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The focus on locally refined spline spaces has grown rapidly in recent years due to the 
need in Isogeometric Analysis (IgA) of spline spaces with local adaptivity: a property not 
offered by the strict regular structure of tensor product B-spline spaces. However, this 
flexibility sometimes results in collections of B-splines spanning the space that are not 
linearly independent. In this paper we address the minimal number of Minimal Support 
B-splines (MS B-splines) and of Locally Refined B-splines (LR B-splines) that can form a 
linear dependence relation. We show that such minimal numbers are six for MS B-splines 
and eight for LR B-splines. Further results are established to help detecting collections of 
B-splines that are linearly independent.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In 2005 Thomas J.R. Hughes et al. (2005) proposed to reconstitute finite element analysis (FEA) within the geomet-
ric framework of CAD technologies. This gave rise to Isogeometric Analysis (IgA). It unifies the fields of CAD and FEA by 
extending the isoparametric concept of the standard finite elements to other shape functions, such as B-splines and non-
uniform rational B-splines (NURBS), used in CAD. This does not only allow for an accurate geometrical description, but it 
also improves smoothness properties. As a consequence, IgA methods often reach a required accuracy using a much smaller 
number of degrees of freedom (Großmann et al., 2012). Moreover, in some situations, the increased smoothness also im-
proves the stability of the approximations resulting in fewer nonphysical oscillations (Hughes et al., 2005; Manni et al., 
2011).

However, in numerical simulations, local (adaptive) refinements are frequently used for balancing accuracy and compu-
tational costs. Traditional B-splines and NURBS spaces are formulated as tensor products of univariate B-spline spaces. This 
means that refining in one of the univariate B-spline spaces will cause the insertion of an entire new row or column of 
knots in the bivariate spline space, resulting in a global refinement. In order to break the tensor product structure of the 
underlying mesh, new formulations of multivariate B-splines have been introduced addressing local refineability.
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1.1. Overview of locally refined spline methods

The first local refinement method introduced were the Hierarchical B-splines, or HB-splines (Forsey and Bartels, 1988), 
whose properties were further analyzed in Kraft (1997). The HB-splines are linearly independent and non-negative. However, 
partition of unity, which is necessary for the convex hull property (essential for interpreting the B-spline coefficients as 
control points), was still missing. To rectify this, Truncated Hierarchical B-splines, or THB-splines, were proposed in Giannelli 
et al. (2012) and further analyzed in Giannelli et al. (2014). In Giannelli et al. (2014) they show how the construction of 
HB-splines can be modified while preserving the properties of HB-splines, gaining the partition of unity and smaller support 
of the basis functions.

A different approach, for local refinement, was introduced in Sederberg et al. (2003) with the T-splines. These are defined 
over T-meshes, where T-junctions between axis aligned segments are allowed. T-splines have been used efficiently in CAD 
applications, being able to produce watertight and locally refined models. However, the use of the most general T-spline 
concept in IgA is limited by the risk of linear dependence of the resulting splines (Buffa et al., 2010). It is desirable in 
numerical simulations to use linearly independent basis functions to ensure that the resulting mass and stiffness matrices 
have full rank and avoid the algorithmic complexity posed by singular matrices. Analysis-Suitable T-splines, or AST-splines, 
were therefore introduced in da Veiga et al. (2012). As T-splines, AST-splines provide watertight models, obey the convex 
hull property, and moreover are linearly independent.

There are many other definitions of B-splines over meshes with local refinements, such as PHT-splines (Deng et al., 
2008), PB-splines (Engleitner and Jüttler, 2017) and LR B-splines (Dokken et al., 2013). A discussion of the differences and 
similarities of HB-splines, THB-splines, T-splines, AST-splines and LR B-splines can be found in Dokken et al. (2018).

1.2. LR B-splines and MS B-splines

In this paper we look at Locally Refined B-splines, or LR B-splines, introduced in Dokken et al. (2013). The idea is 
to extend the knot insertion refinement of univariate B-splines to insertion of local line segments in tensor meshes. The 
process starts by considering the tensor product B-spline space over a coarse tensor mesh. Then, when a new inserted local 
line segment divides the support of one or more LR B-splines in two parts, we perform knot insertion to split such B-splines 
into two (or more) new ones. The final collection of functions does not sum to one in general. However, it is possible to 
scale them by means of positive weights so that they form a partition of unity; see Dokken et al. (2013, Section 7).

The LR B-splines are a subset of the Minimal Support B-splines, or MS B-splines. As one can guess from their name, 
MS B-splines are the tensor product B-splines with minimal support, i.e., without superfluous line segments crossing their 
support, identifiable on the locally refined mesh. The main difference between LR and MS B-splines is that the former ones 
are defined algorithmically, while the latter are defined by the topology of the mesh.

1.3. Content of the paper

The freedom in the refinement process can result in undesirable collections of LR B-splines. Namely, the LR B-splines 
obtained at the end of the refinement process may be linearly dependent. Assumptions on the refinement process have 
to be established in order to ensure linear independence. We start such analysis by looking at conditions on the mesh 
necessary for linear dependence. We say that functions φ1, . . . , φn :Rd →R are actively linearly dependent on Rd if there 
exist αi ∈R, αi �= 0 for all i = 1, . . . , n, such that

n∑
i=1

αiφi(xxx) = 0, ∀ xxx ∈Rd.

Note that we consequentially look at the minimal set of linearly dependent functions by forbidding zero coefficients in the 
linear combination.

In this work we show that:

• For any bidegree ppp, the minimal number of active MS B-splines in a linear dependence relation is six, while for LR 
B-splines it is eight.

• These numbers are sharp for any bidegree ppp = (p1, p2) for the MS B-splines and with pk ≥ 2, for some k ∈ {1, 2}, for 
the LR B-splines.

We look at the minimal configurations of linear dependence because we conjecture that any linear dependence relation is 
a refinement of one of these minimal cases. In other words, they are the roots for the linear dependence. In particular, if 
this is true, by avoiding the minimal cases, the MS B-splines and LR B-splines are always linearly independent and form 
a basis. Furthermore, to get such lower bounds, we prove results that can be used to understand if the set of B-splines 
considered is linearly independent or not. In particular, they can be used to improve the Peeling Algorithm (Dokken et al., 
2013, Algorithm 6.3) to verify if the LR B-splines defined on a given mesh are linearly independent.
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Fig. 1. Example of box–partition and corresponding mesh.

1.4. Structure of the paper

In Section 2 we provide an introduction to the concepts of box-partitions, meshes and LR-meshes. In Section 3 we define 
the univariate spline space over a knot vector sequence and the bivariate spline space over a box–partition and we recall the 
dimension formula presented in Pettersen (2013). Then we discuss conditions on the mesh for ensuring that the dimension 
formula depends only on the topology of the mesh. In Section 4 we recall univariate and bivariate B-splines, their basic 
properties and the knot insertion procedure. In Section 5 we define the MS B-splines and the LR B-splines and we show 
when these two sets are different. In Section 6 we study the spanning properties of the LR and MS B-splines. In particular 
we state necessary and sufficient conditions for spanning the full spline space. Knowing the dimension of the spline space, 
we can check linear dependencies just by counting the elements in the LR, or MS, B-spline set. In Section 7, we identify 
necessary features for a linear dependence relation and we derive the minimal number of active MS B-splines needed in 
a linear dependence relation. In Section 8, we compute the minimal number of active LR B-splines in a linear dependence 
relation. In Section 9 we recall briefly the Peeling Algorithm for checking linear independence and we show how to improve 
it by using the results of Section 7. Finally, we summarize the main results and discuss future work in Section 10.

2. Box–partitions and LR–meshes

The purpose of this section is to describe box–partitions in 2D and define bivariate LR–meshes. For our scope, and sake 
of simplicity, we decided to restrict general definitions, valid in any dimension, to the 2D case; we refer to Dokken et al. 
(2013) for the general theory.

Definition 2.1. Given an axis-aligned rectangle � ⊆ R2, a box-partition of � is a finite collection E of axis-aligned rectan-
gles in �, called elements, such that:

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E , with β1 �= β2.
2.

⋃
β∈E β = �.

Definition 2.2. Given a box–partition E , we define the vertices of E as the vertices of its elements. In particular, a vertex of 
E is called T-vertex if it is the intersection of three elements edges. We denote as V the set of vertices of E .

Definition 2.3. Given a box–partition E of a rectangle � ∈R2, a meshline of E is a segment contained in an element edge, 
connecting two and only two vertices of V at its end–points. The collection of all the meshlines of the box-partition is called
mesh, M. Given a mesh M, one can define a multiplicity function μ : M →N∗ that associates a positive integer to every 
meshline, called multiplicity of the meshline. A mesh that has an assigned multiplicity function μ is called μμμ-extended 
mesh.

When the T-vertices of E occur only on ∂� and every colinear meshlines have same multiplicity, the corresponding 
μ-extended mesh is called tensor mesh.

Finally, if every meshline of a box-partition E has the same multiplicity m we say that the corresponding μ-extended 
mesh has multiplicity m.

In this work we only consider μ-extended meshes. Therefore, we will only write meshes for μ-extended meshes to 
simplify the notation.

Fig. 1 shows an example of box-partition and associated mesh: in (a) the box–partition E and in (b) the corresponding 
mesh M. The meshlines are identified by squares reporting the associated multiplicities.

A meshline can be expressed as the Cartesian product of a point in R and a finite interval. Let α ∈ R be the value of 
such a point and let k ∈ {1, 2} be its position in the Cartesian product. If k = 1 the meshline is vertical and if k = 2 the 
meshline is horizontal. We sometimes write k-meshline to specify the direction of the meshline and (k, α)-meshline to 
specify exactly on what axis-parallel line in R2 the meshline lies.
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Fig. 2. Example of computation of vertical and horizontal multiplicities.

Definition 2.4. Given a box-partition E and an axis-aligned segment γ , we say that γ traverses β ∈ E if γ ⊆ β and the 
interior of β is divided into two parts by γ , i.e., β\γ is not connected. A split is a finite union of contiguous and colinear 
axis-aligned segments γ = ∪iγi such that every γi either is a meshline of the box-partition or γi traverses some β ∈ E .

As for meshlines, we sometimes write k-split with k ∈ {1, 2} to specify the direction of the split or (k, α)-split to specify 
on what axis-parallel line in R2 the split lies, that is, to specify that it lies on the line {(x1, x2) : xk = α}.

Definition 2.5. A mesh M has constant splits if any split γ in M is made of meshlines of the same multiplicity.

When a split γ is inserted in a box–partition E , any traversed β ∈ E is replaced by the two subrectangles β1, β2 given 
by the closures of the connected components of β\γ . The resulting new box-partition is indicated as E + γ and its corre-
sponding mesh as M + γ . Assigned a positive integer μγ to γ , the multiplicities of the meshlines in M ∩ (M + γ ) not 
contained in γ are unchanged, while the multiplicities of those that are in γ are increased by μγ . The new meshlines con-
tained in (M + γ )\M have multiplicity equal to μγ . If μ was the multiplicity function associated to M, the multiplicity 
function on the refined mesh M + γ is denoted as μ + μγ . The meshes used in applications are often result of a mesh 
refinement process, that is, given an initial coarse tensor mesh M1 and a sequence of splits γi with associated integers μγi

for i = 1, . . . , N − 1, the meshes considered are the final element of a sequence of meshes of the form Mi+1 = Mi + γi

where the associated multiplicity are μi+1 = μi + μγi . The LR–meshes are a particular subclass of this kind of meshes.

Definition 2.6. An LR-mesh is a mesh M obtained through a sequence of split insertions:

M1 is a tensor mesh,

Mi+1 = Mi + γi has constant splits, for i = 1, . . . , N − 1

and M =MN , for some N .

In the remaining of this section we introduce the knot vector on a split and the length of it. These concepts will help 
us to analyze the spanning properties of the LR B-splines and the increase in the spline space dimension due to a mesh 
refinement.

Definition 2.7. Given a mesh M corresponding to a box-partition E , for any vertex vvv in V we define

μ1(vvv) = max{μ(γ ) : vvv ∈ γ and γ 1-meshline of M}
μ2(vvv) = max{μ(γ ) : vvv ∈ γ and γ 2-meshline of M}

μ1(vvv) is called vertical multiplicity and μ2(vvv) horizontal multiplicity of vertex vvv .

In Fig. 2 is reported an example of computation of horizontal and vertical multiplicities for two vertices of a box–
partition. The meshlines on the left- and right-hand side of vvv1 have multiplicity 1 and 2 respectively. So μ2(vvv1) =
max{1, 2} = 2. The meshlines above and below vvv1 have both multiplicity 1, so that μ1(vvv1) = 1. Concerning vvv2, we have 
μ2(vvv2) = 2, whereas μ1(vvv2) = max{1} = 1 because there is no meshline below vvv2.

Definition 2.8. Given a (k, α)-split γ in a mesh M, all the vertices where γ intersects the meshlines of M, orthogonal 
to it, have kth-coordinate equal to α and different (3 − k)th coordinate. We define the knot vector on γ as the increasing 
sequence τττ ⊆R given by such (3 −k)th coordinates. The elements of such sequence are called knots. We further define the 
multiplicity function of the knot vector as the μ3−k multiplicity function of the corresponding vertices. We say that τττ has 
length d if the multiplicities of its knots sum to d.
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3. Spline spaces

In this section we define the univariate spline space over a knot vector and the bivariate spline space over a box-partition. 
In particular we provide the dimension formula of such spaces. For the bivariate space, the formula, introduced in Pettersen 
(2013), presents terms depending on the size of the box–partition elements. This means that the dimension is unstable, i.e., 
spline spaces on meshes with the same topology might have a different dimension. Therefore, we recall sufficient conditions 
for avoiding such terms, making the formula dependent only on the mesh topology.

3.1. Spline space on a knot vector sequence

Definition 3.1. Given an increasing sequence τττ = (τ1, . . . , τn) of real numbers, a positive integer p and a function μ : τττ →
N∗ such that 0 ≤ μ(τi) ≤ p + 1 for all i, we define the corresponding spline knot vector as the triple τττμ

p = (τττ , μ, p).
Given a spline knot vector τττμ

p , we say that τi ∈ τττ has full multiplicity if μ(τi) = p + 1 and we say that τττμ
p is open if τ1

and τn have full multiplicity.

Sometimes it is more convenient to write a spline knot vector, in the equivalent way, as the couple ttt p = (ttt, p) where ttt
is a non–decreasing sequence ttt = (t1, . . . , t	), i.e., with ti ≤ ti+1, where 	 = ∑n

i=1 μ(τi) and

t1 = . . . = tμ(τ1)︸ ︷︷ ︸
= τ1

< tμ(τ1)+1 = . . . = tμ(τ1)+μ(τ2)︸ ︷︷ ︸
= τ2

< . . .

We use bold Greek letters with the multiplicity function in superscript in the first way of expression and bold Latin letters 
for the second way.

Given a degree p, we denote as 
p ⊂R[t] the vector space spanned by the monomials t j such that 0 ≤ j ≤ p.

Definition 3.2. Given a spline knot vector τττμ
p = (τττ , μ, p) with τττ = (τ1, . . . , τn), we define the univariate spline space on the 

spline knot vector τττ
μ
p , denoted S(τττ

μ
p ), or equivalently S(ttt p), as the set of all functions f :R →R such that

1. f is zero outside [τ1, τn],
2. the restrictions of f to the intervals [τi, τi+1) for i < n − 1 and [τn−1, τn] are polynomials in 
p ,
3. f is C p−μ(τi)-continuous at τi .

The following is the dimension of the spline space over a knot vector. It is a well-known result, proved, e.g., in Schumaker 
(2007).

Theorem 3.3. Given a spline knot vector τττμ
p = (τττ , μ, p) with τττ = (τ1, . . . , τn), the corresponding spline space S(τττ

μ
p ) has dimension

dimS(τττ
μ
p ) = max

{
n∑

i=1

μ(τi) − (p + 1),0

}
. (1)

Therefore, if ttt p has cardinality p + r + 1 for some r ≥ 1, then dimS(ttt p) = r. There are many possible bases for S(ttt p). 
One possibility is provided by a classical result in spline theory, called Curry-Schoenberg Theorem (de Boor, 1978, Theorem 
44). It ensures that the so called B-spline functions of degree p, defined on the knot vector ttt p , can be used as a possible 
basis:

S(ttt p) = span {B[ttti
p]}r

i=1 with ttti
p = (ti, . . . , ti+p+1) ⊆ ttt p .

For a brief introduction to B-splines we refer to Section 4.

3.2. Spline space on a box–partition

Definition 3.4. A spline mesh in R2 is a triple N = (M, μ, ppp) where M is a mesh from a box–partition E , ppp = (p1, p2)

is a pair of positive integers and μ : M → N∗ is a multiplicity function such that 1 ≤ μ(γ ) ≤ pk + 1 for every k-meshline 
γ ∈ M. In particular, if a k-meshline γ has multiplicity pk + 1 we say that γ has full multiplicity and a spline mesh N
is open if every boundary meshline has full multiplicity. A spline mesh N where M is an LR-mesh will be called spline 
LR-mesh.

Remark 3.5. Given a spline mesh N = (M, μ, ppp), one can define a spline knot vector on any k-split of M, for k ∈ {1, 2}: 
the sequence τττ and the multiplicity function μ3−k are described in Definition 2.8 and the degree is p3−k .
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Given a bidegree ppp = (p1, p2), we denote as 
ppp ⊂ R[x, y] the vector space spanned by the monomials xi1 yi2 such that 
0 ≤ ik ≤ pk for k = 1, 2.

Definition 3.6. Given a spline mesh N = (M, μ, ppp) corresponding to a box–partition E of a rectangle � = [a1, b1] ×[a2, b2], 
for any element β ∈ E , β = J1 × J2 with Jk = [aβ,k, bβ,k], we set

β̃ = J̃1 × J̃2 with J̃k =
{

[aβ,k,bβ,k) if bβ,k < bk

[aβ,k,bβ,k] if bβ,k = bk.
(2)

The spline space on N , denoted by S(N ), is the set of all functions f :R2 →R such that

1. f is zero outside �,
2. for each element β ∈ E , the restriction of f to β̃ is a bivariate polynomial function in 
ppp ,
3. for each k-meshline γ ∈M, f is C pk−μ(γ )-continuous across γ .

The general dimension formula of the spline space over spline meshes is presented in Pettersen (2013) and has terms 
depending on the size of the box–partition elements. This makes the dimension of the spline space unstable (Li and Chen, 
2011), i.e., not only dependent on the mesh topology. However, if we consider the spline space over a spline LR-mesh built 
so that

LR-rule 1 the starting tensor mesh M1 has at least p1 + 2 vertical splits and p2 + 2 horizontal splits counting their 
multiplicities,

LR-rule 2 for k ∈ {1, 2}, the knot vector on any maximal k-split has length at least p3−k + 2 at any step in the construction 
of the LR-mesh,

then, one can prove, by using the results in Pettersen (2013), that, called Mk the set of all the k-meshlines in M, for 
k ∈ {1, 2}, and |E | the cardinality of E , we have

dimS(N ) =
∑
vvv∈V

[(p1 − μ1(vvv) + 1)(p2 − μ2(vvv) + 1)]

− (p2 + 1)
∑

β∈M1

[(p1 − μ(β) + 1)] − (p1 + 1)
∑

β∈M2

[(p2 − μ(β) + 1)]

+ |E|(p1 + 1)(p2 + 1),

(3)

which depends only on the topology of the mesh. In this paper we will always assume the LR-rules for constructing LR-
meshes.

Remark 3.7. In the LR-mesh building process, any extension of an older split is allowed being LR-rule 2 satisfied on the new 
mesh.

From equation (3), it is possible to prove the dimension increasing formula (Dokken et al., 2013, Theorem 5.5). Knowing 
dimS(N ), through this formula, one can easily compute the dimension of the spline space on a refined spline mesh 
N + γ := (M + γ , μ + μγ , ppp). First, we need to introduce the concept of expanded spline knot vector on a split.

Definition 3.8. When a spline mesh N = (M, μ, ppp) is refined by inserting a k-split γ , since it is a split in M + γ , γ has 
a spline knot vector on it, τττμ3−k

p3−k
, with assigned multiplicity μ3−k . The expanded spline knot vector on γ , τττ μ̃3−k

p3−k
, has same 

sequence τττ , same degree p3−k and same multiplicity function μ3−k except that, in case γ is an extension of a split of M, 
it is assigned full multiplicity to the point of τττ corresponding to the joint vertex of the extension.

In particular, if γ is an extension of two splits γ1, γ2 in M, i.e., γ is the link between γ1, γ2, then the first and last 
knots in the expanded spline knot vector on γ have full multiplicity.

We can now give the dimension increasing formula.

Theorem 3.9. Given a spline LR-mesh N and a new k-split γ such that the expanded spline knot vector τττ μ̃3−k
p3−k

on γ has length 
p3−k + r + 1 with r ≥ 1, then the spline space on the refined spline mesh N + γ := (M + γ , μ + μγ , ppp) has dimension

dimS(N + γ ) = dimS(N ) + dimS(τττ
μ̃3−k
p3−k

) = dimS(N ) + r.
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4. Univariate B-splines and bivariate B-splines

In this section we recall the definition of B-splines and their main properties. In particular, we state the knot insertion 
algorithm, which is used for the definition of LR B-splines. For a complete overview on B-splines we refer to de Boor (1978)
and Schumaker (2007).

4.1. Univariate B-splines

Definition 4.1. For a non-decreasing sequence ttt = (t1, t2, . . . , tp+2) we define a B-spline B[ttt] : R → R of degree p ≥ 0
recursively by

B[ttt](t) = t − t1

tp+1 − t1
B[t1, . . . , tp+1](t) + tp+2 − t

tp+2 − t2
B[t2, . . . , tp+2](t), (4)

where each time a fraction with zero denominator appears, it is taken as zero. The initial B-splines of degree 0 on ttt are 
defined as

B[ti, ti+1](t) :=
{

1 if ti ≤ t < ti+1;
0 otherwise; for i = 1, . . . , p + 1. (5)

The sequence ttt is called knot vector of B[ttt] and t j are its knots. A knot t j has multiplicity μ(t j) if it appears μ(t j) times 
in ttt .

Proposition 4.2 (Properties). Given a degree p ≥ 0 and a knot vector ttt = (t1, . . . , tp+2),

• supp B[ttt] = [t1, tp+2],
• B[ttt] restricted to every nontrivial half-open element [ti, ti+1) is in 
p ,
• B[ttt] is C p−μ(t j)-continuous at any knot t j of multiplicity μ(t j).

Theorem 4.3 (knot insertion). Given a degree p and a knot vector ttt = (t1, . . . , tp+2), suppose we insert a knot t̂ ∈ (t1, tp+2). We 
obtain two knot vectors ttt1 and ttt2 , considering the first and the last p + 2 knots respectively in (t1, . . . , ̂t, . . . , tp+2). Then there exist 
α1, α2 ∈ (0, 1] such that

B[ttt] = α1 B[ttt1] + α2 B[ttt2]. (6)

4.2. Bivariate B-splines

Definition 4.4. Consider a bidegree ppp = (p1, p2). Let xxx = (x1, . . . , xp1+2) and yyy = (y1, . . . , yp2+2) be nondecreasing se-
quences. We define the tensor product B-spline B[xxx, yyy] :R2 →R by

B[xxx, yyy](x, y) := B[xxx](x)B[yyy](y), (7)

where B[xxx] and B[yyy] are the univariate B-splines defined on xxx and yyy respectively.

The pair xxx, yyy identifies a tensor mesh in [x1, xp1+2] ×[y1, yp2+2], M[xxx, yyy]. In fact, a knot in the x-direction xi corresponds 
to the 1-split

γ =
p2+1⋃
j=1

γ j with γ j = {xi} × [y j, y j+1],

and multiplicity μ[xxx, yyy](γ j) equal to the multiplicity of xi in xxx, for all j. In the same way the knots y j in yyy identify the 
2-splits in M[xxx, yyy] and their assigned multiplicities.

The properties of univariate B-splines are conserved by the tensor product B-splines:

• supp B[xxx, yyy] = [x1, xp1+2] × [y1, yp2+2].
• B[xxx, yyy] is a piecewise bivariate polynomial of bidegree ppp.
• B[xxx, yyy] is C pk−μ(γ )-continuous across each k-meshline γ of M[xxx, yyy].

As in the univariate case, after the insertion of a knot x̂ in xxx, we define xxx1 and xxx2 considering in (x1, . . . , ̂x, . . . , xp1+2) the 
first and last p1 + 2 knots respectively and we can write B[xxx, yyy] in terms of two B-splines defined on the two new pairs of 
knot vectors
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Fig. 3. Support of B-splines of bidegree (2, 2) on a mesh M of multiplicity 1. The mesh is shown in (a). The B-splines whose supports are depicted in (b) 
and (c) have minimal support on M. The tensor meshes defined by their knots in their supports are highlighted with thicker lines. On the other hand, the 
B-spline in (d) does not have minimal support on M: the collection of meshlines contained in the dashed line disconnects the support.

B[xxx, yyy] = α1 B[xxx1, yyy] + α2 B[xxx2, yyy] with α1,α2 ∈ (0,1]. (8)

The same holds when inserting a knot ŷ in yyy.
Finally, consider a spline mesh N = (M, μ, ppp) with M a tensor mesh. Then there exist two spline knot vectors xxxp1 and 

yyyp2 that identify M, M =M[xxxp1 , yyyp2 ], as explained before for the tensor mesh M[xxx, yyy] in the support of B[xxx, yyy]. Assume 
that xxxp1 and yyyp2 have length p1 + r1 + 1 and p2 + r2 + 1 respectively, with r1, r2 ≥ 1. We can apply the Curry-Schoenberg 
Theorem on each spline knot vector and state that

S(N ) = span {B[xxxi
p1

, yyy j
p2 ]} with i = 1, . . . , r1 and j = 1, . . . , r2,

where xxxi
p1

= (xi, . . . , xi+p1+1) ⊆ xxxp1 and yyy j
p2 = (y j, . . . , y j+p2+1) ⊆ yyyp2 .

5. Minimal Support B-splines and Locally Refined B-splines

In this section we define first the Minimal Support B-splines, or MS B-splines, and then the Locally Refined B-splines, or 
LR B-splines. As we will see the LR B-splines are created algorithmically, refining, after the insertion of a split in the mesh, 
the B-splines whose support is traversed by the split through the knot insertion procedure. The main difference with the 
MS B-splines is that these latter are not always the result of a knot insertion. For a given bidegree, they depend only on the 
position and multiplicities of the meshlines in the mesh.

Definition 5.1. Given a bivariate B-spline B[xxx, yyy] and a split γ , we say that γ traverses B[xxx, yyy] if suppB[xxx, yyy]\γ is not 
connected.

Definition 5.2. Given a mesh M and a B-spline B[xxx, yyy], we say that B[xxx, yyy] has support on M if the meshlines in M[xxx, yyy]
can be obtained as unions of meshlines in M, and their multiplicities in M[xxx, yyy] are less than or equal to the multiplicities 
of the corresponding meshlines in M. Furthermore, we say that B[xxx, yyy] has minimal support on M if it has support on 
M, the multiplicities of the interior meshlines in M[xxx, yyy] are equal to the multiplicities of the corresponding meshlines 
in M and there is no split γ in M\M[xxx, yyy] that traverses B[xxx, yyy]. Given a spline mesh N = (M, μ, ppp), the set of the 
minimal support B-splines, or MS B-splines, on N of bidegree ppp is denoted as BMS (N ).

Fig. 3 shows examples of B-splines of bidegree (2, 2) with support on a mesh of multiplicity 1. In particular, the B-splines 
considered in Fig. 3(b)–(c) have minimal support, while the support of the B-spline in Fig. 3(d) can be disconnected by the 
split γ , visualized by a dashed line in the figure.

Given a mesh M and a B-spline B[xxx, yyy] with support in M, assume that there exists a (k, α)–split γ in M\M[xxx, yyy] that 
traverses B[xxx, yyy]. Assume also that the meshlines in γ have all the same multiplicity m. One could then consider α as an 
extra knot of multiplicity m in the kth knot vectors of B[xxx, yyy] (in xxx if k = 1 and in yyy if k = 2) and perform the knot insertion 
on B[xxx, yyy]. The resulting generated B-splines would still have support on M and eventually they would also have minimal 
support on M. The LR B-splines are generated throughout the construction of an LR-mesh following this procedure.

Definition 5.3. Given a spline LR-mesh N = (M, μ, ppp) with M = MN final mesh of a mesh sequence as described in 
Definition 2.6, the LR B-spline set BLR(N ) is provided algorithmically as follows. We start by considering the set B1
of standard B-splines on the initial coarse tensor mesh M1. Then, for any intermediate step Mi+1 = Mi + γi with i =
1, . . . , N − 1 in the construction of the LR–mesh, we produce a new set of B-splines Bi+1 by the following algorithm:

1. initialize Bi+1 ← Bi ,
2. as long as there exists B[xxx j, yyy j] ∈ Bi+1 with no minimal support on Mi+1,
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Fig. 4. (a) An LR-mesh M of multiplicity 1. (b) Supports of the biquadratic LR B-splines defined on M. (c) Support of a minimal support B-spline on the 
mesh not in BLR(N ).

(a) apply knot insertion: ∃B[xxx j
1, yyy

j
1], B[xxx j

2, yyy
j
2] : B[xxx j, yyy j] = α1 B[xxx j

1, yyy
j
1] + α2 B[xxx j

2, yyy
j
2],

(b) update the set: Bi+1 ← (Bi+1\{B[xxx j, yyy j]}) ∪ {B[xxx j
1, yyy

j
1], B[xxx j

2, yyy
j
2]},

3. BLR(N ) := BN .

Remark 5.4. For any spline LR-mesh N = (M, μ, ppp), spanBLR(N ) ⊆ spanBMS (N ) ⊆ S(N ). If M is a tensor mesh then 
BLR(N ) = BMS (N ) and they are nothing more than the standard bivariate B-splines. The Curry-Schoenberg Theorem 
ensures that spanBLR(N ) = spanBMS (N ) = S(N ) and the elements of BLR(M) = BMS (M) are linearly independent. 
However, there are other cases where this equality holds; we will see them in the next section.

After performing the LR B-splines generation algorithm, the functions created will generally not sum to one. For this 
reason, in Dokken et al. (2013, Section 7) is provided a procedure for positive scaling weights of the LR B-splines to reinstate 
the partition of unity.

Example 5.5 (BLR(N ) �= BMS (N )). In Fig. 4(a) we have an LR-mesh M of multiplicity 1. Suppose ppp = (2, 2). This mesh is 
obtained by inserting two 2-splits and two 1-splits in a tensor mesh M1. In Fig. 4(b) we see the supports of the LR B-splines 
on M, i.e., the elements of BLR(N ), with N = (M, 1, (2, 2)), obtained by refining the B-splines with no minimal support 
during the insertion of the splits. However if we look at the final mesh M in Fig. 4(a), we see that there is one MS B-spline, 
whose support is depicted in Fig. 4(c), not in BLR(N ), defined on the mesh.

6. Hand-in-hand principle

In this section we describe the spanning properties of the sets BMS (N ) and BLR(N ). Any LR-mesh M = MN is 
defined through a sequence Mi+1 = Mi + γi starting from a tensor mesh M1. We know that on N1 = (M1, μ1, ppp), 
spanBMS (N1) = S(N1) as well as spanBLR(N1) = S(N1). We want to preserve these equalities throughout the con-
struction of MN for two reasons. First, we maximize the approximation power of the considered B-splines because the full 
spline space is spanned, and second, since we have a dimension formula for the spline space, we can use it to determine 
if the B-splines are linearly dependent or not. Indeed, since they span the whole spline space, if there are more B-splines 
than the dimension, they must be linearly dependent.

Definition 6.1. Given a spline LR-mesh N = (M, μ, ppp), assume that spanBMS (N ) = S(N ), or spanBLR(N ) = S(N ) re-
spectively. Let γ be a new split and let N + γ = (M + γ , μ + μγ , ppp) be the refined spline mesh. We say that N + γ

goes MS-wise, or LR-wise respectively, hand-in-hand with N if spanBMS (N + γ ) = S(N + γ ), or spanBLR(N + γ ) =
S(N + γ ) respectively.

In other words, going hand-in-hand means that if the considered B-splines on the spline mesh N span the whole spline 
space S(N ), then also the refined B-splines defined on N + γ will span the refined spline space S(N + γ ).

Remark 6.2. If N + γ goes LR-wise hand-in-hand with N , then it also goes MS-wise hand-in-hand with N . This is trivial 
because BLR(N + γ ) ⊆ BMS (N + γ ). The converse is not true in general.

In order to keep spanning the spline space during the construction of an LR-mesh, we have to ensure that all the 
intermediate spline meshes go MS-wise, or LR-wise, hand-in-hand. A condition to achieve this is stated in the following 
result, which is a reformulation of Dokken et al. (2013, Theorem 5.10).
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Fig. 5. (a) LR-mesh M of multiplicity 1 and a new split (dashed) to insert. (b) modification of M (dashed) to go MS-wise hand-in-hand. (c) and (d) 
modification of M (dashed) to go LR-wise hand-in-hand. (e) extension of the new split to go LR-wise hand-in-hand.

Theorem 6.3. Let N = (M, μ, ppp) be a spline LR-mesh. Assume that span BMS(N ) = S(N ), or span BLR(N ) = S(N ) respec-

tively. Let γ be a new k-split to insert and τττ μ̃3−k
p3−k

be the expanded spline knot vector on it. Let BMS(γ ), or BLR(γ ) respectively, be 
the collections of the new B-splines created in the MS, or LR, B-spline set after the insertion of γ . For any B ∈ BMS (γ ), or B ∈ BLR(γ )

respectively, let Bγ be the univariate B-spline in the y variable if k = 1 or in the x variable if k = 2, in the expression of B as in Defini-
tion 4.4. Then N + γ goes MS-wise, or LR-wise respectively, hand-in-hand with N if and only if

span {Bγ }B∈BMS (γ ) (or BLR(γ ) resp.) = S(τττ
μ̃3−k
p3−k

).

Theorem 6.3 allows to check the hand-in-hand of the meshes by looking at the span of univariate B-splines. Note that, 
since all the Bγ are contained in S(τττ

μ̃3−k
p3−k

), we always have

dim span{Bγ }B∈BMS (γ ) (or BLR(γ ) resp.) ≤ dimS(τττ
μ̃3−k
p3−k

).

We distinguish two cases when this is a strict inequality:

1. The cardinality of BMS (γ ), or BLR(γ ) respectively, is less than dimS(τττ
μ̃3−k
p3−k

),

2. the cardinality of BMS (γ ), or BLR(γ ) respectively, is at least equal to dimS(τττ
μ̃3−k
p3−k

) but the linearly independent 
univariate B-splines Bγ are less than such dimension.

The cardinality of BMS (γ ), or BLR(γ ), depends on the mutual position of the splits in M + γ . However, by slight mod-

ifications of the mesh or by extending γ we can always guarantee that BMS (γ ) and BLR(γ ) have at least dimS(τττ
μ̃3−k
p3−k

)

elements, as explained in Fig. 5. There we consider bidegree ppp = (2, 2) and a 1-split γ to insert into the LR-mesh M of mul-
tiplicity 1 as shown in Fig. 5(a). Since the expanded spline knot vector on γ has length 4, dimS(N +γ ) = dimS(N ) + 1 by 
Theorem 3.9. Therefore, a new B-spline of the considered kind must be generated to have N + γ going MS-wise or LR-wise 
hand-in-hand with N .

Unfortunately, no B-splines are created after the insertion due to the splits mutual position. Thus BMS (N + γ ) =
BMS (N ), BLR(N + γ ) = BLR(N ) and N + γ cannot go neither LR-wise nor MS-wise hand-in-hand with N . However, 
if we extend by one meshline a split on N , we create a new MS B-spline when inserting γ , whose support is highlighted 
in Fig. 5(b). In this case, N + γ goes MS-wise hand-in-hand (but not LR-wise). Instead, if we extend by two meshlines the 
same split, as in Fig. 5(c), or we extend by one meshlines both the splits, as in Fig. 5(d), there is an LR B-spline on the 
mesh to refine after the insertion of γ and N + γ goes LR-wise hand-in-hand with N . Another strategy is to extend γ . 
Indeed, if we decide to insert γ one meshline longer, as in Fig. 5(e), then the spline space increases by 2 for Theorem 3.9
but N + γ goes LR-wise, and so MS-wise, hand-in-hand with N because the two LR B-splines with supports in the upper 
left and upper right corner of M will be refined.

However, although the cardinality of such sets is sufficiently large, the linearly independent univariate B-splines Bγ can 
be insufficient for spanning the whole spline space S(τττ

μ̃3−k
p3−k

). An example is reported in Fig. 6. We again consider bidegree 
(2, 2), an LR-mesh M of multiplicity 1 and a new 2-split γ as shown in Fig. 6(a).

The expanded spline knot vector on γ has length 7 so that dimS(N + γ ) = dimS(N ) + 4 by Theorem 3.9. Moreover, 
it is easy to check that N can be constructed LR-wise hand-in-hand. Therefore, BLR(N ) = BMS (N ) and they span the 
spline space S(N ). When γ is inserted, there are 5 LR B-splines, B1, B2, B3, B4, B5, in BLR(γ ), whose support is depicted 
in Fig. 6(b). The cardinalities |BLR(γ )|, |BMS (γ )| are therefore large enough for N + γ to go hand-in-hand with N . 
However, if we look at the univariate B-splines Bγ , depicted in Fig. 6(c), we can see that the B4

γ = B5
γ and B3

γ can be 
easily written, via knot insertion, as a linear combination of B1

γ , B2
γ . Thus, there are only 3 linearly independent B-splines 

in {Bγ }B∈BLR(γ ) and the spline mesh N + γ cannot go neither LR-wise nor MS-wise hand-in-hand with N .
Nevertheless, if the expanded spline knot vector on the k-split γ has length p3−k + 2 or p3−k + 3, this phenomenon 

cannot happen. Indeed, if it has length p3−k + 2, the spline space on it has dimension one and there exists at least one 
Bγ . Similarly, if it has length p3−k + 3, the spline space on it has dimension 2 and there are at least two different (and so 
linearly independent) univariate restrictions Bγ .
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Fig. 6. (a) LR-mesh M of multiplicity 1 and a new 2-split γ (dashed) with their intersections (black dots). Consider bidegree (2, 2). In (b) the supports of 
the LR B-splines B1, B2 (top), B3 (center), B4, B5 (bottom) in BLR(γ ). In (c) their corresponding univariate B-splines.

7. Characterization of linear dependence in BMS(N )

The purpose of this section is to investigate the minimal number of MS B-splines required for a linear dependence 
relation on a spline mesh N and features needed in such configurations. In particular, the main results of this section are 
that at least six MS B-splines are necessary for a linear dependence for any bidegree ppp = (p1, p2) (Proposition 7.15) and that 
in a configuration of linear dependence with exactly six MS B-splines, one of them is not an LR B-spline (Proposition 7.16). 
We achieve these results by looking at the minimal number of B-splines needed to satisfy necessary conditions for having 
a linear dependence relation. First we introduce the nestedness condition (Proposition 7.3): at any corner of the region of 
the mesh where we have linear dependence, there is a B-spline in the linear dependence relation whose support is fully 
contained in the support of another larger B-spline in the linear dependence relation as well. This implies that the number 
of B-splines involved in the linear dependence relation is at least five (Corollary 7.4). Then we have to prove that it is 
impossible to have a linear dependence with only these five. Therefore, first we show the possible arrangements of the 
supports in case a linear dependence relation has only five B-splines (Lemma 7.5). Then we introduce another necessary 
condition for linear dependencies regarding the T–vertices in the region of the mesh where the linear dependence occurs 
(Corollary 7.10). This new condition narrows the possible arrangements of the supports found in Lemma 7.5. Finally, by 
looking at the position of the five B-splines in this remaining configurations, one can prove Proposition 7.15 mentioned 
above.

Remark 7.1. We recall that our meaning of linearly dependent functions is slightly different from the standard definition. We 
consider only functions that are actively linearly dependent, i.e., that have nonzero coefficient in the dependence relation.

Definition 7.2. Given a mesh M and two MS B-splines B[xxx1, yyy1], B[xxx2, yyy2], defined on M, we say that B[xxx1, yyy1] is nested 
into B[xxx2, yyy2] if supp B[xxx1, yyy1] ⊂ supp B[xxx2, yyy2] and supp B[xxx1, yyy1], supp B[xxx2, yyy2] share one, and only one, vertex.

Proposition 7.3 (Nestedness condition). Let BMS(N ) be the set of MS B-splines on a spline mesh N = (M, μ, ppp). Let B ⊆ BMS (N )

be a subset of linearly dependent MS B-splines and R be the region in R2 given by the union of their supports. Let (x̄, ȳ) be any (convex) 
corner in R and define μx̄ as the maximal multiplicity that is assigned to x̄ among the knot vectors in the x-direction of the B-splines 
in B. Consider the set

Bμx̄ := {B[xxx, yyy] ∈ B : x̄ ∈ xxx with μ(x̄) = μx̄}.
Define μ ȳ as the maximal multiplicity that is assigned to ȳ among the knot vectors in the y-direction of the B-splines in Bμx̄ and 
consider the set

B′ = {B[xxx, yyy] ∈ Bμx̄ : ȳ ∈ yyy with μ( ȳ) = μ ȳ}.
Finally, define hx = minB∈B′ |xp1+2 − x1|, hy = minB∈B′ |yp2+2 − y1| and the set of MS B-splines in B′ with smallest support, in both 
directions:

L = {B[xxx, yyy] ∈ B′ : |xp1+2 − x1| = hx and |yp2+2 − y1| = hy}.
Then
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Fig. 7. The support of the two B-splines considered in the proof of Proposition 7.3.

1. L has a unique B-spline B[xxxm, yyym];
2. There exists another B-spline B[xxx, yyy] ∈ B′ such that B[xxxm, yyym] is nested into B[xxx, yyy].

Proof. 1. Let us first show that L �= ∅. Consider the element of the box-partition in R that has (x̄, ȳ) as vertex. If L =∅, 
it would mean that such an element in the corner of R is contained in at least the supports of two B-splines B1 =
B[xxx1, yyy1], B2 = B[xxx2, yyy2] ∈ B′ such that B2 is taller than B1 but narrower as reported in Fig. 7.
Thus, there are p2 + 2 − μ ȳ horizontal splits of B1 traversing the interior of supp B2. Only p2 + 1 − μ ȳ of them (at 
most) can be also splits of B2. This is a contradiction because an extra split traverses the support of B2 and so it has 
not minimal support on the mesh. Hence |L| ≥ 1. Let us assume there are two MS B-splines in L, B1 = B[xxx1, yyy1] and 
B2 = B[xxx2, yyy2]. So

x1
1 = x2

1 y1
1 = y2

1

x1
p1+2 = x2

p1+2 y1
p2+2 = y2

p2+2.

If also the internal knots of B1 and B2 are the same in both directions, it would mean that B2 = B1 and there is nothing 
to prove. Thus, let us assume there is at least one different knot in the x- or y-direction. For instance, suppose there is 
a different internal knot x2

i ∈ xxx2 for some i, with respect to xxx1. Then the corresponding vertical split {x2
i } × [y2

1, y
2
p2+2]

would traverse the support of B1. This is a contradiction because B1 has minimal support.
2. Bm = B[xxxm, yyym] is in a linear dependence relation, so the smoothness of it at x̄ × R and R × ȳ must be reproduced. 

Therefore, there must exist at least another B-spline in B′ .
Such a MS B-spline B ∈ B′ cannot be fully contained in the support of Bm because of the minimality of such support. 
Hence, supp B exceeds on the right, or on the top, or both on the right and on the top, the support of Bm . By using the 
same argument adopted to prove that |L| �= ∅, one shows that only the last case can happen. �

Therefore, in every corner of R there are at least two MS B-splines of the linear dependence relation, one nested into 
the other. Note that this nestedness condition cannot be satisfied if the mesh considered is an LR-mesh and the bidegree is 
(0, 0). Indeed, nesting a B-spline into another during the LR–mesh building process would imply to end a split in the middle 
of an element, which is not allowed. Since Proposition 7.3 is not verified, we conclude that the set of MS (and LR) B-splines 
of degree (0, 0) is linearly independent on any LR-mesh. On the other hand, it is possible to have nested MS B-splines at the 
corners of R in general meshes, even for bidegree (0,0). Fig. 15 (k)–(l), at the end of this section, will illustrate an example 
of linear dependence for MS B-splines of bidegree (0,0).

Corollary 7.4. We need at least 5 MS B-splines for a linear dependence relation in BMS(N ).

Proof. R has at least four corners and there is a MS B-spline at each of them. The minimal number needed for the 
nestedness condition is then 5, that is when the 4 MS B-splines at the corners are all nested into the same MS B-spline 
whose support coincides with R (see Fig. 8). �
The question now is if five MS B-splines are enough for a linear dependence relation. From the previous results, we know 
that if so, we have four MS B-splines with supports in the four corners of R and one larger MS B-spline with support 
covering the entire region. The rest of this section is devoted to show that five MS B-splines are not enough. For sake of 
simplicity, we keep the notation used in Fig. 8. So B1 will be the larger MS B-spline whose support coincides with R and 
B2, B3, B4, B5 are the MS B-splines at the corners ordered clockwise starting from the lower left corner. The knot vectors of 
Bi , for i = 1, . . . , 5, will be denoted as xxxi = (xi

1, . . . , x
i
p1+2) and yyyi = (yi

1, . . . , y
i
p2+2).

In order to have a linear dependence relation, in every point of R we must have at least two MS B-splines different 
from zero. In the following Lemma we present how this fact implies spatial relations of the supports in case the linear 
dependence relation involves only B1, B2, B3, B4 and B5.
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Fig. 8. Configuration with 5 MS B-splines satisfying the nested supports condition for linear dependence.

Fig. 9. In (a) the horizontal band of R not intersected by supp B3 and supp B4 is highlighted. In (b), the colored subregion of R contains a point (x, y) for 
the proof of the first item of Lemma 7.5.

Lemma 7.5. Suppose only five MS B-splines are in a linear dependence relation on R. Then

1. the supports of B2 and B5 intersect each other as well as the supports of B3 and B4 ,
2. the supports of B2 and B3 intersect each other as well as the supports of B4 and B5 ,
3. at least one couple among supp B2 , supp B4 and supp B3 , supp B5 intersect each other.

Proof. Every point in supp B1 must be inside the support of another B-spline in the linear dependence relation, i.e., the 
supports of B2, B3, B4, B5 must be such that there are no white spots left inside R in Fig. 8.

1. We notice that y2
1 = y5

1 and, by Proposition 7.3, the y-widths of the supports of B3 and B4 must be smaller than the 
y-width of R, i.e., y3

1, y
4
1 > y1

1. Let ȳ := min{y3
1, y

4
1}. There exists a horizontal band, [x2

1, x
5
p1+2] ×(y2

1, ȳ) ⊂R that cannot 
be intersected by supp B3 and supp B4 (see the lower band in Fig. 9(a)). We want to prove that supp B2 ∩ supp B5 �= ∅. 
If supp B2 ∩ supp B5 = ∅ then, defined ¯̄y := min{ ȳ, y2

p2+2, y
5
p2+2}, there would exist a point (x, y) ∈ (x2

p1+2, x
5
1) × (y2

1, ¯̄y)

where none of the four B-splines with supports at the corners of R would be different from zero (see Fig. 9(b)). (x, y)

would only be in the support of B1. This is a contradiction. An analogous argument yields that supp B3 ∩ supp B4 �=∅.
2. By exchanging the axes, we can use the same argument adopted in the previous item.
3. Assume the B-splines in the two couples B2, B4 and B3, B5 do not intersect. Then, since the previous statements are 

proved, we must have{
x3

p1+2 < x5
1

y2
p2+2 < y4

1

or

{
x2

p1+2 < x4
1

y5
p2+2 < y3

1.

These two cases, depicted in Fig. 10(a)–(b), can be treated in the same way, so we focus only on the first.
Consider a point (x, y) ∈ (x3

p1+2, x
5
1) × (y2

p2+2, y
4
1). Since x ∈ (x3

p1+2, x
5
1) we have (x, y) /∈ supp B3, supp B5. While, since 

y ∈ (y2
p2+2, y

4
1), we have (x, y) /∈ supp B2, supp B4. Therefore (x, y) is only in supp B1, which is a contradiction. �

Fig. 11 shows possible arrangements of the supports of B1, B2, B3, B4, B5 to satisfy Proposition 7.3 and Lemma 7.5. In 
Fig. 11(a) the supports of B3 and B5 intersect each other while the supports of B2 and B4 do not intersect. In Fig. 11(b)–(c) 
both the pairs at opposing corners of R intersect each other. In particular, in Fig. 11(c) B2 is as tall as B5, B3 is tall as B4, 
B2 is as wide as B3 and B4 is as wide as B5.

The value of a bivariate B-splines B[xxx, yyy] at the lower and left edges of its support can be different from zero if the 
multiplicity of the knots y1 and x1 in yyy and xxx is p2 + 1 and p1 + 1 respectively. If one of B2, B3, B4, B5 is different from 
zero on an edge of its support then some of the support intersections described in Lemma 7.5 can be just a part of an 
edge. In particular, this is what happens when (p1, p2) = (0, 0). In this case, the intersections described in Lemma 7.5 1.–2. 
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Fig. 10. (a) and (b) are the two possible arrangements of the supports of B2, B3, B4, B5 inside the support of B1 when the first two items of Lemma 7.5
hold but not the last.

Fig. 11. Arrangements of the four B-splines at corners of suppB1 satisfying Lemma 7.5.

must be edge intersections in order for the nested B-splines to have minimal support. However, these edge intersections 
will be aligned, at least in one direction, i.e., there would exist at least one split traversing R entirely, that is, B1 would not 
have minimal support, which is a contradiction. We conclude that 5 MS B-splines are not enough for a linear dependence 
relation if (p1, p2) = (0, 0).

In the rest of this section, for sake of simplicity and briefness, we do not treat the cases with edge intersections. However, 
the arguments used to get our results can be adapted for these cases by collapsing the regions we consider in our proofs in 
splits of meshlines of higher multiplicities.

We now investigate more the B-spline support arrangements in the presence of a linear dependence by looking at the 
T-vertices inside the region R.

Definition 7.6. Let B[xxx, yyy] be a MS B-splines on a mesh M. Then its knots define a tensor mesh M[xxx, yyy], as described in 
Section 4. We define the meshlines of B[xxx, yyy] as the meshlines in M forming the tensor mesh M[xxx, yyy] and the splits of
B[xxx, yyy] as the splits in M made of such meshlines.

Definition 7.7. A vertex (x̄, ȳ) in R is called relevant if it corresponds to a pair of knots in at least one MS B-spline in the 
linear dependence relation (see Fig. 12).
A meshline γ is called relevant if it is a meshline of a MS B-spline in the linear dependence relation.

An example of relevant vertices and meshlines in a mesh is reported in Fig. 12.

Lemma 7.8. Any relevant vertex in R is the intersection of orthogonal relevant meshlines.

Proof. Let (x̄, ȳ) be a relevant vertex in R. Then it corresponds to a pair of knots of B[xxx, yyy] for some B-spline B involved in 
the linear dependence. In particular, (x̄, ȳ) is in the orthogonal splits [x j

1, x j
p1+2] × { ȳ} and {x̄} × [y j

1, y
j
p2+2]. Therefore there 

must exist at least 2 orthogonal relevant meshlines contained in such splits intersecting in (x̄, ȳ). �
Proposition 7.9. Any relevant meshline is a meshline of at least two MS B-splines in the linear dependence relation.
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Fig. 12. Consider the mesh on the region R depicted in (a). Every meshline has multiplicity 1 and consider bidegree (2,2). In (b) we see the supports 
of the MS B-splines on R. We will prove they are linearly dependent in Example 7.17. In (c) we see the relevant vertices in black and the non-relevant 
vertices in white.

Fig. 13. The T-vertex used in the proof of Corollary 7.10.

Proof. Let B = {B[xxx j, yyy j]}n
j=1 be the set of linearly dependent MS B-splines. Let γ be any k-meshline of B[xxx1, yyy1]. Assume 

that γ is not a meshline of any other MS B-spline in B. We know that B[xxx1, yyy1] is C pk−μ(γ )-continuous on γ . The linear 
dependence relation in B,

α1 B[xxx1, yyy1](x, y) +
n∑

j=2

α j B[xxx j, yyy j](x, y) = 0 ∀ (x, y) ∈ R,

can be rewritten expressing B[xxx1, yyy1] in terms of the others

B[xxx1, yyy1](x, y) = − 1

α1
·

n∑
j=2

α j B[xxx j, yyy j](x, y) ∀ (x, y) ∈ R (9)

because α j �= 0 for every j = 1, . . . , n. Consider now (x, y) ∈ γ ⊂ R. Since γ is not a meshline of any MS B-spline B[xxx j, yyy j]
in B with j ≥ 2, the right-hand side is a C∞-continuous function on γ while the left-hand side is only C pk−μ(γ )-continuous 
on γ , which is a contradiction. �
Corollary 7.10. Any relevant T-vertex corresponds to a pair of knots shared by at least two MS B-splines in the linear dependence 
relation.

Proof. Let (x̄, ȳ) be a relevant T-vertex as in Fig. 13. The other three possible cases of T-vertex can be treated similarly.
Since (x̄, ȳ) is relevant, γ must be relevant from Lemma 7.8. By Proposition 7.9, γ is shared by at least two MS B-splines 

in the linear dependence relation, B[xxx1, yyy1], B[xxx2, yyy2]. This means there are two knots y1
r ∈ yyy1 and y2

s ∈ yyy2 such that 
y1

r = ȳ = y2
s and [x1

1, x
1
p1+2] × { ȳ}, [x2

1, x
2
p1+2] × { ȳ} are splits in the mesh containing γ . Since (x̄, ȳ) is a T-vertex, it ends 

such splits, that is, (x1
1, y

1
r ) = (x̄, ȳ) = (x2

1, y
2
s ), i.e., (x̄, ȳ) is a pair of knots shared by B[xxx1, yyy1] and B2[xxx2, yyy2]. �

In Section 9 we will see that one can use the previous result to improve the Peeling Algorithm (Dokken et al., 2013, 
Algorithm 6.3), a tool to check if the LR B-splines considered are linearly independent.

Definition 7.11. Any T-vertex vvv in a box–partition is the intersection of two colinear meshlines and another meshline γ
orthogonal to them. We assign an orientation to these vertices in the following way. We say that the T-vertex vvv is downward
if γ is below vvv , upward if γ is above vvv , rightward if γ is on the right of vvv and leftward if γ is on the left of vvv .
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It might happen that a relevant vertex vvv in R̊ is a cross-vertex, i.e., the intersection of four meshlines, but one meshline 
ending in vvv is not relevant. It means that vvv behaves as a T-vertex for the B-splines in the linear dependence relation. 
Therefore, we extend the definition of relevant T-vertex and of its orientation also to these vertices in R̊.

Theorem 7.12. Assume five MS B-splines are linearly dependent inside the region R. Then there are at least 4 relevant T-vertices in R̊, 
one per orientation.

Proof. For the sake of simplicity and without loss of generality, we can assume there are only relevant meshlines in R. 
Referring to any of the examples in Fig. 11, let us consider the vertical splits of B2 and B5 in the interior of the support 
of B1, i.e., in R̊. In order to find the minimal number of relevant T-vertices in R̊, we assume that the parameter values of 
such vertical splits are the same for B2 and B5. We assume the same for B3 and B4: the vertical splits of B4 are included 
into the vertical splits of B3.

Suppose first that the multiplicities of the knots in the x-direction corresponding to the vertical edges of R, i.e., xi
1, 

for i = 1, 2, 3 and xi
p1+2 for i = 1, 4, 5, are equal to 1. Then, in R̊ there are p1 + 1 vertical splits of B5 and p1 + 1 for 

B3, counting the multiplicities. If an end vertex of a vertical split of B3 or B5 corresponds to a relevant cross-vertex, it is 
contained in a split traversing the entire region R, that is, it is contained in a vertical split of B1. There are p1 vertical splits 
of B1 in R̊, counting the multiplicities. Therefore, at most p1 vertical splits in R̊ of B3 and B5 can end with a relevant 
cross-vertex. Thus there exists at least one relevant vertex of B5 left on the upper edge of supp B5 inside R that cannot 
be a cross-vertex. The same holds for the relevant vertices in B3. This proves the existence of two relevant T-vertices in 
R̊, one downward and one upward. If the knots in the x-direction corresponding to the vertical edges of R have higher 
multiplicities, one can apply the same argument, by subtracting such multiplicities from the count of the vertical splits. 
Still the difference between the vertical splits in B3, B5 and B1 will be greater than or equal to one and there will be at 
least one vertical T-vertex per direction necessarily. Applying the same argument to the horizontal splits of B3 and B5 we 
complete the proof. �

Theorem 7.12 holds also if the number of B-splines involved in the linear dependence relation is larger than 5 because 
of the necessary presence of nested B-splines at the corners.

In order to carry out the proof of the next Proposition 7.15, we need the following definition.

Definition 7.13. Given a spline mesh N = (M, μ, ppp), let γ be a (k, α)-split in M for some k ∈ {1, 2}. For instance, assume 
k = 1. Let F :R2 →R be a spline function in S(N ). F is a piecewise polynomial and therefore, for sufficiently small ε > 0, 
the functions F + = F |(α,α+ε)×R and F − = F |(α−ε,α)×R are polynomials in x (but splines in y), i.e.,

F + =
p1∑

i=0

f +
i (y) · (x − α)i, F − =

p1∑
i=0

f −
i (y) · (x − α)i

for f +
i , f −

i univariate spline functions. Then we can extend the expression of F + and F − to R2. We define the jump 
function of F with respect to γ as J (F )(x, y) = F + − F − .

Remark 7.14.

• If γ is not in a split traversing the support of F and is not on its boundary, then F is C∞(γ ) and in particular F + = F −
so that J (F )(x, y) = 0.

• When F is a bivariate B-spline, F = B[xxx, yyy] and γ corresponds to a knot in xxx, that is x j = α for some j and γ =
{x j} × [y1, yp2+2], then

J (B)(x, y) = J ′(B[xxx])(x) · B[yyy](y)

where J ′(B[xxx])(x) is a polynomial of the form:

J ′(B[xxx])(x) =
p1∑

i=p1−μ(γ )+1

ai(x − α)i .

• Let c1, c2 be real numbers and F1, F2 be spline functions. Then J (c1 F1 + c2 F2)(x, y) = c1 J (F1)(x, y) + c2 J (F2)(x, y).

Proposition 7.15. We need at least 6 minimal support B-splines for a linear dependence relation in R for any bidegree.

Proof. Referring to any configuration in Fig. 11, consider a relevant T-vertex vvv in B5. By Corollary 7.10, it has to be shared 
with at least another MS B-spline. It cannot be shared with B2 if B2 is shorter than B5, and of course it cannot be shared 
with B3 or B4 because it would not be a T-vertex. Then we have two cases:
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• There exists a new MS B-spline in the linear dependence relation with support in the y-direction covering the space 
between the supports of B5 and B2 and having vvv as pair of knots, or

• B2 is as tall as B5.

In the first case we have finished the proof. Let us assume then that B2 is as tall as B5. Applying the same procedure to the 
other relevant T-vertices, we either have at least a new MS B-spline in the linear dependence relation, or it must be that B4

is as tall as B3, B2 is as wide as B3 and B4 is as wide as B5. In the first case we have completed the proof. In the second, 
if no other B-splines are involved, we can write B1 in terms of B2, B3, B4, B5:

B1(x, y) = α2 B2(x, y) + α3 B3(x, y) + α4 B4(x, y) + α5 B5(x, y) with α j �= 0. (10)

Now, consider any T-vertex downward, corresponding to a 1-split γ in B2 and B5. The jump functions of B2 = B[xxx2, yyy2]
and B5[xxx5, yyy5] corresponding to γ , in order to represent B1 as in equation (10), must satisfy

α2 J ′(B[xxx2])(x) · B[yyy2](y) = −α5 J ′(B[xxx5])(x) · B[yyy5](y) (11)

because B1 is smooth on γ and there are no other MS B-splines in the linear dependence relation with less regularity in 
the x-direction on γ . However, the knots of yyy2 and yyy5 are different because of the presence of T-vertices leftward and 
rightward, and equation (11) is impossible to achieve because B[yyy2] and B[yyy5] are defined on different knots and cannot 
be proportional everywhere. �
Proposition 7.16. In a linear dependence relation with six MS B-splines on an LR-mesh, the sixth MS B-spline, B6, is not an LR B-spline.

Proof. If B6 is an LR B-spline it has been obtained through knot insertion from an LR B-spline in a coarser mesh. When the 
knot insertion is applied the size of the refined B-splines is smaller only in the direction where the knot has been inserted. 
Therefore, for B6, in order to be an LR B-spline and be in the linear dependence relation there would exist another B-spline 
among B2, B3, B4 and B5 whose support is either as tall or as wide as the support of B6 and intersects with the support 
of B6. Assume we are in the first case of the proof of Proposition 7.15 and there are exactly six MS B-splines in linear 
dependence. Then there are 4 relevant T-vertices in R̊ shared with B6 and identifying the edges of supp B6. Therefore, 
supp B6 ⊆ R̊ and cannot be the same as the size of any of B2, B3, B4, B5 in any direction.

In the second case of the proof of Proposition 7.15, if B6 is an LR B-spline, we can assume that B6 is as tall as B2 and 
B5 (the other cases can be treated similarly). Then there would exist a vertical split of B6 that traverses the support of B2, 
or B5, without being a split of it. This is impossible for the minimality of their supports. �
Example 7.17 (Linear dependence relation in BMS(N ) with 6 minimal support B-splines). In this example we prove that 6 MS 
B-splines are enough for a linear dependence relation for any bidegree ppp = (p1, p2). We start with ppp = (2,2). Consider the 
LR-mesh M of multiplicity one depicted in Fig. 4(a). The supports of the 10 MS B-splines defined on it are represented in 
Fig. 4(b)–(c). By using the dimension increasing formula in Theorem 3.9, since

• the dimension of the underlying tensor mesh is 3,
• by inserting first the horizontal splits, the expanded spline knot vectors on them have length 4, which results in a 

dimension increase of 1 per insertion, and
• then, by inserting the two vertical splits, the dimension increases by 2 each time,

we easily compute the dimension of the spline space on N = (M, 1, (2, 2)),

dim S(N ) = 3 + 1 + 1 + 2 + 2 = 9.

Moreover, the construction of N went LR-wise, and so MS-wise, hand-in-hand. Therefore, we can conclude that there is 
a linear dependence relation in BMS (N ). The necessary conditions to be in linear dependence, given in this section, are 
satisfied by the six MS B-splines whose support is depicted in Fig. 14. Finally, we notice that the 9 LR B-splines on M, 
reported in Fig. 4(b), are still linearly independent and span the spline space on N .
For any other bidegree (p1, p2) �= (0,0), one can build an LR-mesh preserving the same structure of Fig. 4(a). Fig. 15(a)-(j) 
shows the cases for (p1, p2) = (3,3), (4,4), (1,1), (1,0), (3,1). The insertions are the same as for bidegree (2,2) if pk ≥ 2
for some k ∈ {1, 2}, while if (p1, p2) = (1,0), (0,1), (1,1), then it is necessary to use some extensions to get an equivalent 
arrangement (see the dashed meshlines in the mesh (e) and (g) of Fig. 15). Again the dimension of the spline space is 9 
while there are 10 MS B-splines in all the cases. Fig. 15 (k)-(l) shows an equivalent arrangement for bidegree (0,0). However, 
the mesh in (k) is not an LR-mesh. As we already pointed out, it is not possible to satisfy the necessary nestedness condition 
for a linear dependence when considering LR-meshes and bidegree (0,0). However, it can be verified on general meshes. For 
this example, dimS(N ) = 5 and it is spanned by the characteristic functions of the elements of the box-partition. Therefore, 
the MS B-splines on the mesh span the spline space but are more than its dimension.
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Fig. 14. The supports of the six MS B-splines of degree (2,2) in linear a dependence relation on the LR-mesh depicted in Fig. 4(a).

Fig. 15. In (a) an LR-mesh providing MS B-splines of bidegree (3,3) in an equivalent arrangement of the MS B-splines of bidegree (2,2) on the mesh in 
Fig. 4(a). In (b) are shown the supports of the six B-splines in the linear dependence relation. In (c)-(d) the same for bidegree (4,4). In (e)-(f) we have 
the same for bidegree (1,1). Note that we have used two extensions (dashed meshlines) to obtain an equivalent arrangement as for the other bidegrees. 
In (g)-(h) and (i)-(j) we show the equivalent configuration for bidegrees (1,0) and (3,1). Finally, in (k)-(l) we have a comparable arrangement for bidegree 
(0,0). However, the mesh in (k) is not an LR-mesh.
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8. Minimal number of LR B-splines for a linear dependence relation

In this section we show that at least eight B-splines must be involved for a linear dependence relation in BLR(N ). 
Then we provide examples for any bidegree ppp = (p1, p2) with pk ≥ 2 for some k ∈ {1, 2} where the LR B-splines in linear 
dependence are exactly eight. In such examples the meshes will be refinements of the meshes presented in Example 7.17. 
As we pointed out in Proposition 7.16, the sixth MS B-spline B6 in Example 7.17 is not an LR B-spline on the mesh M. In 
these new examples we show how to refine M in order to refine B6 into two B-splines that can now be obtained through 
the knot insertion algorithm from LR B-splines on coarser meshes. This will move the number of MS B-splines involved in 
the linear dependence from six to eight but all of them will now be LR B-splines.

Lemma 8.1. Given a spline LR-mesh N = (M, μ, ppp), assume the elements in BLR(N ) are linearly independent. If the insertion of a 
k-split γ causes a linear dependence relation in BLR(N + γ ), then the expanded spline knot vector on γ , τττ μ̃3−k

p3−k
, has length at least 

p3−k + 3 and the growth of cardinality is |BLR(N + γ )| − |BLR(N )| > 2.

Proof. Theorem 5.2 of Dokken et al. (2013) ensures that if τττ μ̃3−k
p3−k

has length p3−k +2 then the elements in BLR(N +γ ) are 

linearly independent. Assume that τττ μ̃3−k
p3−k

has length p3−k + 3. From the end of Section 6, the refinement goes hand-in-hand 
only if |BLR(N +γ )| − |BLR(N )| ≥ 2 and there is a linear dependence relation if it is a strict inequality. If the refinement 
does not go hand-in-hand then it must be |BLR(N + γ )| − |BLR(N )| ≤ 1 and the new B-spline (if existing) is linearly 
independent of the B-splines in BLR(N ) as it has a split that intersects γ , which either is not in M or it has a higher
multiplicity in M + γ . �
Proposition 8.2. Given a spline LR-mesh N = (M, μ, ppp), we need at least 8 LR B-splines for a linear dependence relation in BLR(N ).

Proof. By Proposition 7.3, we must have four nested B-splines at the four corners of R. In order to keep the number of 
B-splines needed as low as possible we assume as in the proof of Corollary 7.4 that we only need, for the nestedness 
condition, five B-splines: B2, B3, B4, B5 contained in B1. By Theorem 7.12, this implies that there are at least 4 relevant 
T-vertices. Either

1. the nested B-splines share all these relevant T-vertices between them, or
2. a relevant T-vertex is not shared.

In case 1, we have a configuration as the one reported in Fig. 11(c) and as we have seen in the proof of Proposition 7.16, if 
there are no more relevant meshlines apart from those of B2, B3, B4, B5, the other MS B-splines that can be generated in 
R using relevant meshlines are not LR B-splines. Therefore, in order to make a linear dependence relation in R, there must 
exist at least another split that has provided, by Lemma 8.1, a growth in the LR B-spline set of at least three, bringing the 
number of LR B-splines involved to at least eight. Note that such a split necessarily has refined some of the LR B-splines 
at the four corners and the LR B-splines generated must all have nonzero coefficients in the linear dependence relation 
because created via knot insertion from them.

In case 2, there are T-vertices not shared by two B-splines nested at the corners. There must exist other LR B-splines 
sharing these T-vertices and bringing linear dependence. Hence, there must exist at least another split, aside from those 
needed for the construction of the nested LR B-splines, that has provided, by Lemma 8.1, a growth of at least three in the 
LR B-spline set, moving the total number to at least eight. Also in this case, we note that all of these three LR B-splines must 
have nonzero coefficient in the linear dependence relation for the following reason. One of the three LR B-splines, B , has 
necessarily a nonzero coefficient because it is used to share a relevant T-vertices. The other two B-splines have been created 
together with B and are related to it through knot insertion relations. Therefore they also must have nonzero coefficients in 
the linear dependence relation. �

In the following example we show meshes where there are exactly eight LR B-splines in a linear dependence relation for 
any bidegree ppp = (p1, p2) with pk ≥ 2 for some k ∈ {1, 2}. Such meshes are refinements of those presented in Example 7.17.

Example 8.3. Consider the spline mesh N = (M, 1, (2, 2)) with M as in Fig. 4(a). We have shown in Example 7.17 that 
dim S(N ) = 9 and the construction of M went LR-wise hand-in-hand. Let us now insert a new split γ , whose expanded 
spline knot vector has length p2 + 3 = 5, to get the mesh M + γ as shown in Fig. 16(a). Then, by Theorem 3.9, dim S(N +
γ ) = dim S(N ) + 2 = 11 and N + γ went LR-wise hand-in-hand with N . Furthermore, the LR B-spline set grows by three, 
|BLR(N +γ )| = |BLR(N )| + 3 = 12 as shown in Fig. 16(b). Therefore, there is a linear dependence relation. The only eight 
LR B-splines satisfying Proposition 7.3 and Corollary 7.10 are depicted in Fig. 16(c).

For what concerns the general bidegree (p1, p2), if pk ≥ 2 for some k ∈ {1, 2} it is always possible to arrange the 
LR B-splines in the same way as for bidegree (2,2). For instance, in Fig. 17 are reported the cases for (p1, p2) = (3,3),

(4,4), (3,1), (2,0). Also here dimS(N ) = 11 while |BLR(N )| = 12. For (p1, p2) = (0,1), (1,0) and (1,1) we are unable to 
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Fig. 16. (a) An LR-mesh of multiplicity 1, (b) the LR B-splines of degree (2,2) on it, (c) the LR B-splines in the linear dependence relation.

Fig. 17. In (a) is shown an LR-mesh providing LR B-splines of degree (3,3) in an equivalent arrangement of the LR B-splines of bidegree (2,2) on the mesh 
in Fig. 16 (a). In (b) are shown the supports of the eight B-splines in the linear dependence relation. In (c)-(d) are shown the same for bidegree (4,4), in 
(e)-(f) for bidegree (3,1) and (g)-(h) for bidegree (2,0).
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find an LR B-spline refinement process so that one can insert, via knot insertion, an LR B-spline inside R̊, to share the 
relevant T-vertices of the four nested B-splines, without traversing the larger B-spline B1 with an extra split. This split de-
stroys the linear dependence relation by triggering a refinement of B1. We conjecture that it is impossible to have a linear 
dependence relation in BLR(N ) for such low bidegrees.

We stress that M + γ in Fig. 16(a) is obtained by refining the mesh M in Fig. 4(a) considered in Example 7.17. What 
happens is that with the insertion of a new split, the MS B-spline in the center of mesh M, B6 , is refined into two MS 
B-splines that can now be obtained through the knot insertion procedure.

9. Improvement of the Peeling Algorithm

The Peeling Algorithm introduced in Dokken et al. (2013) is a tool to check if the LR B-splines on a given LR-mesh 
are linearly independent. However it does not handle every possible configuration, that is, it might end without answering 
whether the LR B-spline collection is linearly independent or not. In this section, we briefly recall it and we show how it 
can be improved, by using Corollary 7.10, to sort out more cases.

Definition 9.1. An element of the box-partition E is overloaded if it is in the support of more B-splines than necessary for 
spanning the corresponding polynomial space 
ppp , that is, it is in more than (p1 + 1)(p2 + 1) supports. We call a B-spline 
overloaded if all the elements in its support are overloaded.

An extra B-spline, in a linear dependence, can be removed without changing spanning properties over the elements of 
E in its support. So, only overloaded B-splines occur in linear dependencies. A linear dependence relation has to involve at 
least two overloaded B-splines on every element. Therefore, if on an element there is the support of only one overloaded 
B-spline, such B-spline cannot be active in a linear dependence. This simple observation is the basis of the Peeling Algorithm.

Peeling Algorithm

1 From the set of LR splines BLR(N ) create the set BO of overloaded B-splines;
2 Let E O be the elements of E in the supports of the B-splines in BO ;
3 Initialization of a subset BO

1 of BO we are going to define, BO
1 = ∅;

4 for every element β in E O do
5 if only one B-spline B of BO has β in its support then
6 BO

1 = BO
1 ∪ {B}

7 if BO \BO
1 = ∅ then

8 linear independence.
9 else

10 if BO
1 = ∅ then

11 break, but might have linear dependence.

12 BO = BO \BO
1 ;

13 Go to 2;

The implementation of it is described in Dokken et al. (2013) in terms of matrices.
However, it might happen that every element of E O is shared but yet the overloaded LR B-splines are linearly indepen-

dent. An example is reported in Fig. 18. We consider bidegree (2,2) and an LR-mesh of multiplicity one. In the highlighted 
region in Fig. 18(a) there are the supports of five LR B-splines, reported in Fig. 18(b), that form the collection BO of the 
algorithm. Then, for each element of the box-partition in such region we count how many of these supports are on it. If 
an element is only in one support, the corresponding B-spline is placed in the subcollection BO

1 of the algorithm. From 
Fig. 18(c), we see that BO

1 = ∅. Therefore, the algorithm stops without answering whether the LR B-splines on the mesh 
are linearly independent or not. However, if we now look at the T-vertices in the region, highlighted in Fig. 18(c), we see 
that none of them is shared, as pair of knots, in two or more B-splines of BO . Since the necessary condition for linear 
dependency Corollary 7.10 is not satisfied, we can conclude that the LR B-splines on the mesh are linearly independent.

The Peeling Algorithm can therefore be improved by inserting in BO
1 also the B-splines of BO that have an exclusive 

T-vertex as pair of knots. Furthermore, if the cardinality of BO becomes less than 8 at any iteration of the algorithm, we 
can conclude that the LR B-spline collection is linearly independent thanks to Proposition 8.2.
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Fig. 18. Consider bidegree (2,2). In the highlighted region in (a) there are the supports of five overloaded LR B-splines, depicted in (b). The numbers 
in the elements of the region, reported in (c), indicate how many supports of these B-splines are on them. The highlighted vertices are the T-vertices 
corresponding to pair of knots of the overloaded LR B-splines.

10. Conclusions, conjectures and future work

In this work we have identified necessary features of the mesh to have a linear dependence relation in the MS and LR 
B-spline sets for any bidegree ppp. Namely, if the union of the supports of the B-splines involved in the linear dependence 
relation is denoted as R,

• there are nested B-splines at the corners of R, and
• every relevant T-vertex is shared.

Moreover, we have proved that the minimal number of MS B-splines needed for a linear dependence relation is six while 
for the LR B-splines is eight. These numbers are sharp for any bidegree ppp = (p1, p2) for the MS B-splines and for the LR 
B-splines with pk ≥ 2 for some k ∈ {1, 2}. When (p1, p2) = (0,1), (1,0) or (1,1), we conjecture it is not possible to have a 
linear dependence relation in the LR B-spline set.

In our future work, we would like to classify the meshes with a linear dependence relation involving this minimal 
number of MS B-splines. The number of possible cases would then be dependent on the bidegree chosen. Our conjecture is 
that every possible configuration of linear dependency is a refinement of one of such cases. Note that this is what happens 
in the meshes of Example 8.3.
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