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Abstract: This paper describes an approach for the early combination of material 

characterization and toxicology testing in order to design carbon nanofiber (CNF) with low 

toxicity. The aim was to investigate how the adjustment of production parameters and 

purification procedures can result in a CNF product with low toxicity. Different CNF 

batches from a pilot plant were characterized with respect to physical properties (chemical 

composition, specific surface area, morphology, surface chemistry) as well as toxicity by  

in vitro and in vivo tests. A description of a test battery for both material characterization 

and toxicity is given. The results illustrate how the adjustment of production parameters 

and purification, thermal treatment in particular, influence the material characterization as 

well as the outcome of the toxic tests. The combination of the tests early during product 

development is a useful and efficient approach when aiming at designing CNF with low 

toxicity. Early quality and safety characterization, preferably in an iterative process, is 

expected to be efficient and promising for this purpose. The toxicity tests applied are 

preliminary tests of low cost and rapid execution. For further studies, effects such as lung 
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inflammation, fibrosis and respiratory cancer are recommended for the more in-depth 

studies of the mature CNF product.  

Keywords: carbon nanofiber; toxicity; characterization 

 

1. Introduction 

Development of new nanomaterials should be accompanied by parallel efforts to investigate and 

understand their potential health and environmental effects. Lack of epidemiological studies and 

insufficient toxicological knowledge require a thorough risk management [1,2], covering all aspects of 

health, safety and environment (HSE). Screening strategies for hazard identification of engineered 

nanomaterial are given in the literature [3]. Exposure to engineered nanomaterial may occur during the 

production process, in the subsequent use by companies or consumers, or finally at disposal. In the 

literature there are few exposure studies from real life. Efforts to make aerosols of carbon nanotubes 

(CNT), to investigate their relative ease to resuspend, show that this is very difficult [4]. The difficulty 

to disperse or break up the CNT in order for them to become airborne has been reported [5], pointing 

out that although various air monitoring systems were run under professional occupational hygiene 

guidance, no CNT was observed in the air within their laboratory. Newer studies has succeeded in 

performing real time monitoring of multiwall CNTs [6] and fullerenes [7], respectively, stating their 

presence in the working atmosphere. 

The health effects associated with exposure to CNF (defining CNF as including both CNT and CNF) 

has been reviewed [8] and since there were no epidemiological studies available, the authors reviewed 

experimental studies employing both in vivo and in vitro toxicity models. The conclusion of these 

authors was that exposure to CNFs in nanomanufacturing plants may represent a possible health risk. 

A review of CNT exposure assessment and toxicity related to human health indicated that the main 

risks arose from chronic occupational inhalation, especially during activities involving high CNT 

release [9].  

It has been pointed out that toxicological evaluation should be included early in the design of 

nanomaterials when there are opportunities like modifying synthesis and purification procedures [10]. 

Inspired by this perspective, we started a research project in 2006 with the aim of investigating how 

adjustment of production parameters and purification procedures can contribute to engineering 

nanomaterials of low toxicity. In our case this was CNF, as the companies involved were developing a 

new reactor in a research pilot plant where one important aim was an efficient production process 

producing a low toxicity product. At this level, any future commercial application of the CNF product 

was yet to be developed. CNF has demonstrated its technical usefulness in many of the same 

application areas as CNTs, e.g., Li-ion batteries [11] and polymer nanocomposites [12]. 

When the project started in 2006, there were a limited range of in vitro toxicity tests which could be 

applied to non-dissolvable particles. Transferring existing test procedures previously applied to other 

particles (traffic, indoor dust) proved to be very difficult. The main problems were to generate stable 

suspensions as particles tended to either float or deposit during the in vitro test and secondly the black 
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suspensions interfered with photometric assays. A method was adopted and further developed based on 

colony formation [13], and this was successfully used to differentiate batches of CNFs produced.  

The in vivo tests applied were based on mouse models previously used to identify the  

allergy-promoting potential of ultrafine particles like carbon black (CB) and diesel exhaust  

particles [14,15]. The footpad injection model [16] has been found to be a useful hazard identification 

model for respiratory adjuvants, whereas the intranasal model was applied to investigate the adjuvant 

effect of particles after exposure via a more relevant route for respiratory allergies. Allergen-specific 

IgE in serum is a hallmark for allergic diseases and has been used as the main outcome in the in vivo 

studies. Increased levels of allergen-specific IgE may result in an increased risk of developing and/or 

aggravating allergic symptoms. 

The purpose of the material characterization was to allow identification of the particle properties 

most important for determining the toxicity potential. However, the aim of producing low toxicity 

CNF shall not compromise the CNF quality beyond an acceptable level, thus particle characterization 

was also important in order to monitor the product quality. This paper describes test batteries for both 

material and toxicity testing, and discusses some necessary interventions, i.e., homogenization. 

2. Results and Discussion 

2.1. Material Characterization 

The characteristics of the prepared CNF powders and the reference material CB are shown in Table 1.  

Table 1. Characteristics of carbon nanofibers (CNFs) and carbon black (CB). 

Name 
Thermal  

Treatment 

Surface *  

(m2/g) 

D90 **  

(µm) 

D50 ** 

(µm) 

D10 **

(µm)

S  

(%) 

N  

(%)

Fe  

(%)

Si  

(%) 

Ni  

(%) 

P  

(ppm)

B  

(ppm)

CNF A no 103 2.2 1.6 0.7 <0.010 0.017 0.008 0.020 1.29 5.0 0.7 

CNF B yes 61 2.2 1.9 1.6 <0.010 0.016 0.023 0.012 0.070 3.8 2.0 

CNF C no 124 2.6 1.7 0.8 0.095 0.037 0.148 0.056 4.97 8.1 7.6 

CNF D yes 56 2.5 1.5 0.6 <0.010 0.012 0.002 0.004 0.036 0.3 0.3 

CB no 321 6.9 3.2 1.3 0.45 0.121 0.003 <0.03 <0.0003 1.1 <1.0

* BET method (see chapter 3.3.3); ** Coulter counter (see chapter 3.3.2). 

As seen in Table 1, both CNF A and CNF C have a high specific surface area compared to CNF B 

and CNF D, whereas CB displays the highest surface area. It is well known that high temperature 

treatment of CNF produced by the chemical vapor deposition (CVD) method leads to annealing of 

micro structural defects as well as reduction of catalytic impurities [11,17]. Formation of energetically 

stable loops between adjacent active end planes on the surface of annealed CNFs has been  

described [11]. Such loops have also been observed in the present work, and may contribute to the 

lower specific surface area observed for the annealed CNFs. 

The CNF powders show a similar and narrow particle size distribution. The D90 and D50 value, 

describing the diameter of the powder below which 90% and 50%, of the distribution lies, give similar 

results for the various CNFs. CNF B has a higher D10 value compared with the others. The vast 

majority of the counted CNF diameters (agglomerates) are within the size range of 0.6–2.6 µm. This 

indicates that the preparation of the powdered CNF samples from the produced batches has been 
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successful in providing powders of similar sizes prior to further investigations. The method does not 

differentiate between large particles and agglomerates, thus, exact sizes cannot be found from  

these results.  

The trace elements listed have their origin from the production process of the materials. Thermal 

treatment reduces the remains from the nickel catalyst, as can be seen for CNF B and CNF D. CNF C 

is highly contaminated and gives the highest values for all the trace elements listed. The CB differs 

from the CNF powders in having a higher surface area, a broader agglomerate size distribution  

(1.3–6.9 µm) and a higher sulfur and nitrogen content. 

The scanning electron microscope (SEM) images in Figure 1 show the morphology of the CNF 

powders. When evaluating the CNFs for fiber content, the CNF B, shown in Figure 1b, is distinctly 

different from the other three in having the highest fraction of fibers. CNF C (Figure 1c) contains 

mostly disordered graphitic material and a low fiber fraction. CNF A (Figure 1a) and CNF D  

(Figure 1d) are somewhere in between the other two batches. The high material quality is a 

commercially absolute and cannot be compromised, and this is best obtained at the process parameters 

applied to produce sample CNF B, and poorly obtained in e.g., sample CNF C. 

Figure 1. Typical scanning electron microscope (SEM) SE images of the CNF powders, 

showing (a) CNF A; (b) CNF B; (c) CNF C and (d) CNF D. 

 

When evaluating whether a fiber is of relevance to exposure or not, it is common to use the WHO 

(World Health Organization) fiber definition [18]: a fiber is >5 µm long, <3 µm wide, and with a 

length:width ratio >3:1. Such a fiber can have a relevance to health since its shape enables it to be 

inhaled and transported within the respiratory system. The definition does not differentiate between 

fiber types. The CNF samples were checked against the WHO fiber definition by systematically 

investigate the SEM images with respect to fibers longer than 5 µm. The evaluation was that most 

fibers had lengths below 5 µm, but estimating number of fibers was not possible since the fibers were 

highly intertwined. 

Figure 2 is a typical annual dark field scanning transmission electron microscopy (ADF-STEM) 

image of CNF D and show that a very low amount of catalyst was present. The metallic particles that 
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were observed were present in clusters and contained Ni and sometimes traces of Fe. The size of the 

metallic particles varied from below 10 nm to over 50 nm. The low amount of Cu shown in the 

spectrum is an artifact due to the composition of the grid. 

Figure 2. An example of an annual dark field scanning transmission electron microscopy 

(ADF-STEM) image of sample CNF D, dry powder. The energy dispersive X-ray 

spectroscopy (EDS) spectrum of the indicated metallic particle is given to the right. 

 

Figure 3 shows typical transmission electron microscope (TEM) images of CNF D. Figure 3a shows 

intertwined fibers, and the internal fiber structures with carbon atoms ordered as stacks of hats. It can 

be observed that some fibers are short and appear to be broken, which introduces shorter fiber lengths 

with “V-shaped” tails. This cutting of fibers in shorter lengths is probably caused by the preparation of 

CNF powder through mortaring and jetmilling. Figure 3b show a high-resolution image of a typical 

CNF, which has a periodically closed internal channel. Further, this fiber has a closed loop structure at 

the surface, and thereby less edge planes available for reactions. This is the result of heat treatment and 

the removal of contaminants. The possible correlation between the closed loop structure and the lower 

specific surface area observed for the annealed CNFs, has already been mentioned (Table 1). 

Figure 3. (a) A typical transmission electron microscope (TEM) image from sample  

CNF D dry powder; and (b) shows magnification of details; (c) A typical TEM image of 

CNF D distributed in mouse serum; and (d) shows magnification of details; (e) Fiber width 

distribution for sample CNF D dry powder; and (f) similar for CNF D distributed in  

mouse serum. 
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Figure 3. Cont. 

 

Figure 3c shows fiber embedded in crystallized mouse serum, as well as fiber with no serum 

attached to the surface. The high resolution image given in Figure 3d show that the sonicated fiber has 

the internal structure intact, but the presence of closed carbon atom layers at the surface is not that 

clear compared to Figure 3b. 

An attempt was made to evaluate the fulfillment of the WHO fiber definition using the TEM images. 

This failed since these high magnification images did not include the whole fiber length. However, 

TEM images were well suited for measuring the fiber width, with the width distribution of the CNF D 

powder sample as an example, presented in Figure 3e. The widths of 231 fibers were measured from 

23 TEM images similar to the one shown in Figure 3a. The average fiber width was found to be 71 nm. 

The smallest width was 19 nm, and the largest was 287 nm. 

Figure 3f shows the width distribution of the CNF D sample sonicated in the presence of mouse 

serum. The width of 411 fibers was measured from 47 TEM images similar to the one shown in  

Figure 3c. The average fiber width was found to be 55 nm. The smallest width was 15 nm, and the 

largest was 244 nm. The width distribution of the sonicated mouse serum sample (Figure 3f) shows a 

reduction in number of thick fibers (width >100 nm) compared to the dry powder sample. This may 

indicate that the thickest fiber is lost through the sonication procedure. 
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The Raman spectra of the CNFs and CB are shown in Figure 4, where the main features are the 

usual first-order bands, G and D, at around 1580 cm−1 and 1330 cm−1, respectively, along with a 

shoulder at ~1615 cm−1 (D’ band) and the 2D overtone at around 2660 cm−1 for the CNFs. For the heat 

treated CNF B and CNF D, a sharper G band along with a more intense 2D band is seen. Following the 

deconvolution procedure [19], some spectral parameters such as full widths at half maximum (Δν) for 

the D, G and 2D and the intensity ratios R = ID/IG and R’ R = I2D/IG are shown in Table 2. The  

R value [20] showed an inverse relationship to the characteristic coherence length La, and has been 

related to an in-plane coherence length, L1, for CNFs and CNTs [19]. The active surface area (ASA) of 

the samples was calculated from Equation 1. The Raman spectra along with the TEM investigations 

showed that the CNFs had varying degrees of structural disorder. TEM images of the thermal treated 

CNFs such as CNF D shown in Figure 3b revealed highly ordered graphene planes, but in contrast to 

the CNFs, which had not been thermally treated, the graphene planes did not terminate at the edges, 

but showed a curved “loop” structure. Hence, lower concentration of dangling bonds at the fiber edges 

are expected for the heat-treated samples, which are also indicated through the lower ASA values. 

Figure 4. Raman spectra of the CNF powders and CB. 

 

Table 2. Raman data of the CNF powders and CB (equations given in 3.3.3 [21]). 

Name 
First order lines Second order lines 

ΔνD (cm−1) ΔνG (cm−1) R = ID/IG L1 (nm) ASA (m2/g) ΔνD (cm−1) R’ = I2D/IG 

CNF A 58 42 2.6 3.2 27.1 103 0.4 

CNF B 53 29 0.5 17.2 1.6 74 0.5 

CNF C 53 34 1.8 4.5 15.2 85 0.4 

CNF D 47 24 1.2 7.0 7.4 69 0.6 

CB 147 80 1.5 5.4 11.4 314 0.2 

Surface chemistry has been characterized with X-ray photoelectron spectrometry (XPS). The main 

finding is the presence of a low-level Si-oxide contamination on the surface of the carbon-material in 
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samples CNF A and B, see Figure 5. Figure 5a shows that C is present mainly in the C-C chemical 

state and Figure 5b shows the presence of carbonates. When the C1s peaks are normalized for 

approximately the same intensity (Figure 5c), no difference is observed between the samples. The 

survey scans in Figure 5d,e show that samples CNF A and CNF B have higher amounts of O due to the 

presence of Si-oxide. Figure 5e show that samples CNF A and CNF B contain traces of Si on the 

surface in oxidized form whereas the surfaces of samples CNF C and CNF D are Si-free. These 

samples also have lower amounts of O (Figure 5d,f). Figure 5f shows a higher presence of O in 

samples CNF A and CNF B. The position at ~533 eV corresponds to Si-oxide and/or to adsorbed O, 

OH species. It is therefore reasonable to assign the peak maxima for samples CNF A and CNF B to  

Si-oxide, the peak maxima for samples CNF C and CNF D to adsorbed O, OH, and the lower binding 

energy peak components to carbonates. However, we should point out that the oxygen presence is very 

low in all samples, resembling typical non-oxidized CNFs [22,23] with samples CNF A and CNF B 

having higher amounts. 

Figure 5. (a) High resolution C1s spectra; (b) High resolution C1s spectra of the high 

energy tail (magnification of frame in Figure 5a); (c) C1s peaks normalized for 

approximately the same intensity; (d) Survey scans; (e) Survey scans of low energy side 

(magnification of frame in Figure 5d); (f) High resolution O1s scans. 
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Figure 5. Cont. 

 

2.2. In Vitro Toxicity Tests 

As given in Figure 6, all the tested CNF samples inhibit the formation of RBE4 colonies in a  

dose-dependent manner. Further details can be found in the study by Gellein et al. [13]. The form of 

the dose-response curve is similar for three of the CNF samples while CNF D shows an initial increase 

in colony formation at the lowest exposure. The effects in three of the CNFs and CB can be readily 

observed even at the lowest concentration tested (Figure 6). In Table 3 the same data is given 

numerically and the standard deviation (SD) is included. 

Figure 6. Reduction in RBE4 colony formation after exposure for five days to four 

different CNF samples. CB included as reference. Bars indicating reproducibility have not 

been included—please refer to Table 3. 
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Table 3. Number of RBE4 colonies after exposure for five days to four different CNF 

samples. CB included as reference. Mean and standard deviation are given (n = 3). 

Sample 
Control 1 (µg/mL) 10 (µg/mL) 20 (µg/mL) 

Mean SD Mean SD Mean SD Mean SD 

CNF A 64 11.3 59 4.9 21 5.0 4 1.5 

CNF B 59 10.6 31 14.0 6 1.7 1 1.0 

CNF C 59 10.6 47 10.5 31 3.8 8 2.5 

CNF D 62 11.4 73 12.7 43 10.8 10 2.3 

CB 59 10.6 39 7.8 17 4.5 3 2.3 

The SDs in Table 3 indicate a substantial variation for a given exposure as the relative SD (SD as % 

of the mean value) range from 8 to 60%—the mean variation being ca. 20%. Thus, this assay needs to 

be developed further to become better standardized. For comparing samples, which have different dose 

response patterns, the calculation of EC50 (half maximal effective concentration) can be used as an 

indicator to differentiate between samples. From the results presented in Figure 6 we have graphically 

extracted the EC50-concentrations, which are then presented in Table 4. It demonstrates that there are 

considerable differences in the EC50 for the four CNFs samples tested. Although the few parallel 

measurements that were possible in this study do not warrant any extensive statistical evaluation, the 

CNF toxicity appeared to be ranked as CNF B > CNF A > CNF C > CNF D when applying this  

in vitro toxicity test. This pattern did not strongly correlate with changes in any of the process 

parameter interventions or the material characteristics. 

Table 4. The effective dose causing a 50% inhibition of cloning (EC50) was determined 

graphically from Figure 6. 

Name EC50 (µg/mL) 

CNF A 7.6 

CNF B 2.5 

CNF C 10.9 

CNF D 13.8 

CB 6.6 

2.3. In Vivo Toxicity Test 

After footpad injection of CNF together with the allergen OVA, only CNF A and CNF C 

significantly increased the levels of OVA-specific IgE compared to OVA alone (Figure 7a). These 

results suggested that the four CNF samples differently affected the immune response towards the 

allergen, depending on the physicochemical characteristics of the CNFs. Interventions in common for 

CNF B and CNF D, which are the batches less potent with regard to IgE adjuvant effect in the footpad 

model, are thermally treatment, a process also contributing to changes of particle properties such as 

reduced metal content and relative surface area. 
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Figure 7. (a) Serum levels of OVA-specific IgE on day 26 after subcutaneous injection; 

and (b) intranasal application of OVA alone or together with the four different CNFs, 

following an allergen booster. Values for individual mice (circles) and median values 

(columns) for groups of eight and ten mice, respectively, are shown. The dotted line 

indicates the upper detection limit for the ELISA assay. * Denotes a statistically significant 

difference compared to the OVA group (p < 0.001), determined by pair-wise comparisons 

by Tukey’s post hoc test following positive ANOVAs on log-transformed IgE data. 

 

After exposure via a more relevant route for respiratory allergies, namely intranasal airway 

exposure, all CNFs significantly increased the OVA-specific IgE levels (Figure 7b), and no differences 

between the batches were observed. Thus, in the intranasal model, the differences in production 

process and purification procedure between the CNF batches did not affect this toxicological outcome. 

The difference in the IgE adjuvant potency of different particles in the injection and intranasal 

model has also previously been observed [24], indicating that the airway mucosal lining does modify 

the immune response towards the particles and allergen. How the different CNFs influence other 

allergic endpoints or the non-allergic antibody response is currently being investigated. It is important 

to notice that the IgE adjuvant effect is not necessarily associated with other toxicological endpoints of 

the airways, such as inflammation, granuloma and fibrosis, which have all been reported after 

inhalation of CNT in mice [25,26]. Thus, it remains to be determined whether the various CNFs would 

differ in their putative capacity to induce other biological outcomes in vivo than OVA-specific IgE 

levels. Little is known about how physicochemical characteristics of particles promote IgE production. 

2.4. Suitability of the Methods 

The need for homogenous samples to be used in the subsequent tests (enable representative 

selection of sample, suitable for in vitro and in vivo tests) requires the introduction of detailed 

procedures to process samples. Such procedures may alter the original sample in such ways that the 

results obtained do not reflect the properties of the original product. The original CNF batches A, B, C 

and D were slightly changed as a result of the preparation to powdered CNF samples, i.e., removal of 

the largest agglomerates and longer fibers. This reduction of fiber length as observed in Figure 3a is 
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probably caused by the preparation through mortaring and jetmilling. However, these changes of the 

original CNF batch seem to occur to the same extent in all samples (CNF A-D) since they show a 

similar and narrow size distribution (Table 1). The sonication of the sample prior to the toxicity tests 

add another deviation from the original CNF batch, namely reduction of thick fibers (width > 100 nm). 

Further, sonication seems to have an influence on the carbon atom layers at the surface as the presence 

of the loop structure on the outer surface of the heated CNFs becomes less evident. The compromise 

between the need for a homogeneous sample for the testing and keeping the original qualities of the 

sample has been continuously challenged. Although the samples applied in the toxicity tests did have a 

lower content of thick fibers and large agglomerates than the original batch, we find these changes 

acceptable for our research project. 

With regard to exposure and relevance for human health, the highest uncertainty is probably related 

to dispersion of the CNF in air. In order to be inhaled, the CNFs must be available in the breathing air, 

and such exposure models are outside the scope of this study. In the in vivo tests the mice were 

exposed through direct injection into the footpad, or through direct placement of a particle suspension 

on the nostrils. In the in vitro test the exposure was through feeding the cells with culture medium 

containing CNF. Such controlled and artificial exposure situations differ considerably from the real life 

situation since several of the body defense mechanisms are not available (in vitro, injection) or a 

particle suspension is forced onto the exposure organ (intranasal model). Nevertheless, until real 

exposure models are available, these toxicity tests may serve the purpose of comparing different types 

and production batches of similar products. Thus, we may obtain useful data on the relative intrinsic 

toxicity of such products and an opportunity to guide the development of the production processes.  

The toxicity test applied covers in vivo allergy test (immunological response) and an in vitro test 

monitoring the cells’ ability to form colonies, reflecting different mechanisms of toxicity. Both 

methods have been reported to distinguish between the different toxic potential of particles [13,24]. As 

preliminary tests, they function well with respect to cost and execution time, and they fit the purpose 

related to an ongoing development of a production process. They can probably be applied also for 

other types of solid nanoparticles. However, more specific toxicity tests are needed for studying health 

effects like lung inflammation, fibrosis and respiratory cancer. Such test are often time consuming but 

should be applied for the more in-depth toxicity tests of the mature CNF product after the variables of 

the production process are settled. Even though the CNF batches tested do not fulfill the WHO fiber 

criteria (most fibers had lengths below 5 µm), based on our results we recommend that the CNF 

products should be treated with caution and as inhalable particles.  

The direct application of the results from this study is that the production variables for batch B 

seems promising for further development, since the characterization of CNF B showed the best 

material quality (highest fiber fraction, low contamination from the catalyst, high degree of 

crystallinity, limited presence of oxygen on the surface). The in vitro toxicity test apparently ranked 

CNF B as more toxic than the other CNFs tested (Figure 6, Table 4). However, with regard to 

immunotoxicity, CNF B did not negatively stand out from the other batches in the intranasal in vivo 

tests and appeared to be less toxic in the injection model (Figure 7). Thus, further development of  

CNF B towards lower toxicity is recommended through fine-tuning of the production variables. 

This study illustrates how an approach of early interdisciplinary collaboration is useful during 

process development, aiming towards manufacturing CNF with low toxicity. Initially, we planned the 
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study as an iterative process in four loops. The first loop consisted of production of a CNF batch, 

followed by material characterization and toxicological testing, interpretation of the test results, and 

finally feedback to the production process with respect to adjusting the relevant variables. The next 

loop could then be performed, and so on, gradually improving quality and reducing toxicity. 

Unfortunately, we were not able to follow this iterative process within the time frame of the project, 

since some of the tests took more time to establish than expected. However, when a test battery as 

presented is available, such a process can be accomplished, and it is expected to be an efficient 

approach. Future application of early quality and safety characterization, preferably in an iterative 

design, is promising in order to assure production of CNF with low toxicity. 

3. Experimental Section 

3.1. Materials  

The four CNF batches (batch A, B, C and D) used in this study were produced in a pilot plant 

reactor. This process converts natural gas into carbon and hydrogen in a CVD process. The batches 

represent four different runs of the pilot plant, with differences in variables as gas composition, gas 

space velocity, nickel catalyst composition, temperature and pressure. Two of the batches, B and D, 

were taken fresh from the reactor to a thermal treatment. This was performed in a graphite furnace 

operating under nitrogen atmosphere (2800 °C, 30 min).  

CB (Printex90), kindly provided by Degussa (Köln, Germany) was applied as reference in the study. 

The relevance of using CB as reference material can be questioned since these particles are spherical 

while the samples to be tested are fibers. However, CB has been widely used in ultrafine particle 

studies, is well characterized, is easily available, and is a positive control [27] for the in vivo tests 

applied. 

3.2. Preparation of Powdered CNF Sample  

The CNF fresh from the reactor (A and C) or from the thermal treatment (B and D) were not 

suitable as such for the toxicity tests as the size (agglomerates, long fibers) and heterogeneity 

necessitated a pre-treatment procedure. This preparation started with splitting of the sample using a 

riffle splitter (Retsch RT 6.5, Retsch Technology GmbH, Haan, Germany), carefully mortaring the 

sample to pass a sieve (1 mm), and then jetmilling (Alpine 100 AFG fluidized bed opposed jet mill, 

equipped with classifying plant 50 ATP, Hosokawa Alpine AG, Augsburg, Germany). The carbon 

powders used in the further study were collected from the filter fraction of the jet mill by using virgin 

Gore® anti-static polyester felt (475 g/m2). Furthermore, the samples were divided into smaller 

representative samples (approx 0.5 g) using a riffler (Rotary Micro Riffler™, Paul N Gardner Company 

Inc., Florida, FL, USA). The resulting CNF powders after these preparation steps were applied for the 

further material characterization and toxicological testing. They were given the names CNF A, CNF B, 

CNF C and CNF D, respectively, indicating which production batch they originated from. 
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3.3. Material Characterization 

The CNF powder samples were then analyzed for several physical characteristics. This included 

chemical composition (impurities, remaining catalyst), size distribution (relevance for exposure), 

surface area (area potentially available for contact with human cells), electron microscopy 

(morphology, dimensions, topological information, internal fiber structure), Raman spectroscopy 

(structural information), and X-ray photoelectron spectrometry (XPS) (surface chemical composition, 

functional groups).  

3.3.1. Chemical Composition 

The concentration of trace elements was determined by atomic absorption spectrometry  

(AAS, Varian AA280FS, Agilent Technologies, Santa Clara, CA, USA) and an induced coupled 

plasma optical emission spectrometer (ICP-OES, Spectro Arcos, Spectro Analytical Instruments 

GmbH, Kleve, Germany) was used for phosphorus and boron analysis. The sulfur content was 

determined by a combustion method utilizing IR-absorption of SO2 (Eltra CS-2000, Eltra GmbH, 

Neuss, Germany) and the nitrogen content was determined using the inert-gas fusion principle 

measuring nitrogen by thermal conductivity (Leco TCH600, Leco Corporation, St Joseph, MI, USA). 

3.3.2. Size Distribution 

The volume-based particle size distribution of the CNF powders and CB was characterized by using 

a coulter counter (Beckman Coulter LS 230 analyzer, Beckman Coulter Inc, Brea, CA, USA). Size 

distribution of the CNF width (diameter) was determined by measurement of individual CNF widths 

within randomly picked areas of the sample in a transmission electron microscope (Jeol 2010F  

FEG-TEM, Jeol Ltd, Tokyo, Japan). 

3.3.3. Surface Area 

The specific surface area was determined by nitrogen adsorption using the Brunauer, Emmet and 

Teller (BET) method (5-point, Micromeritics Tristar 3000, Micromeritics Instruments Corporation, 

Norcross, GA, USA) [28,29]. The active surface area (ASA) was calculated using the following 

empirical Equation [21]: 

log [ASA] = 2.3 − 1.7 log L1 (1) 

where L1 is the in plane coherence length determined by Raman spectroscopy from the intensity ratio, 

R [20]: 

R = ID/IG (2) 

Using excitation length at 632.8 nm [21] gives the following relation:  

R = ID/IG = 8.28/L1 (3) 
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3.3.4. Scanning and Transmission Electron Microscopy 

An identical sample preparation procedure was followed for the scanning and transmission electron 

microscopy analyses (SEM and TEM, respectively). The dry powders were prepared with ethanol, 

ultrasound, and dropped on holey carbon film supported by a Cu grid. The test tubes with sonicated 

serum solutions, as received from the in vivo and in vitro tests, were shaken by hand and further treated 

as the others. The SEM analyses were performed with field emission gun (FEG)-SEM (Zeiss Supra 55 

VP low vacuum, Carl Zeiss, Oberkochen, Germany) for sample CNF A, and with a different  

FEG-SEM (Hitachi s-4300se, Hitachi High-Technologies Corporation, Tokyo, Japan) for samples 

CNF B, CNF C and CNF D. The instruments were operated at 5 and 10 kV. Images were collected at 

sufficiently low magnifications (3 k–30 k) such that the beginning and end of fibers could be seen. Up 

to three magnifications were used, with three to four images per magnification. This enabled an 

estimation of fiber length and morphology. In most cases the secondary electron (SE) and  

back-scattered electron (BSE) images were recorded from the same area. Images were recorded from 

at least three to four grid-squares.  

The TEM analyses were performed with a FEG-TEM (Jeol 2010F, operated at 200 kV, image mode 

point resolution 2 Å). ADF-STEM mode was applied to determine the presence of metallic particles in 

the analyzed samples. The chemical composition of the metallic particles was investigated with the 

“Point and ID” option of the INCA software (Oxford Instruments, Oxfordshire, UK) of the Energy 

Dispersive X-ray Spectroscopy (EDS) system.  

3.3.5. Raman Spectroscopy 

Raman spectra of the CNF powders were recorded with a Jobin Yvon LabRam HR spectrometer 

(Horiba Ltd, Kyoto, Japan) equipped with an Olympus microscope (50 × objective) and He/Ne laser 

for excitation (632.81 nm). The laser beam power was 0.2–2 mW and each spectral window was 

recorded up to five times using an integration time of 150–300 sec. First and second order spectra were 

fitted separately for determination of spectral parameters following a procedure [19] using the 

OriginPro 8.0 software (OriginLab, Northampton, MA, USA). 

3.3.6. Surface Chemistry 

The surface chemical composition and functional groups of the CNF powders were analyzed with 

the XPS technique. The XPS instrument (Kratos Axis UltraDLD, monochromatic Al Kα radiation,  

hν = 1486.6 eV, 15 kV, 10 mA, Kratos Analytical Ltd, Manchester, UK) used energies of 160 and  

10 eV for the survey and the high resolution (C1s and O1s) scans. The powders were positioned in a 

cup shaped Cu sample holder, and were left overnight in the fast entry chamber to outgas. The initial 

vacuum in the fast entry lock after positioning the samples was 2 × 10−6 torr to 4 × 10−6 torr, reaching a 

value of 2 × 10−8 torr next day before performing the experiments. During analysis the vacuum in the 

analysis chamber was 1 × 10−9 torr. 
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3.4. In Vitro Toxicity Tests 

3.4.1. Sample Suspension 

An ultrasonic tip (Ultrasonic processor VCX 750, 750W, Sonics, Sonics and Materials Inc., 

Newtown, CT, USA) with specified operation parameters (40% amplitude, 30 s each on/off sequential 

steps, total time 10 min) was employed to disperse the CNF powder in HEPES-buffer (25 mM) 

fortified with 10% foetal calf serum (FCS, not heat inactivated). The suspensions were prepared by 

sonicating at an initial concentration (10 mg/mL) of each material. This stock solution was then diluted 

further by adding the applicable cell culture medium supplemented with 10% FCS to obtain the cell 

culture exposure concentrations. The suspensions were prepared fresh before every experiment. 

During sonication the CNF powder was exposed to energy that may affect its characteristics. Thus, 

the sonicated serum solution, i.e., the stock solution, was characterized with SEM and TEM in order to 

check for any morphological changes (see Section 3.3.4). 

3.4.2. Cell Cultures 

Rat brain endothelial cells (RBE4, provided by Dr. Michael Aschner, Vanderbilt University, 

Nashville, NT, USA) were grown in MEM alpha culture medium (Invitrogen cat 22571-020). The cells 

require the growth area to be coated with Rat tail Type І collagen (BD biosciences cat. 354236). The 

media was supplemented with 10% heat inactivated FCS (PAA cat. A15-151), 10 µL/mL 

penicillin/streptomycin (Gibco cat. 15140-122), 300 µg/mL G418 (Invitrogen cat. 11811-064) and  

1 ng/mL basic fibroblast growth factor (Invitrogen cat. 13256-029). All cells were maintained at 37 °C 

in a humidified incubator at 5% CO2. 

3.4.3. Cytotoxity Evaluation 

Exponentially growing cells were harvested and seeded in 12 well micro plates (Becton Dickinson 

cat. 353043) at a density of 100 cells/well. Each well contained 1 mL cell culture medium. The cells 

were allowed to attach for 4 hours. Cells were then treated with CNFs prepared in cell culture  

medium (1.5 mL) in concentrations of 2 µg/mL (0.52 µg/cm2), 10 µg/mL (2.63 µg/cm2) and 20 µg/mL  

(5.26 µg/cm2). Three replicate wells were used on each plate for each sample. 

After exposure with CNFs for 5 days, the cells were washed twice with PBS, fixed with ice-cold 

methanol (5 min) and stained with Giemsa solution (Sigma cat. G-5637) for 20 min at 37 °C. After 

washing with ultrapure water, the number of colonies was determined. Digital photographs were taken 

of each well and the Nis Elements Advanced Research 2.0 software (Nikon) was used for the 

evaluation of the digital pictures. 

The procedure for the clonogenic assay was adapted from the literature [30,31], and has been 

successfully used to differentiate between various types of CNTs. 
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3.5. In Vivo Toxicity Tests 

3.5.1. Sample Suspension 

Preparation of the sample suspensions for the in vivo tests was performed in line with the 

preparation performed for the in vitro studies with the following adjustments: To the weighed CNF 

powder, Hank’s balanced salt solution (HBSS; PAA Laboratories GmbH, Linz, Austria) containing the 

allergen ovalbumin (OVA, chicken egg albumin, grade VII, Sigma, St. Louis, MO, USA) was added to 

a achieve particle concentrations of 10 mg/mL or 3.8 mg/mL in the injection and intranasal models, 

respectively. The suspensions were then sonicated (total time 3 min) as described for the in vitro 

sample (Section, 3.4.1). To improve suspension of the particles [32,33] BALB/cA mouse serum 

(Charles River, Sulzfeld, Germany) was added to a final concentration of 10%, and the suspensions 

were again sonicated (total time 7 min). The suspensions were diluted in HBSS containing OVA and 

mouse serum to give the appropriate dose before application in the two models. During sonication the 

CNF powder was exposed to energy that may affect its characteristics. Thus, the sonicated serum 

solution, i.e., the solution before the final dilution, was characterized with SEM and TEM in order to 

check for any morphological changes (see Section 3.3.4). 

3.5.2. Animals 

Female inbred BALB/cAnNCrl mice (Charles River, Sulzfeld, Germany) were housed and kept 

under conditions previously published [24]. The experiments were performed in conformity with the 

laws and regulations for experiments with live animals in Norway, and they were approved by the 

Experimental Animal Board under the Ministry of Agriculture in Norway. 

3.5.3. The Footpad Injection Model 

To investigate the allergic adjuvant capacity of the CNF, we applied a footpad injection model [16], 

performed as previously published [24]. In short, the allergen OVA (10 µg) alone or together with the 

CNF (200 µg), was injected into the right footpad of mice. The mice received an OVA booster 

injection (10 µg) after three weeks, and five days later the serum levels of OVA-specific IgE were 

determined by enzyme-linked immuno-sorbent assay (ELISA). 

3.5.4. The Intranasal Model 

To investigate the allergic adjuvant potential of the CNF in an airway model, mice were exposed 

intranasally [24]. In short, suspensions of OVA (10 µg) alone or together with CNF (133 µg) were put 

on the nostrils of anesthetized mice on three consecutive days (resulting in a total dose of 30 µg OVA 

and 400 µg CNF), followed by intranasal OVA boosters (3 × 10 µg) after three weeks. Five days later, 

the serum levels of OVA-specific IgE were determined by ELISA. 
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4. Conclusions  

This paper illustrates how combining material characteristics and toxicology testing early in the 

production process is a useful approach in order to design CNF with low toxicity. CNF material from a 

pilot plant went through a thorough material characterization (chemical composition, specific surface 

area, morphology, surface chemistry) and toxicity tests in vitro (colony formation) and in vivo 

(immunological responses). When a test battery as presented in this paper is available, early quality 

and safety characterization, preferably in an iterative design, is expected to be efficient and promising 

in order to assure production of CNF with low toxicity. The specific results for the four different CNF 

batches tested showed that thermal treatment of the produced batch was necessary to remove remains 

of catalyst and metals and to smoothen the surface. The best material quality, i.e., high fiber fraction, 

low contamination from the catalyst, high degree of crystallinity and limited presence of oxygen on the 

surface, was obtained with CNF B. Thus, further development should be through fine-tuning of the 

production variables (gas composition, gas space velocity, nickel catalyst composition, temperature, 

pressure) applied for batch B. The in vitro toxicity test apparently ranged CNF B as more toxic than 

the other CNFs tested. However, with regard to immunotoxicity, CNF B did not negatively stand out 

from the other batches in the intranasal in vivo tests and appeared to be less toxic in the injection model. 

Thus, further development of CNF B towards lower toxicity is recommended through  

fine-tuning of the production variables. 

The toxicity tests applied may function as preliminary tests having qualities within costs and 

execution time. Further studies to research the effects such as lung inflammation, fibrosis and 

respiratory cancer are recommended for the more in-depth studies of the mature CNF product after the 

variables of the production process are settled. 
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