coupling conditions.
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