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Predictions of the anisotropic coefficients of thermal expansion are needed to not only compare to experimental
measurement, but also as input for macroscopic modeling of devices which operate over a large temperature
range. While most current methods are limited to isotropic systems within the quasiharmonic approximation,
our method uses first-principles calculations and includes anharmonic effects to determine the temperature-

dependent properties of materials. These include the lattice parameters, anisotropic coefficients of thermal ex-
pansion, isotherm bulk modulus, and specific heat at constant pressure. Our method has been tested on two
compounds (Cu and AIN) and predicts thermal properties which compare favorably to experimental measure-
ment over a wide temperature range.

1. Introduction

While experimental measurements of the coefficient of thermal
expansion (CTE) can be done using a number of experimental techni-
ques [1-5], most theoretical tools available for predicting the CTE are
limited to the quasiharmonic approximation (QHA) or the Debye-Gru-
neisen approximation. There are a few programs [6,7] and several
models [8-22] available for scientists to calculate the CTE, and its as-
sociated thermal properties, from first-principles calculations. These
currently available methods principally rely on the QHA. Since these
programs determine the coefficient of volume expansion, they are
limited to calculations of systems with a considerable amount of
structural symmetry. A limited amount of work has been published on
the thermal properties of anisotropic systems employing anharmonic
effects [23-25], but this work is not available as a comprehensive
package of tools that can automatically predict such properties from a
first-principles approach.

In this work, an algorithm is developed to determine the thermal
properties of isotropic and anisotropic systems using density functional
theory (DFT) and density functional perturbation theory (DFPT) calcu-
lations. This algorithm utilizes the Vienna Ab initio Simulation Package
(vasp) [26-28] for first-principles calculations and the temperature-de-
pendent effective potential (tpep) [29-31] software package to calculate
the interatomic force constants. The toep method is designed to work for
both harmonic and strongly anharmonic systems [31].
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To demonstrate the abilities of our methods, two systems with dis-
tinctive symmetries are compared to a variety of experimental results.
The first system, pure copper (Cu) [35,36], possesses cubic symmetry
and therefore the CTE is a single temperature-dependent value. The
temperature-dependent properties of copper are thoroughly in-
vestigated experimentally [33,35,37-44] and Cu is consequently used
to determine the quality of our calculation methods. The second ma-
terial, aluminum nitride (AIN) [34], is widely used in electronic devices
applications and has a hexagonal crystal structure. Therefore, AIN has
two unique CTE’s and is used to demonstrate our ability to calculate the
expansion coefficients of an anisotropic material with a known tem-
perature-dependent anharmonic interaction [23]. In each case, our al-
gorithm outputs a large amount of temperature dependent information
that can be used to better understand thermal expansion in macroscopic
devices by modeling interfaces at finite temperatures which, when
there are differences in the thermal expansion rates across the inter-
faces, can lead to mechanical failure during thermal cycling.

In Section 2, an outline of the calculation methods is provided and
in Section 3, we analyze the results of our methods via comparison to
available experimental data for Cu and AIN. Finally, in Section 4, we
provide a concluding discussion.

2. Calculation methods

The present benchmark calculations were performed with the
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projector-augmented wave (PAW) method [45] to describe the core
electrons by utilizing PAW pseudopotentials [46]. Exchange and cor-
relations effects were described by the Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA) [47]. To describe the elec-
tronic system, a plane-wave energy cutoff equal to 500 eV was used and
a Monkhorst-Pack [48] mesh of points was generated for each grid in
reciprocal space assuming a k-point density of at least five points per
A1, For the relaxation, ground-state, and configuration calculations
the same k-point mesh was used. DFPT calculations were done on a k-
point mesh twice as dense as the grid used in the ground state calcu-
lations.

For each ground state and configuration calculation, the iterations
of the total energy were stopped once the differences in energy between
successive iterations were less than 0.01 meV per unit cell. To calculate
the dielectric, elastic, and Born effective charge of our material, we
used finite-differences as implemented within vasp where only sym-
metry-inequivalent atomic displacements were used to calculate the
Hessian matrix. The elastic tensor was used to determine the Debye
temperature and the isentropic bulk modulus, as outlined below. The
dielectric tensor and Born effective charge tensor were used to account
for the long-range electrostatic interactions in semiconducting com-
pounds within Tpep.

Using DFT and DFPT, the elastic tensor is first calculated allowing us
to calculate various moduli, speeds of sound, and the Debye tempera-
ture as follows. First, the Voigt average of the bulk (B) and shear (G)
moduli (upper bound for polycrystalline materials) are found from the
components of the elastic tensor, C; (i, j = 1. .6), as [49,50]

B= %((Cu + Cop + C33) + 2(Crz + C31 + Ca3))
%((Cn + Cn+ C33) — (Ca + Ca1 + C)

+ 3(Cas + Css + Cé).
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With the bulk and shear moduli one can then calculate the longitudinal
and shear sound velocities (v; and v,) as [51]
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where p is the density of the material. Therefore, the Debye tempera-
ture can be calculated as [51]

h [ (g 5 -1/3
O
kB vy Vg (4)

where h is Planck’s constant, kg is the Boltzmann constant, and m is the
number of atoms per volume. Unlike in Ref. [51], we do not separate
the acoustic bands and use all the phonon bands to calculate 6p.

Since 6p is calculated from the elastic tensor, which is calculated at
zero temperature within vasp, it also represents the ground state (0 K)
6p. While one could, in principle, calculate the elastic properties as a
function of temperature [57,22], and therefore 6, as a function of
temperature, we have found that the value of 6, at zero temperature
provides an adequate starting point for our calculations since variations
in the configuration temperature, outlined below, do not significantly
modify our results.

Op is used within TpEp to generate an initial guess for the force
constants of the system. They are in turn employed to generate atomic
configurations based on a canonical ensemble. Here, twelve config-
urations are generated as follows: with 6, and the symmetry of the cell,
one generates an initial guess for the interatomic force constants and
solves the equations of motion for the system by finding the resulting
eigenvalues and eigenvectors. Then, these eigenvalues and eigenvectors
are used to determine the amplitude and velocity of each atom chosen
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such that these quantities are normally distributed over a canonical
ensemble. The configurations consisted in this study of 208 atoms for
Cu and AIN. The ensemble is generated at a finite temperature (here
designated the configuration temperature) with Bose-Einstein statistics
used to determine the mean normal mode amplitude [58]. vasp is then
used to calculate the energies, displacements, and forces for each of the
generated configurations. These are combined within Tpep to generate
the finite-temperature force constants by fitting the Born-Oppenheimer
energy surface. This procedure allows us to go beyond the quasi-
harmonic approximation by explicitly including anharmonic effects
through the canonical ensembles.

The extracted force constants are used to find the phonon fre-
quencies and phonon density of states (pDOS) on a g mesh in reciprocal
space (in this work 30 x 30 X 30 points were used) using the tetra-
hedron integration approach [59]. Using this grid and integration
method ensured the convergence of the free energy to within 0.01 meV/
atom.

The calculated lattice parameters x(T, p) depend on temperature
and pressure. Determining the lattice parameters at ambient pressure
x(T, 0) requires minimizing the free energy F(x, T) at each tempera-
ture. The free energy of the system can be expressed as a function of the
total electronic energy U (x) and the vibrational free energy (F;,(x, T))
as

F(X, T) = U(X) + Fvib (X, T), Fvib (X, T)

Wmax hw hCL)
- /; ; g(wl)TA + kBTg(coA)ln(l - exp(kB;))dcoﬁ],

(5)

where 1 is the phonon mode index and both the vibrational density of
states (g(w)) and phonon frequencies w; depend on x. U is the DFT
calculated volume dependent total electronic energy of the system. In
order to minimize F(x, T), a set of lattice parameters is generated au-
tomatically by applying strain to the system around the ground state
equilibrium lattice parameters. This is done by finding a series of six
lattice parameters in each symmetry unique direction such that the new
lattice parameters range between one percent compressive and four
percent tensile strain. This provided a smooth free energy surface at
each temperature.

The optimized lattice parameters xo(T) are found by fitting F(x, T)
to a polynomial function [14,16,25] of the lattice parameters x; = a, b,
and ¢ as F;(x) = EU f Jvkaibfck, where f;, are the coefficients of the
polynomial fit. Here, we used fourth-order polynomials, and varied a (a
and c) in the case of Cu (AIN).

To determine the minimum of F (x, T), we use the constrained BFGS
minimization method as implemented in the Scipy optimize package
[60-62]. After finding these minimizing parameters they are fitted to an
eighth-order polynomial as a function of temperature to account for the
numerical noise in the free energy calculations. The CTE is then cal-
culated by computing the derivative of the smoothed data [55]
(o, = ﬁ‘z;ﬁ = %T(xi)) for each component of the CTE. x_ is either the
zero terlnperature lattice constant or the temperature-dependent lattice
constant, as shown here. Using either of these produces practically
identical results, as assumed by Slack [55].

With the integrated pDOS, the specific heat at constant volume (C,)
is calculated for the relaxed geometry and the specific heat at constant
pressure (Cp) is found using the well-known thermodynamic relation-
ship

Br 6

Here, Tr(«) is the trace of the CTE matrix and B, is the isothermal
compressibility, which is the inverse of the isothermal bulk modulus Br.
Br is determined by fitting the free energy at a fixed temperature versus
volume using the Birch-Murnaghan equation of state [63-65]. This
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allows us to extract the cohesive energy and the pressure derivative of
Br as a function of temperature. There is no significant numerical dif-
ference between By and the isoentropic bulk modulus B in solids [66];
however, the methods used to calculate and measure these quantities
are different and thus we distinguish these two quantities whenever
possible.

Additional details of our algorithm are presented within the
Appendix A.

3. Results

To test the accuracy of our vasp and tpep calculations and the ac-
curacy of our algorithm, we will compare our calculated values to ex-
perimental results for well-known systems: bulk Cu and AIN. Bulk Cu is
a face-centered cubic structure (space group Fm3m) from OK to its
melting point of approximately 1357 K [67,68]. Bulk AIN has a wurtzite
(hexagonal) crystal structure (space group P6;mc) from OK to its
melting point of approximately 3270K [69]. For each material, our
calculations can be compared to experimental measurement as shown
in Table 1.

Table 1 contains a comparison of our ground state (0 K) calculated
Debye temperature, isentropic bulk modulus, and DFT lattice para-
meters to experimental measurement. The agreement between our va-
lues and experiment is well within the typical errors seen in ground
state GGA-DFT calculations.

The temperature-dependent lattice parameters of Cu and AIN are
shown in Fig. 1. They are compared to experimental values. In the case
of Cu, the recommended values of the thermal lattice expansion given

Table 1

Our ground state (0 K) calculated Debye temperature, isentropic bulk modulus,
and lattice parameters compared to experimental values. The experimental
lattice parameters of Cu and AIN come from experimental data extrapolated to
zero temperature.

Cu AIN
Calc. Exp. Ref. Calc. Exp. Ref.
Op (K) 348 347 [70] 1048 971 [71]
B (GPa) 143.8 137.6 [72] 196.5 201 [73]
a(A) 3.633 3.615 [74] 3.129 3.107 [75]
c(d) 5.012 4.973 [75]
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in Ref. [33] were used as reference. The difference between our cal-
culated values and experimental measurement comes from the inherent
error in predicting the ground state lattice parameters at the specific
level of theory (i.e.: the PBE GGA of DFT). The calculated lattice
parameters were fitted to an eight order polynomial, shown as solid
lines. In addition, black dashed lines show the results adjusted for the
DFT ground state error for the sake of comparison.

The unshifted polynomial fit was used to calculate the CTE, specific
heat, and bulk modulus. We obtain excellent agreement between the
calculated CTE and experimental measurements for Cu and AIN be-
tween approximately 30 K and 6p, as shown in Fig. 2. However, there is
some deviation above 6p, most notably for Cu where the calculated CTE
is markedly higher than the experimental values as the temperature
approaches the melting temperature. This is most likely due to higher-
order anharmonic interactions not sufficiently accounted for at these
temperatures. For AIN, it has been shown that the temperature-de-
pendent c/a ratio is not correctly reproduced in anharmonic DFT/TpEp
calculations [23], and our extracted anisotropic CTE of AIN are con-
sistent with those results.

The calculated specific heats of these materials also agree very well
with experimental measurement as shown in Fig. 3. We also calculated
C, for both materials, but the difference between C, and C, was too
small over the entire temperature range of data to be discernible in the
plot—at any temperature the difference 1 — (C,/C,) was smaller than
107°. This calculation, therefore, is further evidence that one can safely
ignore the differences between these two quantities when comparing
experimental and theoretical values [78].

Finally, in Fig. 4, we plot By and its pressure derivative vs tem-
perature for both Cu and AIN. Literature values of By and B; are shown
for the sake of comparison. By lies consistently above both theoretical
and experimental values of By, most likely due to error in finding the
experimental values of the elastic constants.

4. Discussion and conclusion

Our algorithm calculates the thermal expansion of both isotropic
and anisotropic materials using the DFT, DFPT and TDEP methods.
Several related thermal properties are also calculated including By and
C,. Agreement between our calculations and experimental results gives
us confidence in our methods. The correspondence between our cal-
culations and experiment for the CTE is only moderate at temperatures
above 6p. This may e.g. be due to unattributed numerical inaccuracies,

3.18
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<
©
< I
(8]
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Temperature (K)

Fig. 1. Calculated and experimental temperature-dependent lattice parameters for Cu (left panel) and AIN (right panel). Our calculations are shown as black points
(every 50th point is shown) and the solid line corresponds to an eighth order polynomial fit. The black dashed line equals the solid line except for a constant shift
correcting for the ground state error originating from the PBE GGA calculations. Data, in red, for Cu from Ref. [32] (4) and the recommended lattice parameter of
Ref. [33] (X). Data for AIN from Refs. [34] (*) and [17] (®). Here and in all the following figures, the blue dashed and dotted vertical lines denote the Debye and
melting temperature respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. The CTE for Cu (left panel) and AIN (right panel) from our calculations as a solid line and experimental data as red symbols. For Cu, + (Ref. [35]), X (Ref.
[371), * (Ref.[38]), (Ref. [40]), ® (Ref. [41]), v (Ref. [42]), ¢ (Ref. [43]), O (Ref. [52]) and quarter open circles (Ref. [53]). For AIN, + (Ref. [17]), X (Ref. [54]), *
(Ref. [55]), and (Ref. [56]). Inset: Calculated and experimental data points for temperatures between 0 and 100 K indicating that our calculations are only accurate
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Fig. 4. Calculated isothermal bulk modulus (upper panels), and its pressure derivative (lower panels), for Cu (left panels) and AIN (right panels) as solid lines. Data
points in red. For the upper left panel: + (Ref. [79]) for the isoentropic bulk modulus, x(Ref. [80]), and * (Ref. [32]) are for the isothermal bulk modulus. For the
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the present level of theory (PBE-GGA), or due to an inadequate sam-
pling of the anharmonic interactions at elevated temperatures due to
the finite number of configurations used in this calculation.
Nevertheless, most of our predictions are very well aligned with ex-
periment, which makes us confident that this software can be used to
determine the CTE for many more materials of experimental interest
either with individual calculations or as part of a high-throughput
framework.

We have undertaken several careful convergence studies of the
number of configurations, super-cell size, and k-point mesh density to
minimize the error between our calculations and experimental mea-
surement over the entire temperature range. We have determined that
using the k-point mesh density given previously provides a reasonable
accuracy between our calculated CTE and experiment. Additionally, we
have found that the configuration temperature used by toep should be
slightly smaller than 6, allowing for us to account for most of the an-
harmonic interactions as the temperature approaches the melting
temperature. Here, we show results with the configuration temperature
equal to 80% of 6p and have tested both higher and lower configuration
temperatures as well with similar results.

While not shown, the present algorithm can be used to calculate the
CTE from a completely anisotropic system. Additionally, this algorithm
can easily be integrated into existing high-throughput software work-
flows that we hope will enable subsequent researchers in e.g. designing

Appendix A. Summary of the algorithm

Computational Materials Science 167 (2019) 257-263

the next generation temperature-dependent electronics. While one must
use caution when calculating temperature-dependent properties, and
carefully consider the convergence of many of the DFT, DFPT, and
TDEP input parameters, this software thus provides an algorithm for
automatically calculating the CTE and related properties of any mate-
rial with a periodic unit cell. The symmetry and size of this unit cell
may be limiting factors of the choice of materials, since it may be
prohibitively expensive to perform calculations on very large unit cells
with low symmetry with currently available high performance com-
puting resources.

Data availability

The raw and processed data required to reproduce these findings are
available to download fromhttps://GitHub.com/Npikeulg/ACTE.
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Our algorithm for calculating the CTE and associated thermal properties is diagrammed in Fig. 5 which involves both serial and parallel com-
putations using vasp and Toep. To start a calculation, the user enters a single vasp formatted POSCAR file describing the material’s crystal structure into
the directory where the entire calculation will take place. This POSCAR file should represent the conventional cell of the system in the desired
symmetry and, preferably, should represent the DFT-relaxed ground state structure. To launch the calculations, the user should execute the script
with the tag “~relaxation” which generates the necessary input files and bash scripts, creates the directories for the vasp calculations, and checks the

POSCAR File
( --relaxation }

: Relaxation :

(T T LT T T
) Finite- ]
I Differences 1
L

( --build_cells }

( --thermal_expansion }

T
|
Y
free energy

Fig. 5. Flow-chart outlining the algorithm used to calculate the anisotropic CTE. Blue rectangles represent first-principles calculations using vasp and red rectangles
represent calculations done with our script. Toep calculations (gray rectangles) are automatically launched by our script during the last two stages of the calculation.
Solid rectangles and lines correspond to serial calculations and dashed lines and rectangles represent parallel calculations.
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convergence of the calculations once completed. Following a relaxation calculation to ensure convergence, the script will automatically launch the
finite-differences calculations for the needed tensor quantities. Should the algorithm detect an error in the data or convergence procedure, the code
will abort. Once the error is fixed, the user can relaunch the calculation.

After the finite-differences calculation, our algorithm automatically starts the next stage of the calculation (which can be manually executed with
—build_cells) that constructs a set of unit cells corresponding to different volumes. The algorithm generates the necessary lattice parameter per-
turbations, as described above, to determine the CTE for the compound. During this calculation, the script will analyze the symmetry of the relaxed
unit cell, calculate the Debye temperature for the creation of the initial set of configurations used by tpep to determine the inter-atomic force
constants, and generate the necessary files for the related vasp calculations. Once generated, the algorithm will rerun the relaxation of the newly
perturbed unit cell by allowing relaxation of only the atomic positions. After this second relaxation, the script will generate the configurations and
launch each configuration in parallel. Since this is the most time-consuming part of the calculation, the user can relaunch this calculation as needed
and only the parts of the calculation that are incomplete will be executed.

The finishing stage of this calculation can be executed with the tag “~thermal_expansion” in which the script, for each lattice perturbation, will
launch TpEP to post-process the results of the previous vasp calculations. This post-processing generates the phonon density of states and various
thermal properties including the free energy of the system. After gathering the calculated free energies, the script will determine the set of lattice
parameters that minimize the free energy as a function of temperature. This temperature dependent set of lattice parameters is used to determine the
CTE, isothermal bulk modulus, and specific heat at constant pressure as outlined above.

During the concluding stage of the calculation, several output files are produced. The calculated free energies for each volume as a function of
temperature are printed to a single data file “out.free_energy_vs_temp” with temperatures given in Kelvin and free energies given in eV. The
temperature dependent lattice parameters are printed to a file called “out.thermal_expansion” with the lattice parameters given in A. The thermal
expansion coefficients are printed to the file “out.expansion_coeffs” in units of K™!. Calculations of the isothermal bulk modulus, its pressure
derivative, and cohesive energy are printed to the file “out.isothermal_bulk” where the isothermal bulk modulus is given in GPa, the derivative of the
bulk modulus with respect to pressure is unit-less, and the cohesive energy is in eV. Finally, the specific heat at constant volume and constant
pressure are calculated. These are printed to the data file “out.cv_cp” where both specific heats are given in units of kJ kg ™' K™,
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